• This record comes from PubMed

Understanding of Colistin Usage in Food Animals and Available Detection Techniques: A Review

. 2020 Oct 16 ; 10 (10) : . [epub] 20201016

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
VT2019-2021 UHK :

Progress in the medical profession is determined by the achievements and effectiveness of new antibiotics in the treatment of microbial infections. However, the development of multiple-drug resistance in numerous bacteria, especially Gram-negative bacteria, has limited the treatment options. Due to this resistance, the resurgence of cyclic polypeptide drugs like colistin remains the only option. The drug, colistin, is a well-known growth inhibitor of Gram-negative bacteria like Acinetobacter baumanni, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Technological advancements have uncovered the role of the mcr-1(mobilized colistin resistance) gene, which is responsible for the development of resistance in Gram-negative bacteria, which make them distinct from other bacteria without this gene. Additionally, food animals have been determined to be the reservoir for colistin resistance microbes, from which they spread to other hosts. Due to the adverse effects of colistin, many developed countries have prohibited its usage in animal foods, but developing countries are still using colistin in animal food production, thereby imposing a major risk to the public health. Therefore, there is a need for implementation of sustainable measures in livestock farms to prevent microbial infection. This review highlights the negative effects (increased resistance) of colistin consumption and emphasizes the different approaches used for detecting colistin in animal-based foods as well as the challenges associated with its detection.

See more in PubMed

Komura S., Kurahashi K. Partial-purification and properties of L-2,4-diaminobutyric acid activating enzyme from a polymyxin-E producing organism. J. Biochem. 1979;86:1013–1021. doi: 10.1093/oxfordjournals.jbchem.a132594. PubMed DOI

Falagas M.E., Kasiakou S.K. Colistin: The revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin. Infect. Dis. 2005;40:1333–1341. doi: 10.1086/429323. PubMed DOI

Newton B.A. Properties and mode of action of the polymyxins. Bacteriol. Rev. 1956;20:14–27. doi: 10.1128/MMBR.20.1.14-27.1956. PubMed DOI PMC

Schindler M., Osborn M.J. Interaction of divalent cations and polymyxin B with lipopolysaccharide. Biochemistry. 1979;18:4425–4430. doi: 10.1021/bi00587a024. PubMed DOI

Koch-Weser J., Sidel V.W., Federman E.B., Kanarek P., Finer D.C., Eaton A.E. Adverse effects of sodium colistimethate. Manifestations and specific reaction rates during 317 courses of therapy. Ann. Intern. Med. 1970;72:857–868. doi: 10.7326/0003-4819-72-6-857. PubMed DOI

Spapen H., Jacobs R., Van-Gorp V., Troubleyn J., Honoré P.M. Renal and neurological side effects of colistin in critically ill patients. Ann. IntensiveCare. 2011;1:14. doi: 10.1186/2110-5820-1-14. PubMed DOI PMC

Poirel L., Jayol A., Nordmann P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 2017;30:557–596. doi: 10.1128/CMR.00064-16. PubMed DOI PMC

EFSA European Food Safety Authority. ECDC (European Centre for Disease Prevention and Control) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA J. 2017;15:5077. PubMed PMC

Aviv G., Tsyba K., Steck N., Salmon-Divon M., Cornelius A., Rahav G., Grassl A.G., Gal-Mor O. A unique megaplasmid contributes to stress tolerance and pathogenicity of an emergent Salmonella enterica serovar Infantis strain. Environ. Microbiol. 2014;16:977–994. doi: 10.1111/1462-2920.12351. PubMed DOI

Franco A., Leekitcharoenphon P., Feltrin F., Alba P., Cordaro G., Iurescia M., Tolli R., D’Incau M., Staffolani M., Giannatale E.D., et al. Emergence of a clonal lineage of multidrug-resistant ESBL-producing Salmonella infantis transmitted from broilers and broiler meat to humans in Italy between 2011 and 2014. PLoS ONE. 2015;10:e0144802. doi: 10.1371/journal.pone.0144802. PubMed DOI PMC

