• This record comes from PubMed

Detection of Bacterial Pathogens and Antibiotic Residues in Chicken Meat: A Review

. 2020 Oct 20 ; 9 (10) : . [epub] 20201020

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
VT2019-2021 UHK CEP Register

Detection of pathogenic microbes as well as antibiotic residues in food animals, especially in chicken, has become a matter of food security worldwide. The association of various pathogenic bacteria in different diseases and selective pressure induced by accumulated antibiotic residue to develop antibiotic resistance is also emerging as the threat to human health. These challenges have made the containment of pathogenic bacteria and early detection of antibiotic residue highly crucial for robust and precise detection. However, the traditional culture-based approaches are well-comprehended for identifying microbes. Nevertheless, because they are inadequate, time-consuming and laborious, these conventional methods are not predominantly used. Therefore, it has become essential to explore alternatives for the easy and robust detection of pathogenic microbes and antibiotic residue in the food source. Presently, different monitoring, as well as detection techniques like PCR-based, assay (nucleic acid)-based, enzyme-linked immunosorbent assays (ELISA)-based, aptamer-based, biosensor-based, matrix-assisted laser desorption/ionization-time of flight mass spectrometry-based and electronic nose-based methods, have been developed for detecting the presence of bacterial contaminants and antibiotic residues. The current review intends to summarize the different techniques and underline the potential of every method used for the detection of bacterial pathogens and antibiotic residue in chicken meat.

See more in PubMed

Mpundu P., Mbewe A.R., Muma J.B., Zgambo J., Munyeme M. Evaluation of Bacterial Contamination in Dressed Chickens in Lusaka Abattoirs. Front. Public Health. 2019;7:19. doi: 10.3389/fpubh.2019.00019. PubMed DOI PMC

Livestock and Poultry: World Markets and Trade. [(accessed on 22 April 2020)]; Available online: https://apps.fas.usda.gov/psdonline/circulars/livestock_poultry.pdf.

Farrell D. The Role of Poultry in Human Nutrition. [(accessed on 8 December 2019)]; Available online: http://www.fao.org/3/a-al712e.pdf.

da Silva M.V. Poultry and Poultry Products—Risks for Human Health. [(accessed on 8 December 2019)]; Available online: http://www.fao.org/3/a-al741e.pdf.

Morton V.K., Kearney A., Coleman S., Viswanathan M., Chau K., Orr A., Hexemer A. Outbreaks of Salmonella illness associated with frozen raw breaded chicken products in Canada, 2015–2019. Epidemiol. Infect. 2019;147:254. doi: 10.1017/S0950268819001432. PubMed DOI PMC

Wensley A., Padfield S., Hughes G.J. An outbreak of campylobacteriosis at a hotel in England: The ongoing risk due to consumption of chicken liver dishes. Epidemiol. Infect. 2020;148:32. doi: 10.1017/S095026882000028X. PubMed DOI PMC

Grewal V.S., Khera A. Outbreak of food poisoning in a working men’s hostel: A retrospective cohort study. Med. J. DY Patil Univ. 2017;10:517–521.

Gumbo A., Bangure D., Gombe N.T., Mungati M., Tshimanga M., Hwalima Z., Dube I. Staphylococcus aureus food poisoning among Bulawayo City Council employees, Zimbabwe, 2014. BMC Res. Notes. 2015;8:485. doi: 10.1186/s13104-015-1490-4. PubMed DOI PMC

Gieraltowski L., Higa J., Peralta V., Green A., Schwensohn C., Rosen H., Libby T., Kissler B., Marsden-Haug N., Booth H., et al. National Outbreak of Multidrug Resistant Salmonella Heidelberg Infections Linked to a Single Poultry Company. PLoS ONE. 2016;11:e0162369. doi: 10.1371/journal.pone.0162369. PubMed DOI PMC

Parry A., Fearnley E., Denehy E. ‘Surprise’: Outbreak of Campylobacter infection associated with chicken liver pâté at a surprise birthday party, Adelaide, Australia, 2012. West. Pac. Surveill. Response J. 2012;3:16–19. doi: 10.5365/wpsar.2012.3.4.011. PubMed DOI PMC

Tompkins B.J., Wirsing E., Devlin V., Kamhi L., Temple B., Weening K., Cavallo S., Allen L., Brinig P., Goode B., et al. Multistate Outbreak of Campylobacter jejuni infections associated with undercooked chicken livers—Northeastern United States, 2012. MMWR Morb. Mortal. Wkly. Rep. 2013;62:874–876. PubMed PMC

Edwards D.S., Milne L.M., Morrow K., Sheridan P., Verlander N.Q., Mulla R., Richardson J.F., Pender A., Lilley M., Reacher M. Campylobacteriosis outbreak associated with consumption of undercooked chicken liver pâté in the East of England, September 2011: Identification of a dose–response risk. Epidemiol. Infect. 2013;142:352–357. doi: 10.1017/S0950268813001222. PubMed DOI PMC

Farmer S., Keenan A., Vivancos R. Food-borne Campylobacter outbreak in Liverpool associated with cross-contamination from chicken liver parfait: Implications for investigation of similar outbreaks. Public Health. 2012;126:657–659. doi: 10.1016/j.puhe.2012.02.004. PubMed DOI

Popović I., Heron B., Covacin C. Listeria: An Australian Perspective (2001–2010) Foodborne Pathog. Dis. 2014;11:425–432. doi: 10.1089/fpd.2013.1697. PubMed DOI

Wensley A., Coole L. Cohort study of a dual-pathogen point source outbreak associated with the consumption of chicken liver pâté, UK, October 2009. J. Public Health. 2013;35:585–589. doi: 10.1093/pubmed/fdt020. PubMed DOI

Whittaker P.J., Sopwith W., Quigley C., Gillespie I.A., Willshaw G.A., Lycett C., Surman-Lee S., Baxter D., Adak G.K., Syed Q. A national outbreak of verotoxin-producing Escherichia coli O157 associated with consumption of lemon-and-coriander chicken wraps from a supermarket chain. Epidemiol. Infect. 2008;137:375–382. doi: 10.1017/S0950268808001702. PubMed DOI

Black A.P., Kirk M.D., Millard G. Campylobacter outbreak due to chicken consumption at an Australian Capital Territory restaurant. Commun. Dis. Intell. Q. Rep. 2006;30:373–377. PubMed

Pearson A.D., Greenwood M.H., Donaldson J., Healing T.D., Jones D.M., Shahamat M., Feltham R.K.A., Colwell R.R. Continuous source outbreak of campylobacteriosis traced to chicken. J. Food Prot. 2000;63:309–314. doi: 10.4315/0362-028X-63.3.309. PubMed DOI

EFSA Panel on Biological Hazards (BIOHAZ) Scientific opinion on quantification of the risk posed by broiler meat to human campylobacteriosis in the EU. EFSA J. 2010;8:1437.

