Are there sex differences in the reaction of undercarboxylated osteocalcin to hypoglycemia?

. 2020 Sep 30 ; 69 (Suppl 2) : S315-S320.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33094629

There has been increasing evidence in recent years for the hypothesis of bones as endocrine organs. Osteocalcin, long considered just a marker of new bone formation, is now seen as the first hormone produced by bones, and seems to be associated with regulating glucose metabolism and reproduction. The aim of this work was to monitor changes of osteocalcin in reaction to hypoglycemia, and determine if there are differences in such reactions between the sexes. The study included 61 healthy probands with physiological calciophosphate metabolism (30 men and 31 women). We applied to each of them an insulin tolerance test, and then monitored levels of undercarboxylated osteocalcin and reactions to hypoglycemia at regular time intervals. We found differences in the reaction to hypoglycemia between the sexes. In men there was a significant decline in undercarboxylated osteocalcin between the 30 and 40 min (p<0.0015), which reflects a reaction to a glycemic decline between 25-30 min, followed by reversal. Low undercarboxylated osteocalcin in men lasted up to 90 min, after which they returned to levels before the test. In women we did not find any significant changes in undercarboxylated osteocalcin levels. Changes in undercarboxylated osteocalcin induced by hypoglycemia indicate a relationship between bones and glucose metabolism. There was an interesting difference between the sexes. However, a definitive conclusion about the role of osteocalcin in human metabolism will require numerous future studies.

Zobrazit více v PubMed

BILOTTA FL, ARCIDIACONO B, MESSINEO S, GRECO M, CHIEFARI E, BRITTI D, NAKANISHI T, FOTI DP, BRUNETTI A. Insulin and osteocalcin: further evidence for a mutual cross-talk. Endocrine. 2018;59:622–632z. doi: 10.1007/s12020-017-1396-0. PubMed DOI PMC

BROWN JP, DELMAS PD, MALAVAL L, EDOUARD C, CHAPUY MC, MEUNIER PJ. Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet. 1984;1:1091–1093. doi: 10.1016/S0140-6736(84)92506-6. PubMed DOI

CLOWES JA, ROBINSON RT, HELLER SR, EASTELL R, BLUMSOHN A. Acute changes of bone turnover and PTH induced by insulin and glucose: euglycemic and hypoglycemic hyperinsulinemic clamp studies. J Clin Endocrinol Metab. 2002;87:3324–3329. doi: 10.1210/jcem.87.7.8660. PubMed DOI

CONFAVREUX CB, BOREL O, LEE F, VAZ G, GUYARD M, FADAT C, CARLIER MC, CHAPURLAT R, KARSENTY G. Osteoid osteoma is an osteocalcinoma affecting glucose metabolism. Osteoporos Int. 2012;23:1645–1650. doi: 10.1007/s00198-011-1684-0. PubMed DOI

COSKUN G, SENCAR L, TULI A, SAKER D, ALPARSLAN MM, POLAT S. Effects of osteocalcin on synthesis of testosterone and INSL3 during adult leydig cell differentiation. Int J Endocrinol. 2019;2019:1041760. doi: 10.1155/2019/1041760. PubMed DOI PMC

DUCY P, DESBOIS C, BOYCE B, PINERO G, STORY B, DUNSTAN C, SMITH E, BONADIO J, GOLDSTEIN S, GUNDBERG C, BRADLEY A, KARSENTY G. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382:448–452. doi: 10.1038/382448a0. PubMed DOI

FRIEDMAN J. 20 years of leptin: an overview. J Endocrinol. 2014;223:T1–T8. doi: 10.1530/JOE-14-0405. PubMed DOI

FULZELE K, RIDDLE RC, DIGIROLAMO DJ, CAO X, WAN C, CHEN D, FAUGERE MC, AJA S, HUSSAIN MA, BRÜNING JC, CLEMENS TL. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142:309–319. doi: 10.1016/j.cell.2010.06.002. PubMed DOI PMC

HAUSCHKA PV, LIAN JB, GALLOP PM. Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proc Natl Acad Sci USA. 1975;72:3925–3929. doi: 10.1073/pnas.72.10.3925. PubMed DOI PMC

HAN Y, YOU X, XING W, ZHANG Z, ZOU W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;6:16–43. doi: 10.1038/s41413-018-0019-6. PubMed DOI PMC