Hindermann D., Gopinath G., Chase H., Negrete F., Althaus D., Zurfluh K., Tall B.D., Stephan R., Nüesch-Inderbinen M. Salmonella enterica serovar infantis from food and human infections, Switzerland, 2010–2015: Poultry-related multidrug resistant clones and an emerging ESBL producing clonal lineage. Front. Microbiol. 2017;8:1322. doi: 10.3389/fmicb.2017.01322. PubMed DOI PMC

Tate H., Folster J.P., Hsu C.H., Chen J., Hoffmann M., Li C., Morales C., Tyson G.H., Mukherjee S., Brown A.C., et al. Comparative analysis of extended spectrum beta-lactamase CTX-M-65-producing Salmonella infantis isolates from humans, food animals, and retail chickens in the United States. Antimicrob. Agents Chemother. 2017;61:e00488–e00517. doi: 10.1128/AAC.00488-17. PubMed DOI PMC

Lozano-Leon A., Garcia-Omil C., Dalama J., Rodriguez-Souto R., Martinez-Urtaza J., Gonzalez-Escalona N. Detection of colistin resistance mcr-1 gene in Salmonella enterica serovar Rissen isolated from mussels, Spain, 2012–2016. Eurosurveillance. 2019;24:1900200. doi: 10.2807/1560-7917.ES.2019.24.16.1900200. PubMed DOI PMC

Mazutti K., Costa L.B., Nascimento L.V., Filho T.F., Beirão B.C.B., Júnior P.C.M., Maiorka A. Effect of colistin and tylosin used as feed additives on the performance, diarrhea incidence, and immune response of nursery pigs. Semin. Cienc Agrar. 2016;37:1947–1962. doi: 10.5433/1679-0359.2016v37n4p1947. DOI

Li Y., Tang S., Zhang W., Cui X., Zhang Y., Jin Y., Zhang X., Chen Y. A surface-enhanced Raman scattering-based lateral flow immunosensor for colistin in raw milk. Sens. Actuat. B Chem. 2019;282:703–711. doi: 10.1016/j.snb.2018.11.050. DOI

Laxminarayan R., Matsoso P., Pant S., Brower C., Røttingen J.A., Klugman K., Davies S. Access to effective antimicrobials: A worldwide challenge. Lancet. 2016;387:168–175. doi: 10.1016/S0140-6736(15)00474-2. PubMed DOI

Shen Z., Wang Y., Shen Y., Shen J., Wu C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect. Dis. 2016;16:293. doi: 10.1016/S1473-3099(16)00061-X. PubMed DOI

Maron D.F., Smith T.J., Nachman K.E. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Global Health. 2013;9:48. doi: 10.1186/1744-8603-9-48. PubMed DOI PMC

EMA/AMEG Updated Advice on the Use of Colistin Products in Animals within the European Union: Development of Resistance and Possible Impact on Human and Animal Health. [(accessed on 9 August 2019)]; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/updated-advice-use-colistin-products-animals-within-european-union-development-resistance-possible_en-0.pdf.

ECDC/EFSA/EMA ECDC/EFSA/EMA Second Joint Report on the Integrated Analysis of the Consumption of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Humans and Food-Producing Animals. [(accessed on 9 August 2019)]; Available online: https://www.ema.europa.eu/en/documents/report/ecdc/efsa/ema-second-joint-report-integrated-analysis-consumption-antimicrobial-agents-occurrence_en.pdf. PubMed

Friedlander L.G., Arnold D. Colistin. [(accessed on 13 August 2019)]; Available online: http://www.fao.org/fileadmin/user_upload/vetdrug/docs/2-2006-colistin.pdf.

Kempf I., Fleury M.A., Drider D., Bruneau M., Sanders P., Chauvin C., Madec J.Y., Jouy E. What do we know about resistance to colistin in Enterobacteriaceae in avian and pig production in Europe? Int. J. Antimicrob. Agents. 2013;42:379–383. doi: 10.1016/j.ijantimicag.2013.06.012. PubMed DOI

Catry B., Cavaleri M., Baptiste K., Grave K., Grien K., Holm A., Jukes H., Liebana E., Navas A.L., Mackay D., et al. Use of colistin-containing products within the European union and European economic area(EU/EEA): Development of resistance in animals and possible impact on human and animal health. Int. J. Antimicrob. Agents. 2015;46:297–306. doi: 10.1016/j.ijantimicag.2015.06.005. PubMed DOI

Barbieri N., Nielsen D.W., Wannemuehler Y., Cavender T., Hussein A., Yan S.G., Nolan L.K., Logue C.M. mcr-1 identified in avian pathogenic Escherichia coli (APEC) PLoS ONE. 2017;12:e0172997. doi: 10.1371/journal.pone.0172997. PubMed DOI PMC

Botsoglou N.A., Fletouris D.J. Antibacterial drugs. In: Fletouris D., Botsoglou N., editors. Drug Residues in Foods. CRC Press; London, UK: 2000. pp. 27–103.