EFSA Panel on Biological Hazards (BIOHAZ) EFSA Panel on Contaminants in the Food Chain (CONTAM) EFSA Panel on Animal Health and Welfare (AHAW) Scientific opinion on the public health hazards to be covered by inspection of meat (poultry) EFSA J. 2012;10:2741.

Mehdi Y., Létourneau-Montminy M.-P., Gaucher M.-L., Chorfi Y., Suresh G., Rouissi T., Brar S.K., Côté C., Ramirez A.A., Godbout S. Use of antibiotics in broiler production: Global impacts and alternatives. Anim. Nutr. 2018;4:170–178. doi: 10.1016/j.aninu.2018.03.002. PubMed DOI PMC

Cornejo J., Yévenes K., Avello C., Pokrant E., Maddaleno A., Martín B.S., Lapierre L. Determination of chlortetracycline residues, antimicrobial activity and presence of resistance genes in droppings of experimentally treated broiler chickens. Molecules. 2018;23:1264. doi: 10.3390/molecules23061264. PubMed DOI PMC

Lan C., Yin D., Yang Z., Zhao W., Chen Y., Zhang W., Zhang S. Determination of Six Macrolide Antibiotics in Chicken Sample by Liquid Chromatography-Tandem Mass Spectrometry Based on Solid Phase Extraction. J. Anal. Methods Chem. 2019;2019:1–13. doi: 10.1155/2019/6849457. PubMed DOI PMC

Goodnough M.C., Johnson E.A. Control of Salmonella enteritidis infections in poultry by polymyxin B and trimethoprim. Appl. Environ. Microbiol. 1991;57:785–788. doi: 10.1128/AEM.57.3.785-788.1991. PubMed DOI PMC

Hill D.C., Branion H.D., Slinger S.J., Anderson G.W. Influence of environment on the growth response of chicks to Penicillin. Poult. Sci. 1953;32:462–466. doi: 10.3382/ps.0320462. DOI

Feighner S.D., Dashkevicz M.P. Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial cholyltaurine hydrolase activity. Appl. Environ. Microbiol. 1987;53:331–336. doi: 10.1128/AEM.53.2.331-336.1987. PubMed DOI PMC

Baert K., De Baere S., Croubels S., De Backer P. Pharmacokinetics and Oral Bioavailability of Sulfadiazine and Trimethoprim in Broiler Chickens. Vet. Res. Commun. 2003;27:301–309. doi: 10.1023/A:1024084108803. PubMed DOI

Er B., Onurdag F.K., Demirhan B., Ozgacar S.O., Oktem A.B., Abbasoglu U. Screening of quinolone antibiotic residues in chicken meat and beef sold in the markets of Ankara, Turkey. Poult. Sci. 2013;92:2212–2215. doi: 10.3382/ps.2013-03072. PubMed DOI

Juan-García A., Font G., Picó Y. Determination of quinolone residues in chicken and fish by capillary electrophoresis-mass spectrometry. Electrophoresis. 2006;27:2240–2249. doi: 10.1002/elps.200500868. PubMed DOI

Silfrany R.O., Caba R.E., Santos F.S.D.L., Hanning I. Detection of quinolones in poultry meat obtained from retail centers in Santiago Province, the Dominican Republic. J. Food Prot. 2013;76:352–354. doi: 10.4315/0362-028X.JFP-12-310. PubMed DOI

PoultryMed. [(accessed on 2 January 2020)]; Available online: https://www.poultrymed.com/Aminoglycosides.

PoultryMed. [(accessed on 2 January 2020)]; Available online: https://www.poultrymed.com/Lincosamides.

Muaz K., Riaz M., Akhtar S., Park S., Ismail A. Antibiotic residues in chicken meat: Global prevalence, threats, and decontamination strategies: A review. J. Food Prot. 2018;81:619–627. doi: 10.4315/0362-028X.JFP-17-086. PubMed DOI

Svobodova J., Tůmová E. Factors affecting microbial contamination of market eggs: A review. Sci. Agric. Bohem. 2015;45:226–237. doi: 10.1515/sab-2015-0003. DOI

Messens W., Grijspeerdt K., Herman L. Eggshell penetration by Salmonella: A review. Worlds Poult. Sci. J. 2005;61:71–86. doi: 10.1079/WPS200443. PubMed DOI

Vihavainen E., Lundström H.-S., Susiluoto T., Koort J., Paulin L., Auvinen P., Björkroth K.J. Role of broiler carcasses and processing plant air in contamination of modified-atmosphere-packaged broiler products with psychrotrophic lactic acid bacteria. Appl. Environ. Microbiol. 2006;73:1136–1145. doi: 10.1128/AEM.01644-06. PubMed DOI PMC

Luber P. Cross-contamination versus undercooking of poultry meat or eggs—Which risks need to be managed first? Int. J. Food Microbiol. 2009;134:21–28. doi: 10.1016/j.ijfoodmicro.2009.02.012. PubMed DOI

Warsow C.R., Orta-Ramirez A., Marks B.P., Ryser E.T., Booren A.M. Single Directional Migration of Salmonella into Marinated Whole Muscle Turkey Breast. J. Food Prot. 2008;71:153–156. doi: 10.4315/0362-028X-71.1.153. PubMed DOI

Goksoy E., Kirkan S., Kok F. Microbiological quality of broiler carcasses during processing in two slaughterhouses in Turkey. Poult. Sci. 2004;83:1427–1432. doi: 10.1093/ps/83.8.1427. PubMed DOI

Russell S.M. The effect of an acidic, copper sulfate-based commercial sanitizer on indicator, pathogenic, and spoilage bacteria associated with broiler chicken carcasses when applied at various intervention points during poultry processing. Poult. Sci. 2008;87:1435–1440. doi: 10.3382/ps.2007-00339. PubMed DOI

Bonnet M., Lagier J.C., Raoult D., Khelaifia S. Bacterial culture through selective and non-selective conditions: The evolution of culture media in clinical microbiology. New Microbes New Infect. 2020;34:100622. doi: 10.1016/j.nmni.2019.100622. PubMed DOI PMC

Priyanka B., Patil R.K., Dwarakanath S. A review on detection methods used for foodborne pathogens. Indian J. Med. Res. 2016;144:327–338. doi: 10.4103/0971-5916.198677. PubMed DOI PMC

Esinghal N., Ekumar M., Kanaujia P.K., Virdi J.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front. Microbiol. 2015;6:791. doi: 10.3389/fmicb.2015.00791. PubMed DOI PMC

Paniel N., Noguer T. Detection of Salmonella in food matrices, from conventional methods to recent aptamer-sensing technologies. Foods. 2019;8:371. doi: 10.3390/foods8090371. PubMed DOI PMC

Jain A.K., Yadav R. Study of antibiotic resistance in bacteria Isolated from table egg. Int. J. Pharm. Bio Sci. 2017;8:668–674. doi: 10.22376/ijpbs.2017.8.1.b668-674. DOI

Begum K., Reza T.A., Haque M., Hossain A., Hassan F.M.K., Hasan S.N., Akhter N., Ahmed A., Barua U. Isolation, identification and antibiotic resistance pattern of Salmonella spp. from chicken eggs, intestines and environmental samples. Bangladesh Pharm. J. 2010;13:23–27.

