Detection of Bacterial Pathogens and Antibiotic Residues in Chicken Meat: A Review
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
VT2019-2021
UHK
CEP Register
PubMed
33092226
PubMed Central
PMC7588929
DOI
10.3390/foods9101504
PII: foods9101504
Knihovny.cz E-resources
- Keywords
- antibiotics, biosensors, chicken, chromatography-based method, immunology-based method, molecular-based methods, multidrug-resistant bacteria,
- Publication type
- Journal Article MeSH
- Review MeSH
Detection of pathogenic microbes as well as antibiotic residues in food animals, especially in chicken, has become a matter of food security worldwide. The association of various pathogenic bacteria in different diseases and selective pressure induced by accumulated antibiotic residue to develop antibiotic resistance is also emerging as the threat to human health. These challenges have made the containment of pathogenic bacteria and early detection of antibiotic residue highly crucial for robust and precise detection. However, the traditional culture-based approaches are well-comprehended for identifying microbes. Nevertheless, because they are inadequate, time-consuming and laborious, these conventional methods are not predominantly used. Therefore, it has become essential to explore alternatives for the easy and robust detection of pathogenic microbes and antibiotic residue in the food source. Presently, different monitoring, as well as detection techniques like PCR-based, assay (nucleic acid)-based, enzyme-linked immunosorbent assays (ELISA)-based, aptamer-based, biosensor-based, matrix-assisted laser desorption/ionization-time of flight mass spectrometry-based and electronic nose-based methods, have been developed for detecting the presence of bacterial contaminants and antibiotic residues. The current review intends to summarize the different techniques and underline the potential of every method used for the detection of bacterial pathogens and antibiotic residue in chicken meat.
Department of Agriculture Sri Guru Teg Bahadur Khalsa College Sri Anandpur Sahib Punjab 140117 India
Department of Biological Engineering College of Engineering Konkuk University Seoul 05029 Korea
School of Bioengineering and Biosciences Lovely Professional University Phagwara Punjab 144411 India
School of Water Energy and Environment Cranfield University Cranfield MK43 0AL UK
See more in PubMed
Mpundu P., Mbewe A.R., Muma J.B., Zgambo J., Munyeme M. Evaluation of Bacterial Contamination in Dressed Chickens in Lusaka Abattoirs. Front. Public Health. 2019;7:19. doi: 10.3389/fpubh.2019.00019. PubMed DOI PMC
Livestock and Poultry: World Markets and Trade. [(accessed on 22 April 2020)]; Available online: https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf.
Farrell D. The Role of Poultry in Human Nutrition. [(accessed on 8 December 2019)]; Available online: http://www.fao.org/3/a-al712e.pdf.
da Silva M.V. Poultry and Poultry Products—Risks for Human Health. [(accessed on 8 December 2019)]; Available online: http://www.fao.org/3/a-al741e.pdf.
Morton V.K., Kearney A., Coleman S., Viswanathan M., Chau K., Orr A., Hexemer A. Outbreaks of Salmonella illness associated with frozen raw breaded chicken products in Canada, 2015–2019. Epidemiol. Infect. 2019;147:254. doi: 10.1017/S0950268819001432. PubMed DOI PMC
Wensley A., Padfield S., Hughes G.J. An outbreak of campylobacteriosis at a hotel in England: The ongoing risk due to consumption of chicken liver dishes. Epidemiol. Infect. 2020;148:32. doi: 10.1017/S095026882000028X. PubMed DOI PMC
Grewal V.S., Khera A. Outbreak of food poisoning in a working men’s hostel: A retrospective cohort study. Med. J. DY Patil Univ. 2017;10:517–521.
Gumbo A., Bangure D., Gombe N.T., Mungati M., Tshimanga M., Hwalima Z., Dube I. Staphylococcus aureus food poisoning among Bulawayo City Council employees, Zimbabwe, 2014. BMC Res. Notes. 2015;8:485. doi: 10.1186/s13104-015-1490-4. PubMed DOI PMC
Gieraltowski L., Higa J., Peralta V., Green A., Schwensohn C., Rosen H., Libby T., Kissler B., Marsden-Haug N., Booth H., et al. National Outbreak of Multidrug Resistant Salmonella Heidelberg Infections Linked to a Single Poultry Company. PLoS ONE. 2016;11:e0162369. doi: 10.1371/journal.pone.0162369. PubMed DOI PMC
Parry A., Fearnley E., Denehy E. ‘Surprise’: Outbreak of Campylobacter infection associated with chicken liver pâté at a surprise birthday party, Adelaide, Australia, 2012. West. Pac. Surveill. Response J. 2012;3:16–19. doi: 10.5365/wpsar.2012.3.4.011. PubMed DOI PMC
Tompkins B.J., Wirsing E., Devlin V., Kamhi L., Temple B., Weening K., Cavallo S., Allen L., Brinig P., Goode B., et al. Multistate Outbreak of Campylobacter jejuni infections associated with undercooked chicken livers—Northeastern United States, 2012. MMWR Morb. Mortal. Wkly. Rep. 2013;62:874–876. PubMed PMC
Edwards D.S., Milne L.M., Morrow K., Sheridan P., Verlander N.Q., Mulla R., Richardson J.F., Pender A., Lilley M., Reacher M. Campylobacteriosis outbreak associated with consumption of undercooked chicken liver pâté in the East of England, September 2011: Identification of a dose–response risk. Epidemiol. Infect. 2013;142:352–357. doi: 10.1017/S0950268813001222. PubMed DOI PMC
Farmer S., Keenan A., Vivancos R. Food-borne Campylobacter outbreak in Liverpool associated with cross-contamination from chicken liver parfait: Implications for investigation of similar outbreaks. Public Health. 2012;126:657–659. doi: 10.1016/j.puhe.2012.02.004. PubMed DOI
Popović I., Heron B., Covacin C. Listeria: An Australian Perspective (2001–2010) Foodborne Pathog. Dis. 2014;11:425–432. doi: 10.1089/fpd.2013.1697. PubMed DOI
Wensley A., Coole L. Cohort study of a dual-pathogen point source outbreak associated with the consumption of chicken liver pâté, UK, October 2009. J. Public Health. 2013;35:585–589. doi: 10.1093/pubmed/fdt020. PubMed DOI
Whittaker P.J., Sopwith W., Quigley C., Gillespie I.A., Willshaw G.A., Lycett C., Surman-Lee S., Baxter D., Adak G.K., Syed Q. A national outbreak of verotoxin-producing Escherichia coli O157 associated with consumption of lemon-and-coriander chicken wraps from a supermarket chain. Epidemiol. Infect. 2008;137:375–382. doi: 10.1017/S0950268808001702. PubMed DOI
Black A.P., Kirk M.D., Millard G. Campylobacter outbreak due to chicken consumption at an Australian Capital Territory restaurant. Commun. Dis. Intell. Q. Rep. 2006;30:373–377. PubMed
Pearson A.D., Greenwood M.H., Donaldson J., Healing T.D., Jones D.M., Shahamat M., Feltham R.K.A., Colwell R.R. Continuous source outbreak of campylobacteriosis traced to chicken. J. Food Prot. 2000;63:309–314. doi: 10.4315/0362-028X-63.3.309. PubMed DOI
EFSA Panel on Biological Hazards (BIOHAZ) Scientific opinion on quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA J. 2010;8:1437.