Goetting V., Lee K.A., Tell L.A. Pharmacokinetics of veterinary drugs in laying hens and residues in eggs: A review of the literature. J. Vet. Pharmacol. Ther. 2011;34:521–556. doi: 10.1111/j.1365-2885.2011.01287.x. PubMed DOI

Nolan L.K., Barnes H.J., Vaillancourt J.P., Abdul-Aziz T., Louge C.M. Colibacillosis. In: Swayne D., editor. Diseases of Poultry. JohnWiley & Sons, Ltd.; Chichester, UK: 2007. pp. 751–805.

Löhren U., Ricci A., Cummings T.S. Guidelines for antimicrobial use in poultry. In: Luca G., Jensen L.B., Kruse H., editors. Guide to Antimicrobial Use in Animals. BlackwellPublishing, Ltd.; Oxford, UK: 2009. pp. 126–142.

EU On Pharmacologically Active Substances and Their Classification Regarding Maximum Residue Limits in Food Stuffs of Animal Origin. [(accessed on 7 August 2019)]; Available online: https://ec.europa.eu/health/sites/health/files/files/eudralex/vol-5/reg_2010_37/reg_2010_37_en.pdf.

FSSAI Food Safety and Standards (Contaminants, ToxinsandResidues) [(accessed on 7 August 2019)]; Available online: https://archive.fssai.gov.in/home/fss-legislation/fss-regulations.html.

MAC National Standard of the People’s Republic of China. [(accessed on 7 August 2019)]; Available online: http://www.agrichina.org/admin/kindeditor-4.1.2/attached/file/20160617/20160617183721_1681.pdf.

PHR. [(accessed on 7 August 2019)]; Available online: https://www.elegislation.gov.hk/hk/cap139N.

JFCRF Maximum Residue Limitsin Animalsand Fishery Products. [(accessed on 7 August 2019)]; Available online: http://db.ffcr.or.jp/front/food_group_comp.

Ziv G., Nouws F.M., Van Ginnekin C.A.M. The pharmacokinetics and tissue levels of polymyxin B, colistin and gentamicin in calves. J. Vet. Pharmacol. Ther. 1982;5:45–58. doi: 10.1111/j.1365-2885.1982.tb00497.x. PubMed DOI

Blood D.C., Radostits O.M. Practical antimicrobial therapeutics: Polymyxin B and colistin. In Veterinary Medicine; Tindall, B., Ed.; London, UK, 1989; p. 151. [(accessed on 17 July 2019)]; Available online: http://www.fao.org/fileadmin/user_upload/vetdrug/docs/2-2006-colistin.pdf.

Archimbault P., Boutier C., Fellous R., Muscat G. Etude pharmacocinétique de la colistine chez les bovins. Rec Méd. Vét. 1980;156:621–626.

Escoula L., Coste M., Larrieu G. Biodisponibilité de l’association érythromycinecolistine chez les veaux. Ann. Rech. Vet. 1981;12:321–326. PubMed

Ziv G., Sulman F.G. Passage of polymyxin from serum into milk in Ewes. Am. J. Vet. Res. 1973;34:317–322. PubMed

Al-Khayyat A.A., Aronson A.L. Pharmacologic and toxicologic studies with the polymyxins.II.Comparative pharmacologic studies of the sulfate and methanesulfonate salts of polymyxin B and colistin in dogs. Chemotherapy. 1973;19:92–97. doi: 10.1159/000221443. PubMed DOI

Sato H., Ouchi M., Koumi J. Studies on the distribution of colistin sulfate in the body. Distribution and change with time in chickens and pigs by oral administration. Jpn. J. Antibiot. 1972;25:239–245. PubMed

Terakado S., Azechi H., Omae K., Koyama T., Ninomiya K., Kashiwazaki M. Distribution of colistin sulfate and changes with time in intestinal E.coli counts in pigs following oral administration. Seventy-Third Congr. Jpn. Soc. Vet. Med. 1972:5–22.