Tessema K., Bedu H., Ejo M., Hiko A. Prevalence and Antibiotic Resistance of Salmonella Species Isolated from Chicken Eggs by Standard Bacteriological Method. J. Vet. Sci. Technol. 2017;8:1–5. doi: 10.4172/2157-7579.1000421. DOI

Akond M.A., Hassan S.M.R., Alam S., Shirin M. Antibiotic resistance of Escherichia coli isolated from poultry and poultry environment of Bangladesh. Am. J. Environ. Sci. 2009;5:47–52.

Akond M.A., Shirin M., Alam S., Hassan S., Rahman M., Hoq M. Frequency of drug resistant Salmonella spp. isolated from poultry samples in Bangladesh. Stamford J. Microbiol. 2013;2:15–19. doi: 10.3329/sjm.v2i1.15207. DOI

Ahmed M.M., Rahman M.M., Mahbub K.R., Wahiduzzaman M. Characterization of antibiotic resistant Salmonella spp isolated from chicken eggs of Dhaka City. J. Sci. Res. 2010;3:191. doi: 10.3329/jsr.v3i1.6109. DOI

Arathy D.S., Vanpee G., Belot G., Mathew V., Deallie C., Sharma R. Antimicrobial drug resistance in Escherichia coli isolated from commercial chicken eggs in Grenada, West Indies. West Indian Med. J. 2011;60:53–56. PubMed

Al-Zenki S., Al-Nasser A., Al-Safar A., Alomirah H., Al-Haddad A., Hendriksen R.S., Aarestrup F.M. Prevalence and antibiotic resistance of Salmonella isolated from a poultry farm and processing plant environment in the state of Kuwait. Foodborne Pathog. Dis. 2007;4:367–373. doi: 10.1089/fpd.2007.0017. PubMed DOI

Adesiyun A.A., Offiah N., Seepersadsingh N., Rodrigo S., Lashley V., Musai L. Frequency and antimicrobial resistance of enteric bacteria with spoilage potential isolated from table eggs. Food Res. Int. 2006;39:212–219. doi: 10.1016/j.foodres.2005.07.008. DOI

Burgos M.J.G., Márquez M.L.F., Pérez-Pulido R., Gálvez A., López R.L. Virulence factors and antimicrobial resistance in Escherichia coli strains isolated from hen egg shells. Int. J. Food Microbiol. 2016;238:89–95. doi: 10.1016/j.ijfoodmicro.2016.08.037. PubMed DOI

Akhtar F., Hussain I., Khan A., Rahman S.U. Prevalence and antibiogram studies of Salmonella enteritidis isolated from human and poultry sources. Pak. Vet. J. 2010;30:25–28.

Pyzik E., Marek A. Plasmid profile analysis and evaluation of antibiotic susceptibility of Staphylococcus aureus strains isolated from table chicken eggs. Pol. J. Vet. Sci. 2013;16:307–312. doi: 10.2478/pjvs-2013-0042. PubMed DOI

Singh S., Yadav A.S., Singh S.M., Bharti P. Prevalence of Salmonella in chicken eggs collected from poultry farms and marketing channels and their antimicrobial resistance. Food Res. Int. 2010;43:2027–2030. doi: 10.1016/j.foodres.2010.06.001. DOI

Singh R., Yadav A., Tripathi V., Singh R.P. Antimicrobial resistance profile of Salmonella present in poultry and poultry environment in north India. Food Control. 2013;33:545–548. doi: 10.1016/j.foodcont.2013.03.041. DOI

Geidam Y.A., Zakaria Z., Aziz S.A., Bejo S.K., Abu J., Omar S. High prevalence of multi-drug resistant bacteria in selected poultry farms in Selangor, Malaysia. Asian J. Anim. Vet. Adv. 2012;7:891–897. doi: 10.3923/ajava.2012.891.897. DOI

Khatun M.N., Mahbub-E-Elahi A.T.M., Ahmed S., Parvej M.S., Akhter S., Ansari W.K., Ali M.S. Frequency of drug resistant Escherichia coli isolated from commercial broiler chicken in Bangladesh. Int. J. Nat. Soc. Sci. 2015;2:1–5.

Abdi R.D., Mengstie F., Beyi A.F., Beyene T., Waktole H., Mammo B., Ayana D., Abunna F. Determination of the sources and antimicrobial resistance patterns of Salmonella isolated from the poultry industry in Southern Ethiopia. BMC Infect. Dis. 2017;17:352. doi: 10.1186/s12879-017-2437-2. PubMed DOI PMC

Alam S.B., Mahmud M., Akter R., Hasan M., Sobur A., Nazir K.H.M.N.H., Noreddin A., Rahman T., El Zowalaty M.E., Rahman M. Molecular detection of multidrug resistant Salmonella species isolated from broiler farm in Bangladesh. Pathogens. 2020;9:201. doi: 10.3390/pathogens9030201. PubMed DOI PMC

Sarker S., Mannan S., Ali Y., Bayzid M., Ahad A., Bupasha Z.B. Antibiotic resistance of Escherichia coli isolated from broilers sold at live bird markets in Chattogram, Bangladesh. J. Adv. Vet. Anim. Res. 2019;6:272–277. doi: 10.5455/javar.2019.f344. PubMed DOI PMC

Abd-ElGhany S.M., Sallam K.I., Abd-Elkhalek A., Tamura T. Occurrence, genetic characterization and antimicrobial resistance of Salmonella isolated from chicken meat and giblets. Epidemiol. Infect. 2014;143:997–1003. doi: 10.1017/S0950268814001708. PubMed DOI PMC

Hidano A., Yamamoto T., Hayama Y., Muroga N., Kobayashi S., Nishida T., Tsutsui T. Unraveling antimicrobial resistance genes and phenotype patterns among Enterococcus faecalis isolated from retail chicken products in Japan. PLoS ONE. 2015;10:e0121189. doi: 10.1371/journal.pone.0121189. PubMed DOI PMC

Hayes J.R., English L.L., Carter P.J., Proescholdt T., Lee K.Y., Wagner D.D., White D.G. prevalence and antimicrobial resistance of Enterococcus species isolated from retail meats. Appl. Environ. Microbiol. 2003;69:7153–7160. doi: 10.1128/AEM.69.12.7153-7160.2003. PubMed DOI PMC

Momtaz H., Jamshidi A. Shiga toxin-producing Escherichia coli isolated from chicken meat in Iran: Serogroups, virulence factors, and antimicrobial resistance properties. Poult. Sci. 2013;92:1305–1313. doi: 10.3382/ps.2012-02542. PubMed DOI

Nazer A.H.K., Dadras H., Eskandari S. Aerobic bacteria isolated from eggs and day-old chicks and their antibacterial resistance in Shiraz, Iran. Iran J. Vet. Res. 2006;7:20–30.