EFSA Panel on Biological Hazards (BIOHAZ) EFSA Panel on Contaminants in the Food Chain (CONTAM) EFSA Panel on Animal Health and Welfare (AHAW) Scientific opinion on the public health hazards to be covered by inspection of meat (poultry) EFSA J. 2012;10:2741.
Mehdi Y., Létourneau-Montminy M.-P., Gaucher M.-L., Chorfi Y., Suresh G., Rouissi T., Brar S.K., Côté C., Ramirez A.A., Godbout S. Use of antibiotics in broiler production: Global impacts and alternatives. Anim. Nutr. 2018;4:170–178. doi: 10.1016/j.aninu.2018.03.002. PubMed DOI PMC
Cornejo J., Yévenes K., Avello C., Pokrant E., Maddaleno A., Martín B.S., Lapierre L. Determination of chlortetracycline residues, antimicrobial activity and presence of resistance genes in droppings of experimentally treated broiler chickens. Molecules. 2018;23:1264. doi: 10.3390/molecules23061264. PubMed DOI PMC
Lan C., Yin D., Yang Z., Zhao W., Chen Y., Zhang W., Zhang S. Determination of Six Macrolide Antibiotics in Chicken Sample by Liquid Chromatography-Tandem Mass Spectrometry Based on Solid Phase Extraction. J. Anal. Methods Chem. 2019;2019:1–13. doi: 10.1155/2019/6849457. PubMed DOI PMC
Goodnough M.C., Johnson E.A. Control of Salmonella enteritidis infections in poultry by polymyxin B and trimethoprim. Appl. Environ. Microbiol. 1991;57:785–788. doi: 10.1128/AEM.57.3.785-788.1991. PubMed DOI PMC
Hill D.C., Branion H.D., Slinger S.J., Anderson G.W. Influence of environment on the growth response of chicks to Penicillin. Poult. Sci. 1953;32:462–466. doi: 10.3382/ps.0320462. DOI
Feighner S.D., Dashkevicz M.P. Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial cholyltaurine hydrolase activity. Appl. Environ. Microbiol. 1987;53:331–336. doi: 10.1128/AEM.53.2.331-336.1987. PubMed DOI PMC
Baert K., De Baere S., Croubels S., De Backer P. Pharmacokinetics and Oral Bioavailability of Sulfadiazine and Trimethoprim in Broiler Chickens. Vet. Res. Commun. 2003;27:301–309. doi: 10.1023/A:1024084108803. PubMed DOI
Er B., Onurdag F.K., Demirhan B., Ozgacar S.O., Oktem A.B., Abbasoglu U. Screening of quinolone antibiotic residues in chicken meat and beef sold in the markets of Ankara, Turkey. Poult. Sci. 2013;92:2212–2215. doi: 10.3382/ps.2013-03072. PubMed DOI
Juan-García A., Font G., Picó Y. Determination of quinolone residues in chicken and fish by capillary electrophoresis-mass spectrometry. Electrophoresis. 2006;27:2240–2249. doi: 10.1002/elps.200500868. PubMed DOI
Silfrany R.O., Caba R.E., Santos F.S.D.L., Hanning I. Detection of quinolones in poultry meat obtained from retail centers in Santiago Province, the Dominican Republic. J. Food Prot. 2013;76:352–354. doi: 10.4315/0362-028X.JFP-12-310. PubMed DOI
PoultryMed. [(accessed on 2 January 2020)]; Available online: https://www.poultrymed.com/Aminoglycosides.
PoultryMed. [(accessed on 2 January 2020)]; Available online: https://www.poultrymed.com/Lincosamides.
Muaz K., Riaz M., Akhtar S., Park S., Ismail A. Antibiotic residues in chicken meat: Global prevalence, threats, and decontamination strategies: A review. J. Food Prot. 2018;81:619–627. doi: 10.4315/0362-028X.JFP-17-086. PubMed DOI
Svobodova J., Tůmová E. Factors affecting microbial contamination of market eggs: A review. Sci. Agric. Bohem. 2015;45:226–237. doi: 10.1515/sab-2015-0003. DOI
Messens W., Grijspeerdt K., Herman L. Eggshell penetration by Salmonella: A review. Worlds Poult. Sci. J. 2005;61:71–86. doi: 10.1079/WPS200443. PubMed DOI
Vihavainen E., Lundström H.-S., Susiluoto T., Koort J., Paulin L., Auvinen P., Björkroth K.J. Role of broiler carcasses and processing plant air in contamination of modified-atmosphere-packaged broiler products with psychrotrophic lactic acid bacteria. Appl. Environ. Microbiol. 2006;73:1136–1145. doi: 10.1128/AEM.01644-06. PubMed DOI PMC
Luber P. Cross-contamination versus undercooking of poultry meat or eggs—Which risks need to be managed first? Int. J. Food Microbiol. 2009;134:21–28. doi: 10.1016/j.ijfoodmicro.2009.02.012. PubMed DOI
Warsow C.R., Orta-Ramirez A., Marks B.P., Ryser E.T., Booren A.M. Single Directional Migration of Salmonella into Marinated Whole Muscle Turkey Breast. J. Food Prot. 2008;71:153–156. doi: 10.4315/0362-028X-71.1.153. PubMed DOI
Goksoy E., Kirkan S., Kok F. Microbiological quality of broiler carcasses during processing in two slaughterhouses in Turkey. Poult. Sci. 2004;83:1427–1432. doi: 10.1093/ps/83.8.1427. PubMed DOI
Russell S.M. The effect of an acidic, copper sulfate-based commercial sanitizer on indicator, pathogenic, and spoilage bacteria associated with broiler chicken carcasses when applied at various intervention points during poultry processing. Poult. Sci. 2008;87:1435–1440. doi: 10.3382/ps.2007-00339. PubMed DOI
Bonnet M., Lagier J.C., Raoult D., Khelaifia S. Bacterial culture through selective and non-selective conditions: The evolution of culture media in clinical microbiology. New Microbes New Infect. 2020;34:100622. doi: 10.1016/j.nmni.2019.100622. PubMed DOI PMC
Priyanka B., Patil R.K., Dwarakanath S. A review on detection methods used for foodborne pathogens. Indian J. Med. Res. 2016;144:327–338. doi: 10.4103/0971-5916.198677. PubMed DOI PMC
Esinghal N., Ekumar M., Kanaujia P.K., Virdi J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015;6:791. doi: 10.3389/fmicb.2015.00791. PubMed DOI PMC
Paniel N., Noguer T. Detection of Salmonella in food matrices, from conventional methods to recent aptamer-sensing technologies. Foods. 2019;8:371. doi: 10.3390/foods8090371. PubMed DOI PMC
Jain A.K., Yadav R. Study of antibiotic resistance in bacteria Isolated from table egg. Int. J. Pharm. Bio Sci. 2017;8:668–674. doi: 10.22376/ijpbs.2017.8.1.b668-674. DOI
Begum K., Reza T.A., Haque M., Hossain A., Hassan F.M.K., Hasan S.N., Akhter N., Ahmed A., Barua U. Isolation, identification and antibiotic resistance pattern of Salmonella spp. from chicken eggs, intestines and environmental samples. Bangladesh Pharm. J. 2010;13:23–27.