Lin B., Zhang C., Xiao X. Toxicity, bioavailability and pharmacokinetics of a newly formulated colistin sulfate solution. J. Vet. Pharm. Ther. 2005;28:349–354. doi: 10.1111/j.1365-2885.2005.00666.x. PubMed DOI

Guyonnet J., Manco B., Baduel L., Kaltsatos V., Aliabadi M.H.F.S., Lees P. Determination of a dosage regimen of colistin by pharmacokinetic/pharmacodynamic integration and modeling for treatment of G.I.T.disease in pigs. Res. Vet. Sci. 2010;88:307–314. doi: 10.1016/j.rvsc.2009.09.001. PubMed DOI

Rhouma M., Beaudry F., Thériault W., Bergeron N., Laurent-Lewandowski S., Fairbrother J.M., Letellier A. Gastric stability and oral bioavailability of colistin sulfate in pigs challenged or not with Escherichia coli O149:F4(K88) Res. Vet. Sci. 2015;102:173–181. doi: 10.1016/j.rvsc.2015.08.005. PubMed DOI

Rhouma M., Beaudry F., Thériault W., Bergeron N., Beauchamp G., Laurent-Lewandowski S., Fairbrother J.M., Letellier A. In vivo therapeutic efficacy and pharmacokinetics of colistin sulfate in an experimental model of enterotoxigenic Escherichia coli infection in weaned pigs. Vet. Res. 2016;47:58. doi: 10.1186/s13567-016-0344-y. PubMed DOI PMC

Rhouma M., Beaudry F., Letellier A. Resistance to colistin: What is the fate for this antibiotic in pig production? Int. J. Antimicrob. Agents. 2016;48:119–126. doi: 10.1016/j.ijantimicag.2016.04.008. PubMed DOI

Olaitan A.O., Morand S., Rolain J.M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014;5:643. doi: 10.3389/fmicb.2014.00643. PubMed DOI PMC

Delannoy S., Le D.L., Jouy E., Fach P., Drider D., Kempf I. Characterization of colistin-resistant Escherichia coli isolated from diseased pigs in France. Front. Microbiol. 2017;8:2278. doi: 10.3389/fmicb.2017.02278. PubMed DOI PMC

Liu Y.Y., Wang Y., Walsh T.R., Yi L.X., Zhang R., Spencer J., Doi Y., Tian G., Dong B., Huang X., et al. Emergence of plasmid-mediated colistin resistance mechanism mcr-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016;16:161–168. doi: 10.1016/S1473-3099(15)00424-7. PubMed DOI

Biswas S., Brunel J.M., Dubus J.C., Reynaud-Gaubert M., Rolain J.M. Colistin: An update on the antibiotic of the 21st century. Expert Rev. Anti-Infect Ther. 2012;10:917–934. doi: 10.1586/eri.12.78. PubMed DOI

Xavier B.B., Lammens C., Ruhal R., Kumar-Sing S., Butaye P., Goossens H., Malhotra-Kumar S. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance. 2016;21:30280. doi: 10.2807/1560-7917.ES.2016.21.27.30280. PubMed DOI

AbuOun M., Stubberfield E.J., Duggett N.A., Kirchner M., Dormer L., Nunez-Garcia J., Randall L.P., Lemma F., Crook D.W., Teale C., et al. mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J. Antimicrob. Chemother. 2017;72:2745–2749. doi: 10.1093/jac/dkx286. PubMed DOI PMC

Borowiak M., Fischer J., Hammerl J.A., Hendriksen R.S., Szabo I., Malorny B. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5,conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. Enterica serovar Paratyphi B. J. Antimicrob. Chemother. 2017;72:3317–3324. doi: 10.1093/jac/dkx327. PubMed DOI

Yin W., Li H., Shen Y., Liu Z., Wang S., Shen Z., Zhang R., Walsh T.R., Shen J., Wang Y. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio. 2017;8 doi: 10.1128/mBio.00543-17. PubMed DOI PMC