Luber P., Wagner J., Hahn H., Bartelt E. Antimicrobial resistance in Campylobacter jejuni and Campylobacter coli strains isolated in 1991 and 2001–2002 from poultry and humans in Berlin, Germany. Antimicrob. Agents Chemother. 2003;47:3825–3830. doi: 10.1128/AAC.47.12.3825-3830.2003. PubMed DOI PMC

Waters A.E., Contente-Cuomo T., Buchhagen J., Liu C.M., Watson L., Pearce K., Foster J.T., Bowers J., Driebe E.M., Engelthaler D.M., et al. Multidrug-resistant Staphylococcus aureus in US meat and poultry. Clin. Infect. Dis. 2011;52:1227–1230. doi: 10.1093/cid/cir181. PubMed DOI PMC

White A.K., Heyries K.A., Doolin C., VanInsberghe M., Hansen C.L. High-throughput microfluidic single-cell digital polymerase chain reaction. Anal. Chem. 2013;85:7182–7190. doi: 10.1021/ac400896j. PubMed DOI

He Q.-D., Huang D.-P., Huang G., Chen Z.-G. Advance in research of microfluidic polymerase chain reaction chip. Chin. J. Anal. Chem. 2016;44:542–550. doi: 10.1016/S1872-2040(16)60921-0. DOI

Jin U.-H., Cho S.-H., Kim M.-G., Ha S.-D., Kim K.-S., Lee K.-H., Kim K.-Y., Chung D.H., Lee Y.-C., Kim C.-H. PCR method based on the ogdH gene for the detection of Salmonella spp. from chicken meat samples. J. Microbiol. 2004;42:216–222. PubMed

Guran H.S., Oksuztepe G. Detection and typing of Clostridium perfringens from retail chicken meat parts. Lett. Appl. Microbiol. 2013;57:77–82. doi: 10.1111/lam.12088. PubMed DOI

Suo B., He Y., Tu S.-I., Shi X. A multiplex real-time polymerase chain reaction for simultaneous detection of Salmonella spp., Escherichia coli O157, and Listeria monocytogenes in meat products. Foodborne Pathog. Dis. 2010;7:619–628. doi: 10.1089/fpd.2009.0430. PubMed DOI

Navas J., Ortiz S., López P., Jantzen M.M., Lopez V., Martínez-Suárez J.V. Evaluation of effects of primary and secondary enrichment for the detection of Listeria monocytogenes by real-time PCR in retail ground chicken meat. Foodborne Pathog. Dis. 2006;3:347–354. doi: 10.1089/fpd.2006.3.347. PubMed DOI

Gonzalez I., Garcia T., Antolin A., Hernández P.E., Martin R. Development of a combined PCR-culture technique for the rapid detection of Arcobacter spp. in chicken meat. Lett. Appl. Microbiol. 2000;30:207–212. doi: 10.1046/j.1472-765x.2000.00696.x. PubMed DOI

Rantsiou K., Lamberti C., Cocolin L. Survey of Campylobacter jejuni in retail chicken meat products by application of a quantitative PCR protocol. Int. J. Food Microbiol. 2010;141:S75–S79. doi: 10.1016/j.ijfoodmicro.2010.02.002. PubMed DOI

Pentimalli D., Pegels N., García T., Martín R., González I. Specific PCR detection of Arcobacter butzleri, Arcobacter cryaerophilus, Arcobacter skirrowii, and Arcobacter cibarius in chicken meat. J. Food Prot. 2009;72:1491–1495. doi: 10.4315/0362-028X-72.7.1491. PubMed DOI

Saeki E.K., Alves J., Bonfante R.C., Hirooka E.Y., De Oliveira T.C.R.M. Multiplex PCR (mPCR) for the detection of Salmonella spp. and the differentiation of the Typhimurium and Enteritidis serovars in chicken meat. J. Food Saf. 2012;33:25–29. doi: 10.1111/jfs.12019. DOI

Alves J., Hirooka E.Y., De Oliveira T.C.R.M. Development of a multiplex real-time PCR assay with an internal amplification control for the detection of Campylobacter spp. and Salmonella spp. in chicken meat. LWT Food Sci. Technol. 2016;72:175–181. doi: 10.1016/j.lwt.2016.04.051. DOI

Arunrut N., Kiatpathomchai W., Ananchaipattana C. Development and evaluation of real-time loop mediated isothermal amplification assay for rapid and sensitive detection of Salmonella spp. in chicken meat products. J. Food Saf. 2018;38:e12564. doi: 10.1111/jfs.12564. DOI

Alves J., Marques V.V., Pereira L.F.P., Hirooka E.Y., De Oliveira T.C.R.M. Multiplex PCR for the detection of Campylobacter spp. and Salmonella spp. in chicken meat. J. Food Saf. 2012;32:345–350. doi: 10.1111/j.1745-4565.2012.00386.x. DOI

Manguiat L.S., Fang T.J. Evaluation of DAS™ kits for the detection of food-borne pathogens in chicken and meat-based street-vended foods. J. Food Drug Anal. 2013;21:198–205. doi: 10.1016/j.jfda.2013.05.011. DOI

Umesha S., Manukumar H.M. Advanced molecular diagnostic techniques for detection of food-borne pathogens: Current applications and future challenges. Crit. Rev. Food Sci. Nutr. 2017;58:84–104. doi: 10.1080/10408398.2015.1126701. PubMed DOI

Kupradit C., Rodtong S., Ketudat-Cairns M. Development of a DNA macroarray for simultaneous detection of multiple foodborne pathogenic bacteria in fresh chicken meat. World J. Microbiol. Biotechnol. 2013;29:2281–2291. doi: 10.1007/s11274-013-1394-1. PubMed DOI

Kupradit C., Ruamkuson D., Rodtong S., Ketudat-Cairns M. Novel multiplex polymerase chain reaction and an oligonucleotide array for specific detection of the dominant foodborne bacterial pathogens in chicken meat. Afr. J. Microbiol. Res. 2013;7:3085–3095. doi: 10.5897/AJMR12.2102. DOI