Tessema K., Bedu H., Ejo M., Hiko A. Prevalence and Antibiotic Resistance of Salmonella Species Isolated from Chicken Eggs by Standard Bacteriological Method. J. Vet. Sci. Technol. 2017;8:1–5. doi: 10.4172/2157-7579.1000421. DOI
Akond M.A., Hassan S.M.R., Alam S., Shirin M. Antibiotic resistance of Escherichia coli isolated from poultry and poultry environment of Bangladesh. Am. J. Environ. Sci. 2009;5:47–52.
Akond M.A., Shirin M., Alam S., Hassan S., Rahman M., Hoq M. Frequency of drug resistant Salmonella spp. isolated from poultry samples in Bangladesh. Stamford J. Microbiol. 2013;2:15–19. doi: 10.3329/sjm.v2i1.15207. DOI
Ahmed M.M., Rahman M.M., Mahbub K.R., Wahiduzzaman M. Characterization of antibiotic resistant Salmonella spp isolated from chicken eggs of Dhaka City. J. Sci. Res. 2010;3:191. doi: 10.3329/jsr.v3i1.6109. DOI
Arathy D.S., Vanpee G., Belot G., Mathew V., Deallie C., Sharma R. Antimicrobial drug resistance in Escherichia coli isolated from commercial chicken eggs in Grenada, West Indies. West Indian Med. J. 2011;60:53–56. PubMed
Al-Zenki S., Al-Nasser A., Al-Safar A., Alomirah H., Al-Haddad A., Hendriksen R.S., Aarestrup F.M. Prevalence and antibiotic resistance of Salmonella isolated from a poultry farm and processing plant environment in the state of Kuwait. Foodborne Pathog. Dis. 2007;4:367–373. doi: 10.1089/fpd.2007.0017. PubMed DOI
Adesiyun A.A., Offiah N., Seepersadsingh N., Rodrigo S., Lashley V., Musai L. Frequency and antimicrobial resistance of enteric bacteria with spoilage potential isolated from table eggs. Food Res. Int. 2006;39:212–219. doi: 10.1016/j.foodres.2005.07.008. DOI
Burgos M.J.G., Márquez M.L.F., Pérez-Pulido R., Gálvez A., López R.L. Virulence factors and antimicrobial resistance in Escherichia coli strains isolated from hen egg shells. Int. J. Food Microbiol. 2016;238:89–95. doi: 10.1016/j.ijfoodmicro.2016.08.037. PubMed DOI
Akhtar F., Hussain I., Khan A., Rahman S.U. Prevalence and antibiogram studies of Salmonella enteritidis isolated from human and poultry sources. Pak. Vet. J. 2010;30:25–28.
Pyzik E., Marek A. Plasmid profile analysis and evaluation of antibiotic susceptibility of Staphylococcus aureus strains isolated from table chicken eggs. Pol. J. Vet. Sci. 2013;16:307–312. doi: 10.2478/pjvs-2013-0042. PubMed DOI
Singh S., Yadav A.S., Singh S.M., Bharti P. Prevalence of Salmonella in chicken eggs collected from poultry farms and marketing channels and their antimicrobial resistance. Food Res. Int. 2010;43:2027–2030. doi: 10.1016/j.foodres.2010.06.001. DOI
Singh R., Yadav A., Tripathi V., Singh R.P. Antimicrobial resistance profile of Salmonella present in poultry and poultry environment in north India. Food Control. 2013;33:545–548. doi: 10.1016/j.foodcont.2013.03.041. DOI
Geidam Y.A., Zakaria Z., Aziz S.A., Bejo S.K., Abu J., Omar S. High prevalence of multi-drug resistant bacteria in selected poultry farms in Selangor, Malaysia. Asian J. Anim. Vet. Adv. 2012;7:891–897. doi: 10.3923/ajava.2012.891.897. DOI
Khatun M.N., Mahbub-E-Elahi A.T.M., Ahmed S., Parvej M.S., Akhter S., Ansari W.K., Ali M.S. Frequency of drug resistant Escherichia coli isolated from commercial broiler chicken in Bangladesh. Int. J. Nat. Soc. Sci. 2015;2:1–5.
Abdi R.D., Mengstie F., Beyi A.F., Beyene T., Waktole H., Mammo B., Ayana D., Abunna F. Determination of the sources and antimicrobial resistance patterns of Salmonella isolated from the poultry industry in Southern Ethiopia. BMC Infect. Dis. 2017;17:352. doi: 10.1186/s12879-017-2437-2. PubMed DOI PMC
Alam S.B., Mahmud M., Akter R., Hasan M., Sobur A., Nazir K.H.M.N.H., Noreddin A., Rahman T., El Zowalaty M.E., Rahman M. Molecular detection of multidrug resistant Salmonella species isolated from broiler farm in Bangladesh. Pathogens. 2020;9:201. doi: 10.3390/pathogens9030201. PubMed DOI PMC
Sarker S., Mannan S., Ali Y., Bayzid M., Ahad A., Bupasha Z.B. Antibiotic resistance of Escherichia coli isolated from broilers sold at live bird markets in Chattogram, Bangladesh. J. Adv. Vet. Anim. Res. 2019;6:272–277. doi: 10.5455/javar.2019.f344. PubMed DOI PMC
Abd-ElGhany S.M., Sallam K.I., Abd-Elkhalek A., Tamura T. Occurrence, genetic characterization and antimicrobial resistance of Salmonella isolated from chicken meat and giblets. Epidemiol. Infect. 2014;143:997–1003. doi: 10.1017/S0950268814001708. PubMed DOI PMC
Hidano A., Yamamoto T., Hayama Y., Muroga N., Kobayashi S., Nishida T., Tsutsui T. Unraveling antimicrobial resistance genes and phenotype patterns among Enterococcus faecalis isolated from retail chicken products in Japan. PLoS ONE. 2015;10:e0121189. doi: 10.1371/journal.pone.0121189. PubMed DOI PMC
Hayes J.R., English L.L., Carter P.J., Proescholdt T., Lee K.Y., Wagner D.D., White D.G. prevalence and antimicrobial resistance of Enterococcus species isolated from retail meats. Appl. Environ. Microbiol. 2003;69:7153–7160. doi: 10.1128/AEM.69.12.7153-7160.2003. PubMed DOI PMC
Momtaz H., Jamshidi A. Shiga toxin-producing Escherichia coli isolated from chicken meat in Iran: Serogroups, virulence factors, and antimicrobial resistance properties. Poult. Sci. 2013;92:1305–1313. doi: 10.3382/ps.2012-02542. PubMed DOI
Nazer A.H.K., Dadras H., Eskandari S. Aerobic bacteria isolated from eggs and day-old chicks and their antibacterial resistance in Shiraz, Iran. Iran J. Vet. Res. 2006;7:20–30.