Teo J.W.P., Kalisvar M., Venkatachalam I., Ng O.T., Lin R.T.P., Octavia S. mcr-3 and mcr-4 variants in carbapenemase-producing clinical Enterobacteriaceae do not confer phenotypic polymyxin resistance. J. Clin. Microbiol. 2018;56 doi: 10.1128/JCM.01562-17. PubMed DOI PMC

Wang X., Wang Y., Zhou Y., Li J., Yin W., Wang S., Zhang S., Shen J., Wang Y. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg. Microbes Infect. 2018;7:122. doi: 10.1038/s41426-018-0124-z. PubMed DOI PMC

Yang Y.Q., Li Y.X., Lei C.W., Zhang A.Y., Wang H.N. Nove lplasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J. Antimicrob. Chemother. 2018;73:1791–1795. doi: 10.1093/jac/dky111. PubMed DOI

Joshi P.R., Thummeepak R., Paudel S., Acharya M., Pradhan S., Banjara M.R., Leungtongkam U., Sitthisak S. Molecular characterization of colistin-resistant Escherichia coli isolated from chickens: First report fromNepal. Microb. Drug Resist. 2019;25:846–854. doi: 10.1089/mdr.2018.0326. PubMed DOI

Yassin A.K., Zhang J., Wang J., Chen L., Kelly P., Butaye P., Lu G., Gong J., Li M., Wang Y., et al. Identification and characterization of mcr mediated colistin resistance in extra intestinal Escherichia coli from poultry and live stock in China. FEMS Microbiol. Lett. 2017;364:fnx242. doi: 10.1093/femsle/fnx242. PubMed DOI

Pishnian Z., Haeili M., Feizi A. Prevalence and molecular determinants of colistin resistance among commensal Enterobacteriaceae isolated from poultry in northwest of Iran. Gut Pathog. 2019;11:2. doi: 10.1186/s13099-019-0282-0. PubMed DOI PMC

Nguyen N.T., Nguyen H.M., Nguyen C.V., Nguyen T.V., Nguyenm M.T., Thai H.Q., Ho M.H., Thwaites G., Ngo H.T., Baker S., et al. Use of colistin and other critical antimicrobials on pig and chicken farms in Southern Vietnam and its association with resistance in commensal Escherichia col i bacteria. Appl. Environ. Microbiol. 2016;82:3227–3235. doi: 10.1128/AEM.00337-16. PubMed DOI PMC

Monte D.F., Mem A., Fernandes M.R., Cerdeira L., Esposito F., Galvão J.A., Franco B.D.G.M., Lincopan N., Landgraf M. Chicken meat as a reservoir of colistin-resistant Escherichia coli strains carrying mcr-1 genes in South America. Antimicrob. Agents Chemother. 2017;61 doi: 10.1128/AAC.02718-16. PubMed DOI PMC

Hasman H., Hammerum A.M., Hansen F., Hendriksen R.S., Olesen B., Agersø Y., Zankari E., Leekitcharoenphon P., Stegger M., Kass R.S., et al. Detection of mcr-1 encoding plasmid-mediated colistin resistant Escherichiacoli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Eurosurveillance. 2015;20:30085. doi: 10.2807/1560-7917.ES.2015.20.49.30085. PubMed DOI

Quesada A., Ugarte-Ruiz M., Iglesias M.R., Porrero M.C., Martínez R., Florez-Cuadrado D., Campos M.J., García M., Píriz S., Sáez J.L., et al. Detection of plasmid mediated colistin resistance(MCR-1) in Escherichia coli and Salmonella enterica isolated from poultry and swine in Spain. Res. Vet. Sci. 2016;105:134–135. doi: 10.1016/j.rvsc.2016.02.003. PubMed DOI

Donà V., Bernasconi O.J., Pires J., Collaud A., Overesch G., Ramette A., Perreten V., Endimiani A. Heterogens genetic location of mcr-1 in colistin-resistant Escherichia coli isolates from humans and retail chicken meat in Switzerland: Emergence of mcr-1-carrying Inc K2 plasmids. Antimicrob. Agents Chemother. 2017;61 doi: 10.1128/AAC.01245-17. PubMed DOI PMC