Tortajada-Genaro L.A., Rodrigo A., Hevia E., Mena S., Niñoles R., Maquieira Á. Microarray on digital versatile disc for identification and genotyping of Salmonella and Campylobacter in meat products. Anal. Bioanal. Chem. 2015;407:7285–7294. doi: 10.1007/s00216-015-8890-0. PubMed DOI

Quiñones B., Parker C.T., Janda J.M., Miller W.G., Mandrell R.E. Detection and genotyping of Arcobacter and Campylobacter isolates from retail chicken samples by use of DNA oligonucleotide arrays. Appl. Environ. Microbiol. 2007;73:3645–3655. doi: 10.1128/AEM.02984-06. PubMed DOI PMC

Charlermroj R., Makornwattana M., Phuengwas S., Meerak J., Pichpol D., Karoonuthaisiri N. DNA-based bead array technology for simultaneous identification of eleven foodborne pathogens in chicken meat. Food Control. 2019;101:81–88. doi: 10.1016/j.foodcont.2019.02.014. DOI

Schneid A.D.S., Rodrigues K.L., Chemello D., Tondo E.C., Ayub M.A.Z., Aleixo J.A.G. Evaluation of an indirect ELISA for the detection of Salmonella in chicken meat. Braz. J. Microbiol. 2006;37:350–355. doi: 10.1590/S1517-83822006000300027. DOI

Taha E.G., Mohamed A., Srivastava K.K., Reddy P.G. Rapid detection of Salmonella in chicken meat using immunomagnetic separation, CHROMagar, ELISA and Real-time polymerase chain reaction (RT-PCR) Int. J. Poult. Sci. 2010;9:831–835. doi: 10.3923/ijps.2010.831.835. DOI

Lilja L., Hänninen M.-L. Evaluation of a commercial automated ELISA and PCR-method for rapid detection and identification of Campylobacter jejuni and C. coli in poultry products. Food Microbiol. 2001;18:205–209. doi: 10.1006/fmic.2000.0392. DOI

Croci L., Delibato E., Volpe G., Palleschi G. A rapid electrochemical ELISA for the detection of Salmonella in meat samples. Anal. Lett. 2001;34:2597–2607. doi: 10.1081/AL-100108407. DOI

Vanderlinde P.B., Grau F.H. Detection of Listeria spp. in Meat and Environmental Samples by an Enzyme-linked Immunosorbent Assay (ELISA) J. Food Prot. 1991;54:230–231. doi: 10.4315/0362-028X-54.3.230. PubMed DOI

Charlermroj R., Makornwattana M., Grant I.R., Elliott C.T., Karoonuthaisiri N. Validation of a high-throughput immunobead array technique for multiplex detection of three foodborne pathogens in chicken products. Int. J. Food Microbiol. 2016;224:47–54. doi: 10.1016/j.ijfoodmicro.2016.02.017. PubMed DOI

Rozenblum G.T., Lopez V.G., Vitullo A.D., Radrizzani M. Aptamers: Current challenges and future prospects. Expert Opin. Drug Discov. 2015;11:127–135. doi: 10.1517/17460441.2016.1126244. PubMed DOI

Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–510. doi: 10.1126/science.2200121. PubMed DOI

Hamula C.L.A., Zhang H., Li F., Wang Z., Le X.C., Li X.-F. Selection and analytical applications of aptamers binding microbial pathogens. TrAC Trends Anal. Chem. 2011;30:1587–1597. doi: 10.1016/j.trac.2011.08.006. PubMed DOI PMC

Torres-Chavolla E., Alocilja E.C. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 2009;24:3175–3182. doi: 10.1016/j.bios.2008.11.010. PubMed DOI PMC

Kim Y.S., Raston N.H.A., Gu M.B. Aptamer-based nanobiosensors. Biosens. Bioelectron. 2016;76:2–19. doi: 10.1016/j.bios.2015.06.040. PubMed DOI

Dong Y., Xu Y., Yong W., Chu X., Wang D. Aptamer and its potential applications for food safety. Crit. Rev. Food Sci. Nutr. 2014;54:1548–1561. doi: 10.1080/10408398.2011.642905. PubMed DOI

Lakhin A.V., Tarantul V.Z., Gening L.V. Aptamers: Problems, solutions and prospects. Acta Nat. 2013;5:34–43. doi: 10.32607/20758251-2013-5-4-34-43. PubMed DOI PMC

Ohk S., Koo O., Sen T., Yamamoto C., Bhunia A.K. Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J. Appl. Microbiol. 2010;109:808–817. doi: 10.1111/j.1365-2672.2010.04709.x. PubMed DOI

Muniandy S., Dinshaw I.J., Teh S.J., Lai C.W., Ibrahim F., Thong K.L., Leo B.F. Graphene-based label-free electrochemical aptasensor for rapid and sensitive detection of foodborne pathogen. Anal. Bioanal. Chem. 2017;409:6893–6905. doi: 10.1007/s00216-017-0654-6. PubMed DOI

Duan N., Wu S., Dai S., Miao T., Chen J., Wang Z. Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim. Acta. 2014;182:917–923. doi: 10.1007/s00604-014-1406-3. DOI

Huang Y., Wang X., Duan N., Xia Y., Wang Z., Che Z., Wang L., Yang X., Chen X. Selection and characterization, application of a DNA aptamer targeted to Streptococcus pyogenes in cooked chicken. Anal. Biochem. 2018;551:37–42. doi: 10.1016/j.ab.2018.04.015. PubMed DOI

Renuka R.M., Achuth J., Chandan H.R., Venkataramana M., Kadirvelu K. Fluorescent dual aptasensor for rapid and sensitive onsite detection of E. coli O157: H7 and its validation onto various food matrices. New J. Chem. 2018;42:10807–10817. doi: 10.1039/C8NJ00997J. DOI

Sundararaj N., Kalagatur N.K., Mudili V., Krishna K., Antonysamy M. Isolation and identification of enterotoxigenic Staphylococcus aureus isolates from Indian food samples: Evaluation of in-house developed aptamer linked sandwich ELISA (ALISA) method. J. Food Sci. Technol. 2019;56:1016–1026. doi: 10.1007/s13197-019-03568-1. PubMed DOI PMC

Feng J., Dai Z., Tian X., Jiang X. Detection of Listeria monocytogenes based on combined aptamers magnetic capture and loop-mediated isothermal amplification. Food Control. 2018;85:443–452. doi: 10.1016/j.foodcont.2017.10.027. DOI

Kumar H., Kuca K., Bhatia S.K., Saini K., Kaushal A., Verma R., Bhalla T.C., Kumar D. Applications of nanotechnology in sensor-based detection of foodborne pathogens. Sensors. 2020;20:1966. doi: 10.3390/s20071966. PubMed DOI PMC