Luber P., Wagner J., Hahn H., Bartelt E. Antimicrobial resistance in Campylobacter jejuni and Campylobacter coli strains isolated in 1991 and 2001–2002 from poultry and humans in Berlin, Germany. Antimicrob. Agents Chemother. 2003;47:3825–3830. doi: 10.1128/AAC.47.12.3825-3830.2003. PubMed DOI PMC
Waters A.E., Contente-Cuomo T., Buchhagen J., Liu C.M., Watson L., Pearce K., Foster J.T., Bowers J., Driebe E.M., Engelthaler D.M., et al. Multidrug-resistant Staphylococcus aureus in US meat and poultry. Clin. Infect. Dis. 2011;52:1227–1230. doi: 10.1093/cid/cir181. PubMed DOI PMC
White A.K., Heyries K.A., Doolin C., VanInsberghe M., Hansen C.L. High-throughput microfluidic single-cell digital polymerase chain reaction. Anal. Chem. 2013;85:7182–7190. doi: 10.1021/ac400896j. PubMed DOI
He Q.-D., Huang D.-P., Huang G., Chen Z.-G. Advance in research of microfluidic polymerase chain reaction chip. Chin. J. Anal. Chem. 2016;44:542–550. doi: 10.1016/S1872-2040(16)60921-0. DOI
Jin U.-H., Cho S.-H., Kim M.-G., Ha S.-D., Kim K.-S., Lee K.-H., Kim K.-Y., Chung D.H., Lee Y.-C., Kim C.-H. PCR method based on the ogdH gene for the detection of Salmonella spp. from chicken meat samples. J. Microbiol. 2004;42:216–222. PubMed
Guran H.S., Oksuztepe G. Detection and typing of Clostridium perfringens from retail chicken meat parts. Lett. Appl. Microbiol. 2013;57:77–82. doi: 10.1111/lam.12088. PubMed DOI
Suo B., He Y., Tu S.-I., Shi X. A multiplex real-time polymerase chain reaction for simultaneous detection of Salmonella spp., Escherichia coli O157, and Listeria monocytogenes in meat products. Foodborne Pathog. Dis. 2010;7:619–628. doi: 10.1089/fpd.2009.0430. PubMed DOI
Navas J., Ortiz S., López P., Jantzen M.M., Lopez V., Martínez-Suárez J.V. Evaluation of effects of primary and secondary enrichment for the detection of Listeria monocytogenes by real-time PCR in retail ground chicken meat. Foodborne Pathog. Dis. 2006;3:347–354. doi: 10.1089/fpd.2006.3.347. PubMed DOI
Gonzalez I., Garcia T., Antolin A., Hernández P.E., Martin R. Development of a combined PCR-culture technique for the rapid detection of Arcobacter spp. in chicken meat. Lett. Appl. Microbiol. 2000;30:207–212. doi: 10.1046/j.1472-765x.2000.00696.x. PubMed DOI
Rantsiou K., Lamberti C., Cocolin L. Survey of Campylobacter jejuni in retail chicken meat products by application of a quantitative PCR protocol. Int. J. Food Microbiol. 2010;141:S75–S79. doi: 10.1016/j.ijfoodmicro.2010.02.002. PubMed DOI
Pentimalli D., Pegels N., García T., Martín R., González I. Specific PCR detection of Arcobacter butzleri, Arcobacter cryaerophilus, Arcobacter skirrowii, and Arcobacter cibarius in chicken meat. J. Food Prot. 2009;72:1491–1495. doi: 10.4315/0362-028X-72.7.1491. PubMed DOI
Saeki E.K., Alves J., Bonfante R.C., Hirooka E.Y., De Oliveira T.C.R.M. Multiplex PCR (mPCR) for the detection of Salmonella spp. and the differentiation of the Typhimurium and Enteritidis serovars in chicken meat. J. Food Saf. 2012;33:25–29. doi: 10.1111/jfs.12019. DOI
Alves J., Hirooka E.Y., De Oliveira T.C.R.M. Development of a multiplex real-time PCR assay with an internal amplification control for the detection of Campylobacter spp. and Salmonella spp. in chicken meat. LWT Food Sci. Technol. 2016;72:175–181. doi: 10.1016/j.lwt.2016.04.051. DOI
Arunrut N., Kiatpathomchai W., Ananchaipattana C. Development and evaluation of real-time loop mediated isothermal amplification assay for rapid and sensitive detection of Salmonella spp. in chicken meat products. J. Food Saf. 2018;38:e12564. doi: 10.1111/jfs.12564. DOI
Alves J., Marques V.V., Pereira L.F.P., Hirooka E.Y., De Oliveira T.C.R.M. Multiplex PCR for the detection of Campylobacter spp. and Salmonella spp. in chicken meat. J. Food Saf. 2012;32:345–350. doi: 10.1111/j.1745-4565.2012.00386.x. DOI
Manguiat L.S., Fang T.J. Evaluation of DAS™ kits for the detection of food-borne pathogens in chicken and meat-based street-vended foods. J. Food Drug Anal. 2013;21:198–205. doi: 10.1016/j.jfda.2013.05.011. DOI
Umesha S., Manukumar H.M. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges. Crit. Rev. Food Sci. Nutr. 2017;58:84–104. doi: 10.1080/10408398.2015.1126701. PubMed DOI
Kupradit C., Rodtong S., Ketudat-Cairns M. Development of a DNA macroarray for simultaneous detection of multiple foodborne pathogenic bacteria in fresh chicken meat. World J. Microbiol. Biotechnol. 2013;29:2281–2291. doi: 10.1007/s11274-013-1394-1. PubMed DOI
Kupradit C., Ruamkuson D., Rodtong S., Ketudat-Cairns M. Novel multiplex polymerase chain reaction and an oligonucleotide array for specific detection of the dominant foodborne bacterial pathogens in chicken meat. Afr. J. Microbiol. Res. 2013;7:3085–3095. doi: 10.5897/AJMR12.2102. DOI
Tortajada-Genaro L.A., Rodrigo A., Hevia E., Mena S., Niñoles R., Maquieira Á. Microarray on digital versatile disc for identification and genotyping of Salmonella and Campylobacter in meat products. Anal. Bioanal. Chem. 2015;407:7285–7294. doi: 10.1007/s00216-015-8890-0. PubMed DOI