Schwaiger K., Huther S., Hölzel C., Kämpf P., Bauer J. Prevalence of antibiotic-resistant Enterobacteriaceae isolated from chicken and pork meat purchased at the slaughter house and at retail in Bavaria, Germany. Int. J. Food Microbiol. 2012;154:206–211. doi: 10.1016/j.ijfoodmicro.2011.12.014. PubMed DOI

Kusumoto M., Ogura Y., Gotoh Y., Iwata T., Hayashi T., Akiba M. Colistin-resistant mcr-1–positive pathogenic Escherichia coli in swine, Japan,2007–2014. Emerg. Infect. Dis. 2016;22:1315–1317. doi: 10.3201/eid2207.160234. PubMed DOI PMC

Benameura Q., Guemourb D., Hammoudic A., Aoudiad H., Aggad H., Humblet M.F., Saegerman C. Antimicrobial resistance of Escherichia coli isolated from chickens in West of Algeria. Int. J. Sci. Basic Appl. Res. 2014;13:366–370.

Chiou C.S., Chen Y.T., Wang Y.W., Liu Y.Y., Kuo H.C., Tu Y.H., Lin A.C., Liao Y.S., Hong Y.P. Dissemination of mcr-1-carrying plasmids among colistin-resistant Salmonella strains from humans and food-producing animals in Taiwan. Antimicrob. Agents Chemother. 2017;61 doi: 10.1128/AAC.00338-17. PubMed DOI PMC

Anjum M.F., Duggett N.A., AbuOun M., Randall L., Nunez-Garcia J., Ellis R.J., Rogers J., Horton R., Brena C., Williamson S., et al. Colistin resistance in Salmonella and Escherichia coli isolates from a pig farm in Great Britain. J. Antimicrob. Chemother. 2016;71:2306–2313. doi: 10.1093/jac/dkw149. PubMed DOI

Enne V.I., Cassar C., Sprigings K., Woodward M.J., Bennett P.M. A high prevalence of antimicrobial resistant Escherichia coli isolated from pigs and a low prevalence of antimicrobial resistant E.coli from cattle and sheep in Great Britain at slaughter. FEMS Microbiol. Lett. 2008;278:193–1999. doi: 10.1111/j.1574-6968.2007.00991.x. PubMed DOI

Curcio L., Luppi A., Bonilauri P., Gherpelli Y., Pezzotti G., Pesciaroli M., Magistrali C.F. Detection of the colistin resistance gene mcr-1 in pathogenic Escherichia coli from pigs affected by post-weaning diarrhoea in Italy. J. Glob. Antimicrob. Resist. 2017;10:80–83. doi: 10.1016/j.jgar.2017.03.014. PubMed DOI

Magwira C.A., Gashe B.A., Collison E.K. Prevalence and antibiotic resistance profiles of Escherichia coli O157:H7 in beef products from retail outlets in Gaborone, Botswana. J. FoodProt. 2005;68:403–406. doi: 10.4315/0362-028X-68.2.403. PubMed DOI

Waghamare R.N., Paturkar A.M., Vaidya V.M., Zende R.J., Dubal Z.N., Dwivedi A., Gaikwad R.V. Phenotypic and genotypic drug resistance profile of Salmonella serovars isolated from poultry farm and processing units located in and around Mumbai city, India. Vet. World. 2018;11:1682–1688. doi: 10.14202/vetworld.2018.1682-1688. PubMed DOI PMC

Mir I.A., Kashyap S.K., Maherchandani S. Isolation, serotype diversity and antibiogram of Salmonella enterica isolated from different species of poultry in India. Asian Pac. J. Trop. Biomed. 2015;5:561–567. doi: 10.1016/j.apjtb.2015.03.010. DOI

Giani T., Arena F., Vaggelli G., Conte V., Chiarelli A., Angelis L.H.D., Fornaini R., Grazzini M., Niccolini F., Pecile P., et al. Large nosocomial outbreak of colistin-resistant, carbapenemase-producing Klebsiella pneumoniae traced to clonal expansion of an mgrB deletion mutant. J. Clin. Microbiol. 2015;53:3341–3344. doi: 10.1128/JCM.01017-15. PubMed DOI PMC