Paniel N., Baudart J., Hayat A., Barthelmebs L. Aptasensor and genosensor methods for detection of microbes in real world samples. Methods. 2013;64:229–240. doi: 10.1016/j.ymeth.2013.07.001. PubMed DOI

Ivnitski D., Abdel-Hamid I., Atanasov P., Wilkins E., Stricker S. Application of electrochemical biosensors for detection of food pathogenic bacteria. Electroanalysis. 2000;12:317–325. doi: 10.1002/(SICI)1521-4109(20000301)12:5<317::AID-ELAN317>3.0.CO;2-A. DOI

Senturk E., Aktop S., Sanlibaba P., Tezel B.U. Biosensors: A Novel Approach to Detect Food-borne Pathogens. Appl. Microbiol. Open Access. 2018;4:1–8. doi: 10.4172/2471-9315.1000151. DOI

Poltronieri P., Mezzolla V., Primiceri E., Maruccio G. Biosensors for the detection of food pathogens. Foods. 2014;3:511–526. doi: 10.3390/foods3030511. PubMed DOI PMC

Chen I.-H., Horikawa S., Bryant K., Riggs R., Chin B.A., Barbaree J.M. Bacterial assessment of phage magnetoelastic sensors for Salmonella enterica Typhimurium detection in chicken meat. Food Control. 2017;71:273–278. doi: 10.1016/j.foodcont.2016.07.003. DOI

Ohk S.-H., Bhunia A.K. Multiplex fiber optic biosensor for detection of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica from ready-to-eat meat samples. Food Microbiol. 2013;33:166–171. doi: 10.1016/j.fm.2012.09.013. PubMed DOI

Valadez A.M., Lana C.A., Tu S.-I., Morgan M.T., Bhunia A.K. Evanescent wave fiber optic biosensor for Salmonella detection in food. Sensors. 2009;9:5810–5824. doi: 10.3390/s90705810. PubMed DOI PMC

Xu Y., Kutsanedzie F.Y.H., Sun H., Wang M., Chen Q., Guo Z., Wu J. Rapid Pseudomonas species identification from chicken by integrating colorimetric sensors with near-infrared spectroscopy. Food Anal. Methods. 2017;11:1199–1208. doi: 10.1007/s12161-017-1095-8. DOI

Park M.-K., Park J.W., Oh J.-H. Optimization and application of a dithiobis-succinimidyl propionate-modified immunosensor platform to detect Listeria monocytogenes in chicken skin. Sens. Actuators B Chem. 2012:323–331. doi: 10.1016/j.snb.2012.04.017. DOI

Chai G.L.C., Liu G., Chai C., Yao B. Rapid Evaluation of Salmonella pullorum contamination in chicken based on a portable amperometric sensor. J. Biosens. Bioelectron. 2013;4:137. doi: 10.4172/2155-6210.1000137. DOI

Abdelhaseib M.U., Singh A.K., Bhunia A.K. Simultaneous detection of Salmonella enterica, Escherichia coli and Listeria monocytogenes in food using a light scattering sensor. J. Appl. Microbiol. 2019;126:1496–1507. doi: 10.1111/jam.14225. PubMed DOI

Kim Y.-J., Kim H.-S., Chon J.-W., Kim D.-H., Hyeon J.-Y., Seo K.-H. New colorimetric aptasensor for rapid on-site detection of Campylobacter jejuni and Campylobacter coli in chicken carcass samples. Anal. Chim. Acta. 2018;1029:78–85. doi: 10.1016/j.aca.2018.04.059. PubMed DOI

Helali S., Alatawi A.S.E., AbdelGhani A. Pathogenic Escherichia coli biosensor detection on chicken food samples. J. Food Saf. 2018;38:e12510. doi: 10.1111/jfs.12510. DOI

Huang F., Xue L., Zhang H., Guo R., Li Y., Liao M., Wang M., Lin J. An enzyme-free biosensor for sensitive detection of Salmonella using curcumin as signal reporter and click chemistry for signal amplification. Theranostics. 2018;8:6263–6273. doi: 10.7150/thno.29025. PubMed DOI PMC

Wieser A., Schneider L., Jung J., Schubert S. MALDI-TOF MS in microbiological diagnostics—Identification of microorganisms and beyond (mini review) Appl. Microbiol. Biotechnol. 2011;93:965–974. doi: 10.1007/s00253-011-3783-4. PubMed DOI

Marvin L.F., Roberts M.A., Fay L.B. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin. Chim. Acta. 2003;337:11–21. doi: 10.1016/j.cccn.2003.08.008. PubMed DOI

Rychert J. Benefits and Limitations of MALDI-TOF Mass Spectrometry for the Identification of Microorganisms. J. Infect. 2019;2:1–5. doi: 10.29245/2689-9981/2019/4.1142. DOI

Rasmussen M.M., Opintan J.A., Frimodt-Møller N., Styrishave B. Beta-lactamase producing Escherichia coli isolates in imported and locally produced chicken meat from Ghana. PLoS ONE. 2015;10:e0139706. doi: 10.1371/journal.pone.0139706. PubMed DOI PMC

Abdallah H.M., Reuland E.A., Wintermans B.B., Al Naiemi N., Koek A., Abdelwahab A.M., Ammar A.M., Mohamed A.A., Vandenbroucke-Grauls C.M.J.E. Extended-spectrum β-lactamases and/or carbapenemases-producing Enterobacteriaceae isolated from retail chicken meat in Zagazig, Egypt. PLoS ONE. 2015;10:e0136052. doi: 10.1371/journal.pone.0136052. PubMed DOI PMC

Somsri A., Pilasombut K., Ngamyeesoon N., Rumjuankiat K. Detection and identification of bacterial contamination in meat by matrix-assisted laser desorption ionization-time of flight -mass spectrometry. Int. J. Agric. Technol. 2017;13:1487–1504.