IVASKA KK, HELIÖVAARA MK, EBELING P, BUCCI M, HUOVINEN V, VÄÄNÄNEN HK, NUUTILA P, KOISTINEN HA. The effects of acute hyperinsulinemia on bone metabolism. Endocr Connect. 2015;4:155–162. doi: 10.1530/EC-15-0022. PubMed DOI PMC

KARSENTY G, OLSON EN. Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell. 2016;164:1248–1256. doi: 10.1016/j.cell.2016.02.043. PubMed DOI PMC

KIM YS, PAIK IY, RHIE YJ, SUH SH. Integrative physiology: defined novel metabolic roles of osteocalcin. J Korean Med Sci. 2010;25:985–991. doi: 10.1152/ajpregu.00580.2009. PubMed DOI PMC

KOSÁK M, DUŠKOVÁ M, STÁRKA L, JANDÍKOVÁ H, POSPÍŠILOVÁ H, ŠRÁMKOVÁ M, HÁNA V, KRŠEK M, SPRINGER D, ŠIMUNKOVÁ K. Can the gold standard be beaten? How reliable are various modifications of the Synacthen test compared to the insulin tolerance test. Physiol Res. 2017;66(Suppl 3):S387–S395. doi: 10.33549/physiolres.933729. PubMed DOI

LEE NK, SOWA H, HINOI E, FERRON M, AHN JD, CONFAVREUX C, DACQUIN R, MEE PJ, McKEE MD, JUNG DY, ZHANG Z, KIM JK, MAUVAIS-JARVIS F, DUCY P, KARSENTY G. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–469. doi: 10.1016/j.cell.2007.05.047. PubMed DOI PMC

MOSER SC, Van der EERDEN BCJ. Osteocalcin - a versatile bone-derived hormone. Front Endocrinol (Lausanne) 2019;9 doi: 10.3389/fendo.2018.00794. art. 794. PubMed DOI PMC

MAURO LJ, OLMSTED EA, SKROBACZ BM, MOUREY RJ, DAVIS AR, DIXON JE. Identification of a hormonally regulated protein tyrosine phosphatase associated with bone and testicular differentiation. J Biol Chem. 1994;269:30659–30667. PubMed

OLDKNOW KJ, MACRAE VE, FARQUHARSON C. Endocrine role of bone: recent and emerging perspectives beyond osteocalcin. J Endocrinol. 2015;225:R1–R19. doi: 10.1530/JOE-14-0584. PubMed DOI

OURY F, SUMARA G, SUMARA O, FERRON M, CHANG H, SMITH CE, HERMO L, SUAREZ S, ROTH BL, DUCY P, KARSENTY G. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144:796–809. doi: 10.1016/j.cell.2011.02.004. PubMed DOI PMC

OURY F, FERRON M, HUIZHEN W, CONFAVREUX C, XU L, LACOMBE J, SRINIVAS P, CHAMOUNI A, LUGANI F, LEJEUNE H, RAJENDRA KUMAR T, PLOTTON I, KARSENTY G. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest. 2013;123:2421–2433. doi: 10.1172/JCI65952. PubMed DOI PMC

PRICE PA, OTSUKA AA, POSER JW, KRISTAPONIS J, RAMAN N. Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci USA. 1976;73:1447–1451. doi: 10.1073/pnas.73.5.1447. PubMed DOI PMC

STÁRKA L, DUŠKOVÁ M. Can be the bone taken for an endocrine organ? (In Czech) Čs Fyziologie. 2019;68:29–33.

ŠIMŮNKOVÁ K, DUŠKOVÁ M, KOSÁK M, KRŠEK M, HÁNA V, HILL M, JANDÍKOVÁ H, POSPÍŠILOVÁ H, ŠRÁMKOVÁ M, BIFULCO E, STÁRKA L. Response of cortisol metabolites in the insulin tolerance test and Synacthen tests. Physiol Res. 2015;64(Suppl 2):S237–S246. doi: 10.33549/physiolres.933133. PubMed DOI

WEI J, KARSENTY G. An overview of the metabolic functions of osteocalcin. Rev Endocr Metab Disord. 2015;16:93–98. doi: 10.1007/s11154-014-9307-7. PubMed DOI PMC

ZOCH ML, CLEMENS TL, RIDDLE RC. New insights into the biology of osteocalcin. Bone. 2016;82:42–49. doi: 10.1016/j.bone.2015.05.046. PubMed DOI PMC

ŽOFKOVÁ I. Bone tissue as a systemic endocrine regulator. Physiol Res. 2015;64:439–445. doi: 10.33549/physiolres.932900. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...