Quiñones B., Parker C.T., Janda J.M., Miller W.G., Mandrell R.E. Detection and genotyping of Arcobacter and Campylobacter isolates from retail chicken samples by use of DNA oligonucleotide arrays. Appl. Environ. Microbiol. 2007;73:3645–3655. doi: 10.1128/AEM.02984-06. PubMed DOI PMC
Charlermroj R., Makornwattana M., Phuengwas S., Meerak J., Pichpol D., Karoonuthaisiri N. DNA-based bead array technology for simultaneous identification of eleven foodborne pathogens in chicken meat. Food Control. 2019;101:81–88. doi: 10.1016/j.foodcont.2019.02.014. DOI
Schneid A.D.S., Rodrigues K.L., Chemello D., Tondo E.C., Ayub M.A.Z., Aleixo J.A.G. Evaluation of an indirect ELISA for the detection of Salmonella in chicken meat. Braz. J. Microbiol. 2006;37:350–355. doi: 10.1590/S1517-83822006000300027. DOI
Taha E.G., Mohamed A., Srivastava K.K., Reddy P.G. Rapid detection of Salmonella in chicken meat using immunomagnetic separation, CHROMagar, ELISA and Real-time polymerase chain reaction (RT-PCR) Int. J. Poult. Sci. 2010;9:831–835. doi: 10.3923/ijps.2010.831.835. DOI
Lilja L., Hänninen M.-L. Evaluation of a commercial automated ELISA and PCR-method for rapid detection and identification of Campylobacter jejuni and C. coli in poultry products. Food Microbiol. 2001;18:205–209. doi: 10.1006/fmic.2000.0392. DOI
Croci L., Delibato E., Volpe G., Palleschi G. A rapid electrochemical ELISA for the detection of Salmonella in meat samples. Anal. Lett. 2001;34:2597–2607. doi: 10.1081/AL-100108407. DOI
Vanderlinde P.B., Grau F.H. Detection of Listeria spp. in Meat and Environmental Samples by an Enzyme-linked Immunosorbent Assay (ELISA) J. Food Prot. 1991;54:230–231. doi: 10.4315/0362-028X-54.3.230. PubMed DOI
Charlermroj R., Makornwattana M., Grant I.R., Elliott C.T., Karoonuthaisiri N. Validation of a high-throughput immunobead array technique for multiplex detection of three foodborne pathogens in chicken products. Int. J. Food Microbiol. 2016;224:47–54. doi: 10.1016/j.ijfoodmicro.2016.02.017. PubMed DOI
Rozenblum G.T., Lopez V.G., Vitullo A.D., Radrizzani M. Aptamers: Current challenges and future prospects. Expert Opin. Drug Discov. 2015;11:127–135. doi: 10.1517/17460441.2016.1126244. PubMed DOI
Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–510. doi: 10.1126/science.2200121. PubMed DOI
Hamula C.L.A., Zhang H., Li F., Wang Z., Le X.C., Li X.-F. Selection and analytical applications of aptamers binding microbial pathogens. TrAC Trends Anal. Chem. 2011;30:1587–1597. doi: 10.1016/j.trac.2011.08.006. PubMed DOI PMC
Torres-Chavolla E., Alocilja E.C. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 2009;24:3175–3182. doi: 10.1016/j.bios.2008.11.010. PubMed DOI PMC
Kim Y.S., Raston N.H.A., Gu M.B. Aptamer-based nanobiosensors. Biosens. Bioelectron. 2016;76:2–19. doi: 10.1016/j.bios.2015.06.040. PubMed DOI
Dong Y., Xu Y., Yong W., Chu X., Wang D. Aptamer and its potential applications for food safety. Crit. Rev. Food Sci. Nutr. 2014;54:1548–1561. doi: 10.1080/10408398.2011.642905. PubMed DOI
Lakhin A.V., Tarantul V.Z., Gening L.V. Aptamers: Problems, solutions and prospects. Acta Nat. 2013;5:34–43. doi: 10.32607/20758251-2013-5-4-34-43. PubMed DOI PMC
Ohk S., Koo O., Sen T., Yamamoto C., Bhunia A.K. Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J. Appl. Microbiol. 2010;109:808–817. doi: 10.1111/j.1365-2672.2010.04709.x. PubMed DOI
Muniandy S., Dinshaw I.J., Teh S.J., Lai C.W., Ibrahim F., Thong K.L., Leo B.F. Graphene-based label-free electrochemical aptasensor for rapid and sensitive detection of foodborne pathogen. Anal. Bioanal. Chem. 2017;409:6893–6905. doi: 10.1007/s00216-017-0654-6. PubMed DOI
Duan N., Wu S., Dai S., Miao T., Chen J., Wang Z. Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim. Acta. 2014;182:917–923. doi: 10.1007/s00604-014-1406-3. DOI
Huang Y., Wang X., Duan N., Xia Y., Wang Z., Che Z., Wang L., Yang X., Chen X. Selection and characterization, application of a DNA aptamer targeted to Streptococcus pyogenes in cooked chicken. Anal. Biochem. 2018;551:37–42. doi: 10.1016/j.ab.2018.04.015. PubMed DOI
Renuka R.M., Achuth J., Chandan H.R., Venkataramana M., Kadirvelu K. Fluorescent dual aptasensor for rapid and sensitive onsite detection of E. coli O157: H7 and its validation onto various food matrices. New J. Chem. 2018;42:10807–10817. doi: 10.1039/C8NJ00997J. DOI
Sundararaj N., Kalagatur N.K., Mudili V., Krishna K., Antonysamy M. Isolation and identification of enterotoxigenic Staphylococcus aureus isolates from Indian food samples: Evaluation of in-house developed aptamer linked sandwich ELISA (ALISA) method. J. Food Sci. Technol. 2019;56:1016–1026. doi: 10.1007/s13197-019-03568-1. PubMed DOI PMC
Feng J., Dai Z., Tian X., Jiang X. Detection of Listeria monocytogenes based on combined aptamers magnetic capture and loop-mediated isothermal amplification. Food Control. 2018;85:443–452. doi: 10.1016/j.foodcont.2017.10.027. DOI