Landman D., Georgescu C., Martin D.A., Quale J. Polymyxins revisited. Clin. Microbiol. Rev. 2008;21:449–465. doi: 10.1128/CMR.00006-08. PubMed DOI PMC

Lim L.M., Ly N., Anderson D., Yang J.C., Macander L., Jarkowski A., Forrest A., Bulitta J.B., Tsuji B.T. Resurgence of colistin: A review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy. 2010;30:1279–1291. doi: 10.1592/phco.30.12.1279. PubMed DOI PMC

Yahav D., Farbman L., Leibovici L., Paul M. Colistin: New lessons on an old antibiotic. Clin. Microbiol. Infect. 2012;18:18–29. doi: 10.1111/j.1469-0691.2011.03734.x. PubMed DOI

Davies M., Walsh T.R. A colistin crisis in India. Lancet Infect. Dis. 2018;18:256–257. doi: 10.1016/S1473-3099(18)30072-0. PubMed DOI

Livemint Govt May Ban Antibiotic Colistin Used to Fatten Chicken. [(accessed on 20 June 2019)]; Available online: https://www.livemint.com/Industry/yt5eE5hqMLYP1px2d63Q1K/Govt-may-ban-antibiotic-colistin-used-to-fatten-chicken.html.

TOI Tolerance Limits’ to Be Fixed by Food Regulator for Presence of Antibiotics in Animal, Foods. [(accessed on 12 June 2019)]; Available online: https://www.fssai.gov.in/upload/media/FSSAI_News_AntiBiotics_TOI_01_08_2018.pdf.

FSSAI Direction under Section 16(5)Read with 18(2)(d)of Food Safety and Standard Act, 2006 Regarding Operationalisation of Draft Food Safety and Standard (Contaminants, Toxins and Residues) Amendment Regulations. [(accessed on 8 September 2019)];2019 Available online: https://www.fssai.gov.in/upload/advisories/2019/08/5d4c042779d77Direction_Colistin_Ban_FSSAI_08_08_2019.pdf.

Kunin C.M. Binding of antibiotics to tissue homogenates. J. Infect. Dis. 1970;121:55–64. doi: 10.1093/infdis/121.1.55. PubMed DOI

Sin D.W., Ho C., Wong Y.C., Ho S.K., Ip A.C.B. Analysis of major components of residual bacitracin and colistin in food samples byliquid chromatography tandem mass spectrometry. Anal. Chim. Acta. 2005;535:23–31. doi: 10.1016/j.aca.2004.11.063. DOI

Xu I., Tian X., Ren C., Huang H., Zhang X., Gong X., Liu H., Yu Z., Zhang L. Analysis of colistin A and B in fishery products by ultra performance liquid chromatography with positive electro spray ionization tandem mass spectrometry. J. Chromatogr. B. 2012;899:14–20. doi: 10.1016/j.jchromb.2012.04.028. PubMed DOI

Morovján G., CsoKán P.P., Németh-Konda L. HPLC determination of colistin and aminoglycoside antibiotics in feeds by post-column derivatization and fluorescence detection. Chromatographia. 1998;48:32–36. doi: 10.1007/BF02467512. DOI

Cancho-Grande B., Rodríguez-Comesaña M., Simal-Gándara J. Simple HPLC determination of colistin in medicated feeds by pre-column derivatization and fluorescence detection. Chromatographia. 2001;54:481–484. doi: 10.1007/BF02491203. DOI

Decolin D., Leroy P., Nicolas A., Archimbault P. Hyphenated liquid chromatographic method for the determination of colistin residues in bovine tissues. J. Chromatogr. Sci. 1997;35:557–564. doi: 10.1093/chromsci/35.12.557. PubMed DOI

Fu Q., Li X., Zheng K., Ke Y., Wang Y., Wang L., Yu F., Xia X. Determination of colistin in animal tissues, egg, milk, and feed by ultra-highperformance liquid chromatography-tandem mass spectrometry. Food Chem. 2018;248:166–172. doi: 10.1016/j.foodchem.2017.12.029. PubMed DOI

Meersche T.V.D., Pamel E.V., Poucke C.V., Herman L., Heyndrickx M., Rasschaert G., Daeseleire E. Development, validation and application of an ultra high performance liquid chromatographic-tandem mass spectrometric method for the simultaneous detection and quantification of five different classes of veterinary antibiotics in swine manure. J. Chromatogr. A. 2016;1429:248–257. doi: 10.1016/j.chroma.2015.12.046. PubMed DOI