Woźniak-Biel A., Bugla-Płoskońska G., Kielsznia A., Korzekwa K., Tobiasz A., Korzeniowska-Kowal A., Wieliczko A. High Prevalence of resistance to fluoroquinolones and tetracycline Campylobacter spp. isolated from poultry in Poland. Microb. Drug Resist. 2018;24:314–322. doi: 10.1089/mdr.2016.0249. PubMed DOI PMC

Gardner J.W., Bartlett P.N. A brief history of electronic noses. Sens. Actuators B Chem. 1994;18:210–211. doi: 10.1016/0925-4005(94)87085-3. DOI

Ghasemi-Varnamkhasti M., Mohtasebi S.S., Siadat M., Balasubramanian S. Meat Quality Assessment by Electronic Nose (Machine Olfaction Technology) Sensors. 2009;9:6058–6083. doi: 10.3390/s90806058. PubMed DOI PMC

Rajamäki T., Alakomi H.-L., Ritvanen T., Skytta E., Smolander M., Ahvenainen R. Application of an electronic nose for quality assessment of modified atmosphere packaged poultry meat. Food Control. 2006;17:5–13. doi: 10.1016/j.foodcont.2004.08.002. DOI

Timsorn K., Thoopboochagorn T., Lertwattanasakul N., Wongchoosuk C. Evaluation of bacterial population on chicken meats using a briefcase electronic nose. Biosyst. Eng. 2016;151:116–125. doi: 10.1016/j.biosystemseng.2016.09.005. DOI

Vishnuraj M., Kandeepan G., Rao K., Chand S., Kumbhar V. Occurrence, public health hazards and detection methods of antibiotic residues in foods of animal origin: A comprehensive review. Cogent Food Agric. 2016;2:1235458. doi: 10.1080/23311932.2016.1235458. DOI

Vermunt A.E.M., Stadhouders J., Loeffen G.J.M., Bakker R. Improvements of the tube diffusion method for detection of antibiotics and sulfonamides in raw milk. Neth. Milk Dairy J. 1993;47:31–40.

Bogaerts R., Wolf F. A standardised method for the detection of residues of antibacterial substances in fresh meat. Fleischwirtschaft. 1980;60:672–673.

Nouws J.F.M., Schothorst M., Ziv G. A critical evaluation of several microbiological test methods for residues of antimicrobial drugs in ruminants. Arch. Lebensm. Hyg. 1979;30:4–8.

Elnasri H.A., Salman A.M., El Rade S.A. Screening of antibiotic residues in poultry liver, kidney and muscle in Khartoum state, Sudan. J. Appl. Ind. Sci. 2014;2:116–122.

Tang J.S., Gillevet P.M. Reclassification of ATCC 9341 from Micrococcus luteus to Kocuria rhizophila. Int. J. Syst. Evol. Microbiol. 2003;53:995–997. doi: 10.1099/ijs.0.02372-0. PubMed DOI

Ezenduka E.V. Screening of antimicrobial residues in poultry meat in Enugu metropolis, Enugu State, South East Nigeria, Enugu State, South East Nigeria. Vet. Ital. 2019;55:143–148. PubMed

Sophila J.R., Raj G.D., Kumanan K., Chandra G.S., Vairamuthu S. Microbial inhibition assay for detection of antibiotic residues in chicken meat using vegetative form of Geobacillus stearothermophilus. Pharm. Innov. J. 2018;7:753–757.

Shahbazi Y., Ahmadi F., Karami N. Screening, determination and confirmation of tetracycline residues in chicken tissues using four-plate test, ELISA and HPLC-UV methods: Comparison between correlation results. Food Agric. Immunol. 2015;26:821–834. doi: 10.1080/09540105.2015.1036357. DOI

Baazize-Ammi D., Dechicha A.S., Tassist A., Gharbi I., Hezil N., Kebbal S., Morsli W., Beldjoudi S., Saadaoui M.R., Guetarni D. Screeing and quantification of antibiotic residues in broiler chicken meat and milk in the central region of Algeria. Rev. Sci. Tech. Int. Off. Epiz. 2019;38:1–16. PubMed

Hussein M.A., Khalil S. Screening of some antibiotics and anabolic steroids residues in broiler fillet marketed in El-Sharkia Governorate. Life Sci. J. 2013;10:2111–2118.

Karmi M. Detection and presumptive identification of antibiotic residues in poultry meat by using FPT. Glob. J. Pharmacol. 2014;8:160–165.

Tajik H., Malekinejad H., Razavi-Rouhani S.M., Pajouhi M.R., Mahmoudi R., Haghnazari A. Chloramphenicol residues in chicken liver, kidney and muscle: A comparison among the antibacterial residues monitoring methods of Four Plate Test, ELISA and HPLC. Food Chem. Toxicol. 2010;48:2464–2468. doi: 10.1016/j.fct.2010.06.014. PubMed DOI

Ramatla T.A., Ngoma L., Adetunji M.C., Mwanza M. Evaluation of Antibiotic Residues in Raw Meat Using Different Analytical Methods. Antibiotics. 2017;6:34. doi: 10.3390/antibiotics6040034. PubMed DOI PMC

Kadim I., Mahgoub O., Al-Marzooqi W., Al-Maqbaly R., Annamali K., Khalaf S. Enzyme-linked immunosorbent assay for screening antibiotic and hormone residues in broiler chicken meat in the sultanate of Oman. J. Muscle Foods. 2010;21:243–254. doi: 10.1111/j.1745-4573.2009.00179.x. DOI

Zhang S., Zhang Z., Shi W., Eremin S.A., Shen J. Development of a Chemiluminescent ELISA for Determining Chloramphenicol in Chicken Muscle. J. Agric. Food Chem. 2006;54:5718–5722. doi: 10.1021/jf060275j. PubMed DOI

Prajapati M., Ranjit E., Shrestha R., Shrestha S.P., Adhikari S.K., Khanal D.R. Status of antibiotic residues in poultry meat of Nepal. Nepal. Vet. J. 2018;35:55–62. doi: 10.3126/nvj.v35i0.25240. DOI

De Wasch K., Okerman L., De Brabander H., Van Hoof J., Croubels S., De Backer P. Detection of residues of tetracycline antibiotics in pork and chicken meat: Correlation between results of screening and confirmatory tests. Analyst. 1998;123:2737–2741. doi: 10.1039/a804909b. PubMed DOI

Onyeanu C.T., Ezenduka E.V., Anaga A.O. Determination of gentamicin use in poultry farms in Enugu state, Nigeria, and detection of its residue in slaughter commercial broilers. Int. J. One Health. 2020;6:6–11. doi: 10.14202/IJOH.2020.6-11. DOI

Mashak Z., Langroodi A.M., Mehdizadeh T., Fathabad A.E., Asadi A.H. Detection of quinolones residues in beef and chicken meat in hypermarkets of Urmia, Iran using ELISA. Iran Agric. Res. 2017;36:73–77.

Sherma J. Thin-layer chromatography in food and agricultural analysis. J. Chromatogr. A. 2000;880:129–147. doi: 10.1016/S0021-9673(99)01132-2. PubMed DOI

Khan A.T. Advantages and Disadvantages of Thin Layer Chromatography. [(accessed on 3 October 2020)]; Available online: https://www.biomadam.com/advantages-and-disadvantages-of-thin-layer-chromatography.

Sarker Y.A., Hasan M.M., Paul T.K., Rashid S.Z., Alam M.N., Sikder M.H. Screening of antibiotic residues in chicken meat in Bangladesh by thin layer chromatography. J. Adv. Vet. Anim. Res. 2018;5:140. doi: 10.5455/javar.2018.e257. DOI

Tajick M.A., Shohreh B. Detection of antibiotics residue in chicken meat using TLC. Int. J. Poult. Sci. 2006;5:611–612.