Kumar H., Kuca K., Bhatia S.K., Saini K., Kaushal A., Verma R., Bhalla T.C., Kumar D. Applications of nanotechnology in sensor-based detection of foodborne pathogens. Sensors. 2020;20:1966. doi: 10.3390/s20071966. PubMed DOI PMC
Paniel N., Baudart J., Hayat A., Barthelmebs L. Aptasensor and genosensor methods for detection of microbes in real world samples. Methods. 2013;64:229–240. doi: 10.1016/j.ymeth.2013.07.001. PubMed DOI
Ivnitski D., Abdel-Hamid I., Atanasov P., Wilkins E., Stricker S. Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis. 2000;12:317–325. doi: 10.1002/(SICI)1521-4109(20000301)12:5<317::AID-ELAN317>3.0.CO;2-A. DOI
Senturk E., Aktop S., Sanlibaba P., Tezel B.U. Biosensors: A Novel Approach to Detect Food-borne Pathogens. Appl. Microbiol. Open Access. 2018;4:1–8. doi: 10.4172/2471-9315.1000151. DOI
Poltronieri P., Mezzolla V., Primiceri E., Maruccio G. Biosensors for the detection of food pathogens. Foods. 2014;3:511–526. doi: 10.3390/foods3030511. PubMed DOI PMC
Chen I.-H., Horikawa S., Bryant K., Riggs R., Chin B.A., Barbaree J.M. Bacterial assessment of phage magnetoelastic sensors for Salmonella enterica Typhimurium detection in chicken meat. Food Control. 2017;71:273–278. doi: 10.1016/j.foodcont.2016.07.003. DOI
Ohk S.-H., Bhunia A.K. Multiplex fiber optic biosensor for detection of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica from ready-to-eat meat samples. Food Microbiol. 2013;33:166–171. doi: 10.1016/j.fm.2012.09.013. PubMed DOI
Valadez A.M., Lana C.A., Tu S.-I., Morgan M.T., Bhunia A.K. Evanescent wave fiber optic biosensor for Salmonella detection in food. Sensors. 2009;9:5810–5824. doi: 10.3390/s90705810. PubMed DOI PMC
Xu Y., Kutsanedzie F.Y.H., Sun H., Wang M., Chen Q., Guo Z., Wu J. Rapid Pseudomonas species identification from chicken by integrating colorimetric sensors with near-infrared spectroscopy. Food Anal. Methods. 2017;11:1199–1208. doi: 10.1007/s12161-017-1095-8. DOI
Park M.-K., Park J.W., Oh J.-H. Optimization and application of a dithiobis-succinimidyl propionate-modified immunosensor platform to detect Listeria monocytogenes in chicken skin. Sens. Actuators B Chem. 2012:323–331. doi: 10.1016/j.snb.2012.04.017. DOI
Chai G.L.C., Liu G., Chai C., Yao B. Rapid Evaluation of Salmonella pullorum contamination in chicken based on a portable amperometric sensor. J. Biosens. Bioelectron. 2013;4:137. doi: 10.4172/2155-6210.1000137. DOI
Abdelhaseib M.U., Singh A.K., Bhunia A.K. Simultaneous detection of Salmonella enterica, Escherichia coli and Listeria monocytogenes in food using a light scattering sensor. J. Appl. Microbiol. 2019;126:1496–1507. doi: 10.1111/jam.14225. PubMed DOI
Kim Y.-J., Kim H.-S., Chon J.-W., Kim D.-H., Hyeon J.-Y., Seo K.-H. New colorimetric aptasensor for rapid on-site detection of Campylobacter jejuni and Campylobacter coli in chicken carcass samples. Anal. Chim. Acta. 2018;1029:78–85. doi: 10.1016/j.aca.2018.04.059. PubMed DOI
Helali S., Alatawi A.S.E., AbdelGhani A. Pathogenic Escherichia coli biosensor detection on chicken food samples. J. Food Saf. 2018;38:e12510. doi: 10.1111/jfs.12510. DOI
Huang F., Xue L., Zhang H., Guo R., Li Y., Liao M., Wang M., Lin J. An enzyme-free biosensor for sensitive detection of Salmonella using curcumin as signal reporter and click chemistry for signal amplification. Theranostics. 2018;8:6263–6273. doi: 10.7150/thno.29025. PubMed DOI PMC
Wieser A., Schneider L., Jung J., Schubert S. MALDI-TOF MS in microbiological diagnostics—Identification of microorganisms and beyond (mini review) Appl. Microbiol. Biotechnol. 2011;93:965–974. doi: 10.1007/s00253-011-3783-4. PubMed DOI
Marvin L.F., Roberts M.A., Fay L.B. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin. Chim. Acta. 2003;337:11–21. doi: 10.1016/j.cccn.2003.08.008. PubMed DOI
Rychert J. Benefits and Limitations of MALDI-TOF Mass Spectrometry for the Identification of Microorganisms. J. Infect. 2019;2:1–5. doi: 10.29245/2689-9981/2019/4.1142. DOI
Rasmussen M.M., Opintan J.A., Frimodt-Møller N., Styrishave B. Beta-lactamase producing Escherichia coli isolates in imported and locally produced chicken meat from Ghana. PLoS ONE. 2015;10:e0139706. doi: 10.1371/journal.pone.0139706. PubMed DOI PMC
Abdallah H.M., Reuland E.A., Wintermans B.B., Al Naiemi N., Koek A., Abdelwahab A.M., Ammar A.M., Mohamed A.A., Vandenbroucke-Grauls C.M.J.E. Extended-spectrum β-lactamases and/or carbapenemases-producing Enterobacteriaceae isolated from retail chicken meat in Zagazig, Egypt. PLoS ONE. 2015;10:e0136052. doi: 10.1371/journal.pone.0136052. PubMed DOI PMC
Somsri A., Pilasombut K., Ngamyeesoon N., Rumjuankiat K. Detection and identification of bacterial contamination in meat by matrix-assisted laser desorption ionization-time of flight -mass spectrometry. Int. J. Agric. Technol. 2017;13:1487–1504.