Tao Y., Xie S., Zhu Y., Chen D., Pan Y., Wang X., Liu Z., Huang L., Peng D., Yuan Z. Analysis of major components of bacitracin, colistin and virginiamycin in feed using matrix solid-phase dispersion extraction by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. Sci. 2017;56:281–291. doi: 10.1093/chromsci/bmx096. PubMed DOI

Song X., Huang Q., Zhang Y., Zhang M., Xie J., He L. Rapid multi residue analysis of authorized/banned cyclo poly peptide antibiotics in feed by liquid chromatography-tandem mass spectrometry based on dispersives olid-phase extraction. J. Pharm. Biomed. Anal. 2019;170:234–242. doi: 10.1016/j.jpba.2019.03.050. PubMed DOI

Boison J.O., Lee S., Matus J. A multi-residue method for the determination of seven polypeptide drug residues in chicken muscle tissues byLC-MS/MS. Anal. Bioanal. Chem. 2015;406:4065–4078. doi: 10.1007/s00216-015-8644-z. PubMed DOI

Saluti G., Diamanti I., Giusepponi D., Pucciarini L., Rossi R., Moretti S., Sardella R., Galarini R. Simultaneous determination of aminoglycosides and colistins in food. Food Chem. 2018;266:9–16. doi: 10.1016/j.foodchem.2018.05.113. PubMed DOI

Wan E.C., Ho C., Sin D.W., Wong Y.C. Detection of residual bacitracin A, colistin A, and colist in B in milk and animal tissues by liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2006;385:181–188. doi: 10.1007/s00216-006-0325-5. PubMed DOI

Kaufmann A., Widmer M. Quantitative analysis of polypeptide antibiotic residues in a variety of food matrices by liquid chromatography coupled to tandem mass spectrometry. Anal. Chim. Acta. 2013;797:81–88. doi: 10.1016/j.aca.2013.08.032. PubMed DOI

Gaudin V., Maris P., Fuselier R., Ribouchon J.L., Cadieu N., Rault A. Validation of a microbiological method: The STAR protocol, a five-plate test, for the screening of antibiotic residues in milk. Food Addit. Contam. 2004;21:422–433. doi: 10.1080/02652030410001667575. PubMed DOI

Gaudin V., Hedou C., Rault A., Verdon E. Validation of a five plate test, the STAR protocol, for the screening of antibiotic residues in muscle from different animal species according to European decision 2002/657/EC. Food Addit. Contam. 2010;27:935–952. doi: 10.1080/19440041003677483. PubMed DOI

Aarestrup F.M., Wegener H.C., Collignon P. Resistance in bacteria of the foodc hain: Epidemiology and control strategies. Expert Rev. Anti-Infect Ther. 2008;6:733–750. doi: 10.1586/14787210.6.5.733. PubMed DOI

Rhouma M., Beaudry F., Thériault W., Letellier A. Colistin in pig production: Chemistry, mechanism of antibacterial action, microbial resistance emergence, and one health perspectives. Front. Microbiol. 2016;7:1789. doi: 10.3389/fmicb.2016.01789. PubMed DOI PMC

Gupta S., Kaushal A., Kumar A., Kumar D. Ultrasensitive transglutaminase based nanosensor for early detection of celiac disease in human. Int. J. Biol. Macromol. 2017;5:905–911. doi: 10.1016/j.ijbiomac.2017.07.126. PubMed DOI

Kaushal A., Singh S., Kumar A., Kumar D. Nano-Au/cMWCNT modified speB gene specific amperometric sensor for rapidly detecting Streptococcus pyogenes causing rheumatic heart disease. Indian J. Microbiol. 2017;57:121–124. doi: 10.1007/s12088-016-0636-y. PubMed DOI PMC

Nagraik R., Kaushal A., Gupta S., Dhar P., Sethi S., Kumar D. Optimized DNA-based bioassay for Leptospira interrogans detection: A novel platform for leptospirosis diagnosis. 3 Biotech. 2019;9:284. doi: 10.1007/s13205-019-1815-4. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...