Billah M., Rana S.M.M., Hossain M.S., Saifuddin A.K.M., Islam S.K.M.A., Naim Z., Barua S. Determination of the presence and pharmacokinetic profile of ciprofloxacin by TLC and HPLC method respectively in broiler chicken after single oral administration. J. Antibiot. 2014;67:745–748. doi: 10.1038/ja.2014.56. PubMed DOI

Premarathne J.M.K.J.K., Satharasinghe D.A., Gunasena A.R.C., Wanigasekara A., Munasinghe D.M.S., Abeynayake P. Thin-layer chromatographic method for quantification of sulfonamides in chicken meat. Food Anal. Methods. 2018;11:2666–2672. doi: 10.1007/s12161-018-1229-7. DOI

Das S., Faysal M.N.A., Ferdous J., Sachi S., Islam M.S., Sikder M.H. Detection of oxytetracycline and doxycycline residue in different growth stages of commercial broiler. Bangladesh J. Vet. Med. 2019;17:7–14.

Ali M.R., Sikder M.M., Islam M.S., Islam M.S. Investigation of discriminate and indiscriminate use of doxycycline in broiler: An indoor research on antibiotic doxycycline residue study in edible poultry tissue. Asian J. Med. Biol. Res. 2020;6:1–7. doi: 10.3329/ajmbr.v6i1.46472. DOI

Mora L., Reig M. Methods for rapid detection of chemical and veterinary drug residues in animal foods. Trends Food Sci. Technol. 2006;17:482–489. doi: 10.1016/j.tifs.2006.02.002. DOI

Bergweff A.A., Schloesser J. Residue determination. In: Caballero B., Trugo L., Finglas P., editors. Encyclopedia of Food Sciences and Nutrition. Elsevier; London, UK: 2003. pp. 254–261.

Chrominfo Advantages and Disadvantages of HPLC. [(accessed on 3 October 2020)]; Available online: https://chrominfo.blogspot.com/2019/03/advantages-and-disadvantages-of-hplc.html.

Aman I.M., Ahmed H.F., Mostafa N.Y., Kitada Y., Kar G. Detection of tetracycline veterinary drug residues in Egyptian poultry meat by high performance liquid chromatography. J. Vet. Med. Allied Sci. 2017;1:52–58.

Shalaby A.R., Salama N.A., Abou-Raya S.H., Emam W.H., Mehaya F.M. Validation of HPLC method for determination of tetracycline residues in chicken meat and liver. Food Chem. 2011;124:1660–1666. doi: 10.1016/j.foodchem.2010.07.048. PubMed DOI

Zhao S., Jiang H., Li X., Mi T., Li C., Shen J. Simultaneous Determination of Trace Levels of 10 Quinolones in Swine, Chicken, and Shrimp Muscle Tissues Using HPLC with Programmable Fluorescence Detection. J. Agric. Food Chem. 2007;55:3829–3834. doi: 10.1021/jf0635309. PubMed DOI

Shen J., Guo L., Xu F., Rao Q., Xia X., Li X., Ding S. Simultaneous Determination of Fluoroquinolones, Tetracyclines and Sulfonamides in Chicken Muscle by UPLC–MS–MS. Chromatographia. 2010;71:383–388. doi: 10.1365/s10337-009-1463-7. DOI

Wang B., Pang M., Xie X., Zhao M., Xie K., Zhang Y., Zhao X., Wang Y., Wang R., Wu H., et al. Quantitative analysis of amoxicillin, amoxicillin major metabolites, and ampicillin in chicken tissues via ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Food Anal. Methods. 2017;10:3292–3305. doi: 10.1007/s12161-017-0900-8. DOI

Virolainen N.E., Pikkemaat M.G., Elferink J.W.A., Karp M.T. Rapid detection of tetracyclines and their 4-epimer derivatives from poultry meat with bioluminescent biosensor bacteria. J. Agric. Food Chem. 2008;56:11065–11070. doi: 10.1021/jf801797z. PubMed DOI

Pikkemaat M.G., Rapallini M.L.B.A., Karp M.T., Elferink J.W.A. Application of a luminescent bacterial biosensor for the detection of tetracyclines in routine analysis of poultry muscle samples. Food Addit. Contam. Part A. 2010;27:1112–1117. doi: 10.1080/19440041003794866. PubMed DOI

Li Z., Liu C., Sarpong V., Gu Z. Multisegment nanowire/nanoparticle hybrid arrays as electrochemical biosensors for Simultaneous detection of antibiotics. Biosens. Bioelectron. 2019;126:632–639. doi: 10.1016/j.bios.2018.10.025. PubMed DOI

Gan T., Shi Z., Sun J., Liu Y. Simple and novel electrochemical sensor for the determination of tetracycline based on iron/zinc cations–exchanged montmorillonite catalyst. Talanta. 2014;121:187–193. doi: 10.1016/j.talanta.2014.01.002. PubMed DOI

Mohammad-Razdari A., Ghasemi-Varnamkhasti M., Izadi Z., Rostami S., Ensafi A.A., Siadat M., Losson E. Detection of sulfadimethoxine in meat samples using a novel electrochemical biosensor as a rapid analysis method. J. Food Compos. Anal. 2019;82:103252. doi: 10.1016/j.jfca.2019.103252. DOI

Kim D.-M., Rahman M.A., Do M.H., Ban C., Shim Y.-B. An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer. Biosens. Bioelectron. 2010;25:1781–1788. doi: 10.1016/j.bios.2009.12.024. PubMed DOI

Ferguson J., Baxter A., Young P., Kennedy G., Elliott C., Weigel S., Gatermann R., Ashwin H., Stead S., Sharman M. Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex® kit chloramphenicol. Anal. Chim. Acta. 2005;529:109–113. doi: 10.1016/j.aca.2004.11.042. DOI

Huet A.-C., Charlier C., Singh G., Godefroy S.B., Leivo J., Vehniäinen M., Nielen M.W.F., Weigel S., Delahaut P. Development of an optical surface plasmon resonance biosensor assay for (fluoro)quinolones in egg, fish, and poultry meat. Anal. Chim. Acta. 2008;623:195–203. doi: 10.1016/j.aca.2008.06.009. PubMed DOI

Li P., Ho B., Ding J.L. Future Perspectives on New Approaches in Pathogen Detection. Biomed. Sci. Lett. 2015;21:165–171. doi: 10.15616/BSL.2015.21.4.165. DOI

Foddai A.C.G., Grant I.R. Methods for detection of viable foodborne pathogens: Current state-of-art and future prospects. Appl. Microbiol. Biotechnol. 2020;104:4281–4288. doi: 10.1007/s00253-020-10542-x. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...