Woźniak-Biel A., Bugla-Płoskońska G., Kielsznia A., Korzekwa K., Tobiasz A., Korzeniowska-Kowal A., Wieliczko A. High Prevalence of resistance to fluoroquinolones and tetracycline Campylobacter spp. isolated from poultry in Poland. Microb. Drug Resist. 2018;24:314–322. doi: 10.1089/mdr.2016.0249. PubMed DOI PMC
Gardner J.W., Bartlett P.N. A brief history of electronic noses. Sens. Actuators B Chem. 1994;18:210–211. doi: 10.1016/0925-4005(94)87085-3. DOI
Ghasemi-Varnamkhasti M., Mohtasebi S.S., Siadat M., Balasubramanian S. Meat Quality Assessment by Electronic Nose (Machine Olfaction Technology) Sensors. 2009;9:6058–6083. doi: 10.3390/s90806058. PubMed DOI PMC
Rajamäki T., Alakomi H.-L., Ritvanen T., Skytta E., Smolander M., Ahvenainen R. Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat. Food Control. 2006;17:5–13. doi: 10.1016/j.foodcont.2004.08.002. DOI
Timsorn K., Thoopboochagorn T., Lertwattanasakul N., Wongchoosuk C. Evaluation of bacterial population on chicken meats using a briefcase electronic nose. Biosyst. Eng. 2016;151:116–125. doi: 10.1016/j.biosystemseng.2016.09.005. DOI
Vishnuraj M., Kandeepan G., Rao K., Chand S., Kumbhar V. Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: A comprehensive review. Cogent Food Agric. 2016;2:1235458. doi: 10.1080/23311932.2016.1235458. DOI
Vermunt A.E.M., Stadhouders J., Loeffen G.J.M., Bakker R. Improvements of the tube diffusion method for detection of antibiotics and sulfonamides in raw milk. Neth. Milk Dairy J. 1993;47:31–40.
Bogaerts R., Wolf F. A standardised method for the detection of residues of antibacterial substances in fresh meat. Fleischwirtschaft. 1980;60:672–673.
Nouws J.F.M., Schothorst M., Ziv G. A critical evaluation of several microbiological test methods for residues of antimicrobial drugs in ruminants. Arch. Lebensm. Hyg. 1979;30:4–8.
Elnasri H.A., Salman A.M., El Rade S.A. Screening of antibiotic residues in poultry liver, kidney and muscle in Khartoum state, Sudan. J. Appl. Ind. Sci. 2014;2:116–122.
Tang J.S., Gillevet P.M. Reclassification of ATCC 9341 from Micrococcus luteus to Kocuria rhizophila. Int. J. Syst. Evol. Microbiol. 2003;53:995–997. doi: 10.1099/ijs.0.02372-0. PubMed DOI
Ezenduka E.V. Screening of antimicrobial residues in poultry meat in Enugu metropolis, Enugu State, South East Nigeria, Enugu State, South East Nigeria. Vet. Ital. 2019;55:143–148. PubMed
Sophila J.R., Raj G.D., Kumanan K., Chandra G.S., Vairamuthu S. Microbial inhibition assay for detection of antibiotic residues in chicken meat using vegetative form of Geobacillus stearothermophilus. Pharm. Innov. J. 2018;7:753–757.
Shahbazi Y., Ahmadi F., Karami N. Screening, determination and confirmation of tetracycline residues in chicken tissues using four-plate test, ELISA and HPLC-UV methods: Comparison between correlation results. Food Agric. Immunol. 2015;26:821–834. doi: 10.1080/09540105.2015.1036357. DOI
Baazize-Ammi D., Dechicha A.S., Tassist A., Gharbi I., Hezil N., Kebbal S., Morsli W., Beldjoudi S., Saadaoui M.R., Guetarni D. Screeing and quantification of antibiotic residues in broiler chicken meat and milk in the central region of Algeria. Rev. Sci. Tech. Int. Off. Epiz. 2019;38:1–16. PubMed
Hussein M.A., Khalil S. Screening of some antibiotics and anabolic steroids residues in broiler fillet marketed in El-Sharkia Governorate. Life Sci. J. 2013;10:2111–2118.
Karmi M. Detection and presumptive identification of antibiotic residues in poultry meat by using FPT. Glob. J. Pharmacol. 2014;8:160–165.
Tajik H., Malekinejad H., Razavi-Rouhani S.M., Pajouhi M.R., Mahmoudi R., Haghnazari A. Chloramphenicol residues in chicken liver, kidney and muscle: A comparison among the antibacterial residues monitoring methods of Four Plate Test, ELISA and HPLC. Food Chem. Toxicol. 2010;48:2464–2468. doi: 10.1016/j.fct.2010.06.014. PubMed DOI
Ramatla T.A., Ngoma L., Adetunji M.C., Mwanza M. Evaluation of Antibiotic Residues in Raw Meat Using Different Analytical Methods. Antibiotics. 2017;6:34. doi: 10.3390/antibiotics6040034. PubMed DOI PMC
Kadim I., Mahgoub O., Al-Marzooqi W., Al-Maqbaly R., Annamali K., Khalaf S. Enzyme-linked immunosorbent assay for screening antibiotic and hormone residues in broiler chicken meat in the sultanate of Oman. J. Muscle Foods. 2010;21:243–254. doi: 10.1111/j.1745-4573.2009.00179.x. DOI
Zhang S., Zhang Z., Shi W., Eremin S.A., Shen J. Development of a Chemiluminescent ELISA for Determining Chloramphenicol in Chicken Muscle. J. Agric. Food Chem. 2006;54:5718–5722. doi: 10.1021/jf060275j. PubMed DOI
Prajapati M., Ranjit E., Shrestha R., Shrestha S.P., Adhikari S.K., Khanal D.R. Status of antibiotic residues in poultry meat of Nepal. Nepal. Vet. J. 2018;35:55–62. doi: 10.3126/nvj.v35i0.25240. DOI
De Wasch K., Okerman L., De Brabander H., Van Hoof J., Croubels S., De Backer P. Detection of residues of tetracycline antibiotics in pork and chicken meat: Correlation between results of screening and confirmatory tests. Analyst. 1998;123:2737–2741. doi: 10.1039/a804909b. PubMed DOI
Onyeanu C.T., Ezenduka E.V., Anaga A.O. Determination of gentamicin use in poultry farms in Enugu state, Nigeria, and detection of its residue in slaughter commercial broilers. Int. J. One Health. 2020;6:6–11. doi: 10.14202/IJOH.2020.6-11. DOI
Mashak Z., Langroodi A.M., Mehdizadeh T., Fathabad A.E., Asadi A.H. Detection of quinolones residues in beef and chicken meat in hypermarkets of Urmia, Iran using ELISA. Iran Agric. Res. 2017;36:73–77.
Sherma J. Thin-layer chromatography in food and agricultural analysis. J. Chromatogr. A. 2000;880:129–147. doi: 10.1016/S0021-9673(99)01132-2. PubMed DOI
Khan A.T. Advantages and Disadvantages of Thin Layer Chromatography. [(accessed on 3 October 2020)]; Available online: https://www.biomadam.com/advantages-and-disadvantages-of-thin-layer-chromatography.
Sarker Y.A., Hasan M.M., Paul T.K., Rashid S.Z., Alam M.N., Sikder M.H. Screening of antibiotic residues in chicken meat in Bangladesh by thin layer chromatography. J. Adv. Vet. Anim. Res. 2018;5:140. doi: 10.5455/javar.2018.e257. DOI
Tajick M.A., Shohreh B. Detection of antibiotics residue in chicken meat using TLC. Int. J. Poult. Sci. 2006;5:611–612.
Billah M., Rana S.M.M., Hossain M.S., Saifuddin A.K.M., Islam S.K.M.A., Naim Z., Barua S. Determination of the presence and pharmacokinetic profile of ciprofloxacin by TLC and HPLC method respectively in broiler chicken after single oral administration. J. Antibiot. 2014;67:745–748. doi: 10.1038/ja.2014.56. PubMed DOI
Premarathne J.M.K.J.K., Satharasinghe D.A., Gunasena A.R.C., Wanigasekara A., Munasinghe D.M.S., Abeynayake P. Thin-layer chromatographic method for quantification of sulfonamides in chicken meat. Food Anal. Methods. 2018;11:2666–2672. doi: 10.1007/s12161-018-1229-7. DOI
Das S., Faysal M.N.A., Ferdous J., Sachi S., Islam M.S., Sikder M.H. Detection of oxytetracycline and doxycycline residue in different growth stages of commercial broiler. Bangladesh J. Vet. Med. 2019;17:7–14.
Ali M.R., Sikder M.M., Islam M.S., Islam M.S. Investigation of discriminate and indiscriminate use of doxycycline in broiler: An indoor research on antibiotic doxycycline residue study in edible poultry tissue. Asian J. Med. Biol. Res. 2020;6:1–7. doi: 10.3329/ajmbr.v6i1.46472. DOI
Mora L., Reig M. Methods for rapid detection of chemical and veterinary drug residues in animal foods. Trends Food Sci. Technol. 2006;17:482–489. doi: 10.1016/j.tifs.2006.02.002. DOI
Bergweff A.A., Schloesser J. Residue determination. In: Caballero B., Trugo L., Finglas P., editors. Encyclopedia of Food Sciences and Nutrition. Elsevier; London, UK: 2003. pp. 254–261.
Chrominfo Advantages and Disadvantages of HPLC. [(accessed on 3 October 2020)]; Available online: https://chrominfo.blogspot.com/2019/03/advantages-and-disadvantages-of-hplc.html.
Aman I.M., Ahmed H.F., Mostafa N.Y., Kitada Y., Kar G. Detection of tetracycline veterinary drug residues in Egyptian poultry meat by high performance liquid chromatography. J. Vet. Med. Allied Sci. 2017;1:52–58.
Shalaby A.R., Salama N.A., Abou-Raya S.H., Emam W.H., Mehaya F.M. Validation of HPLC method for determination of tetracycline residues in chicken meat and liver. Food Chem. 2011;124:1660–1666. doi: 10.1016/j.foodchem.2010.07.048. PubMed DOI
Zhao S., Jiang H., Li X., Mi T., Li C., Shen J. Simultaneous Determination of Trace Levels of 10 Quinolones in Swine, Chicken, and Shrimp Muscle Tissues Using HPLC with Programmable Fluorescence Detection. J. Agric. Food Chem. 2007;55:3829–3834. doi: 10.1021/jf0635309. PubMed DOI
Shen J., Guo L., Xu F., Rao Q., Xia X., Li X., Ding S. Simultaneous Determination of Fluoroquinolones, Tetracyclines and Sulfonamides in Chicken Muscle by UPLC–MS–MS. Chromatographia. 2010;71:383–388. doi: 10.1365/s10337-009-1463-7. DOI
Wang B., Pang M., Xie X., Zhao M., Xie K., Zhang Y., Zhao X., Wang Y., Wang R., Wu H., et al. Quantitative analysis of amoxicillin, amoxicillin major metabolites, and ampicillin in chicken tissues via ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Food Anal. Methods. 2017;10:3292–3305. doi: 10.1007/s12161-017-0900-8. DOI
Virolainen N.E., Pikkemaat M.G., Elferink J.W.A., Karp M.T. Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria. J. Agric. Food Chem. 2008;56:11065–11070. doi: 10.1021/jf801797z. PubMed DOI
Pikkemaat M.G., Rapallini M.L.B.A., Karp M.T., Elferink J.W.A. Application of a luminescent bacterial biosensor for the detection of tetracyclines in routine analysis of poultry muscle samples. Food Addit. Contam. Part A. 2010;27:1112–1117. doi: 10.1080/19440041003794866. PubMed DOI
Li Z., Liu C., Sarpong V., Gu Z. Multisegment nanowire/nanoparticle hybrid arrays as electrochemical biosensors for Simultaneous detection of antibiotics. Biosens. Bioelectron. 2019;126:632–639. doi: 10.1016/j.bios.2018.10.025. PubMed DOI
Gan T., Shi Z., Sun J., Liu Y. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations–exchanged montmorillonite catalyst. Talanta. 2014;121:187–193. doi: 10.1016/j.talanta.2014.01.002. PubMed DOI
Mohammad-Razdari A., Ghasemi-Varnamkhasti M., Izadi Z., Rostami S., Ensafi A.A., Siadat M., Losson E. Detection of sulfadimethoxine in meat samples using a novel electrochemical biosensor as a rapid analysis method. J. Food Compos. Anal. 2019;82:103252. doi: 10.1016/j.jfca.2019.103252. DOI
Kim D.-M., Rahman M.A., Do M.H., Ban C., Shim Y.-B. An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer. Biosens. Bioelectron. 2010;25:1781–1788. doi: 10.1016/j.bios.2009.12.024. PubMed DOI
Ferguson J., Baxter A., Young P., Kennedy G., Elliott C., Weigel S., Gatermann R., Ashwin H., Stead S., Sharman M. Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex® kit chloramphenicol. Anal. Chim. Acta. 2005;529:109–113. doi: 10.1016/j.aca.2004.11.042. DOI
Huet A.-C., Charlier C., Singh G., Godefroy S.B., Leivo J., Vehniäinen M., Nielen M.W.F., Weigel S., Delahaut P. Development of an optical surface plasmon resonance biosensor assay for (fluoro)quinolones in egg, fish, and poultry meat. Anal. Chim. Acta. 2008;623:195–203. doi: 10.1016/j.aca.2008.06.009. PubMed DOI
Li P., Ho B., Ding J.L. Future Perspectives on New Approaches in Pathogen Detection. Biomed. Sci. Lett. 2015;21:165–171. doi: 10.15616/BSL.2015.21.4.165. DOI
Foddai A.C.G., Grant I.R. Methods for detection of viable foodborne pathogens: Current state-of-art and future prospects. Appl. Microbiol. Biotechnol. 2020;104:4281–4288. doi: 10.1007/s00253-020-10542-x. PubMed DOI PMC