Are there sex differences in the reaction of undercarboxylated osteocalcin to hypoglycemia?
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
33094629
PubMed Central
PMC8603738
DOI
10.33549/physiolres.934520
PII: 934520
Knihovny.cz E-zdroje
- MeSH
- biologické markery krev MeSH
- dospělí MeSH
- hypoglykemie patofyziologie MeSH
- kosti a kostní tkáň metabolismus patologie MeSH
- lidé MeSH
- osteokalcin krev MeSH
- sexuální faktory MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- osteokalcin MeSH
There has been increasing evidence in recent years for the hypothesis of bones as endocrine organs. Osteocalcin, long considered just a marker of new bone formation, is now seen as the first hormone produced by bones, and seems to be associated with regulating glucose metabolism and reproduction. The aim of this work was to monitor changes of osteocalcin in reaction to hypoglycemia, and determine if there are differences in such reactions between the sexes. The study included 61 healthy probands with physiological calciophosphate metabolism (30 men and 31 women). We applied to each of them an insulin tolerance test, and then monitored levels of undercarboxylated osteocalcin and reactions to hypoglycemia at regular time intervals. We found differences in the reaction to hypoglycemia between the sexes. In men there was a significant decline in undercarboxylated osteocalcin between the 30 and 40 min (p<0.0015), which reflects a reaction to a glycemic decline between 25-30 min, followed by reversal. Low undercarboxylated osteocalcin in men lasted up to 90 min, after which they returned to levels before the test. In women we did not find any significant changes in undercarboxylated osteocalcin levels. Changes in undercarboxylated osteocalcin induced by hypoglycemia indicate a relationship between bones and glucose metabolism. There was an interesting difference between the sexes. However, a definitive conclusion about the role of osteocalcin in human metabolism will require numerous future studies.
Zobrazit více v PubMed
BILOTTA FL, ARCIDIACONO B, MESSINEO S, GRECO M, CHIEFARI E, BRITTI D, NAKANISHI T, FOTI DP, BRUNETTI A. Insulin and osteocalcin: further evidence for a mutual cross-talk. Endocrine. 2018;59:622–632z. doi: 10.1007/s12020-017-1396-0. PubMed DOI PMC
BROWN JP, DELMAS PD, MALAVAL L, EDOUARD C, CHAPUY MC, MEUNIER PJ. Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet. 1984;1:1091–1093. doi: 10.1016/S0140-6736(84)92506-6. PubMed DOI
CLOWES JA, ROBINSON RT, HELLER SR, EASTELL R, BLUMSOHN A. Acute changes of bone turnover and PTH induced by insulin and glucose: euglycemic and hypoglycemic hyperinsulinemic clamp studies. J Clin Endocrinol Metab. 2002;87:3324–3329. doi: 10.1210/jcem.87.7.8660. PubMed DOI
CONFAVREUX CB, BOREL O, LEE F, VAZ G, GUYARD M, FADAT C, CARLIER MC, CHAPURLAT R, KARSENTY G. Osteoid osteoma is an osteocalcinoma affecting glucose metabolism. Osteoporos Int. 2012;23:1645–1650. doi: 10.1007/s00198-011-1684-0. PubMed DOI
COSKUN G, SENCAR L, TULI A, SAKER D, ALPARSLAN MM, POLAT S. Effects of osteocalcin on synthesis of testosterone and INSL3 during adult leydig cell differentiation. Int J Endocrinol. 2019;2019:1041760. doi: 10.1155/2019/1041760. PubMed DOI PMC
DUCY P, DESBOIS C, BOYCE B, PINERO G, STORY B, DUNSTAN C, SMITH E, BONADIO J, GOLDSTEIN S, GUNDBERG C, BRADLEY A, KARSENTY G. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382:448–452. doi: 10.1038/382448a0. PubMed DOI
FRIEDMAN J. 20 years of leptin: an overview. J Endocrinol. 2014;223:T1–T8. doi: 10.1530/JOE-14-0405. PubMed DOI
FULZELE K, RIDDLE RC, DIGIROLAMO DJ, CAO X, WAN C, CHEN D, FAUGERE MC, AJA S, HUSSAIN MA, BRÜNING JC, CLEMENS TL. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142:309–319. doi: 10.1016/j.cell.2010.06.002. PubMed DOI PMC
HAUSCHKA PV, LIAN JB, GALLOP PM. Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proc Natl Acad Sci USA. 1975;72:3925–3929. doi: 10.1073/pnas.72.10.3925. PubMed DOI PMC
HAN Y, YOU X, XING W, ZHANG Z, ZOU W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;6:16–43. doi: 10.1038/s41413-018-0019-6. PubMed DOI PMC
IVASKA KK, HELIÖVAARA MK, EBELING P, BUCCI M, HUOVINEN V, VÄÄNÄNEN HK, NUUTILA P, KOISTINEN HA. The effects of acute hyperinsulinemia on bone metabolism. Endocr Connect. 2015;4:155–162. doi: 10.1530/EC-15-0022. PubMed DOI PMC
KARSENTY G, OLSON EN. Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell. 2016;164:1248–1256. doi: 10.1016/j.cell.2016.02.043. PubMed DOI PMC
KIM YS, PAIK IY, RHIE YJ, SUH SH. Integrative physiology: defined novel metabolic roles of osteocalcin. J Korean Med Sci. 2010;25:985–991. doi: 10.1152/ajpregu.00580.2009. PubMed DOI PMC
KOSÁK M, DUŠKOVÁ M, STÁRKA L, JANDÍKOVÁ H, POSPÍŠILOVÁ H, ŠRÁMKOVÁ M, HÁNA V, KRŠEK M, SPRINGER D, ŠIMUNKOVÁ K. Can the gold standard be beaten? How reliable are various modifications of the Synacthen test compared to the insulin tolerance test. Physiol Res. 2017;66(Suppl 3):S387–S395. doi: 10.33549/physiolres.933729. PubMed DOI
LEE NK, SOWA H, HINOI E, FERRON M, AHN JD, CONFAVREUX C, DACQUIN R, MEE PJ, McKEE MD, JUNG DY, ZHANG Z, KIM JK, MAUVAIS-JARVIS F, DUCY P, KARSENTY G. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–469. doi: 10.1016/j.cell.2007.05.047. PubMed DOI PMC
MOSER SC, Van der EERDEN BCJ. Osteocalcin - a versatile bone-derived hormone. Front Endocrinol (Lausanne) 2019;9 doi: 10.3389/fendo.2018.00794. art. 794. PubMed DOI PMC
MAURO LJ, OLMSTED EA, SKROBACZ BM, MOUREY RJ, DAVIS AR, DIXON JE. Identification of a hormonally regulated protein tyrosine phosphatase associated with bone and testicular differentiation. J Biol Chem. 1994;269:30659–30667. PubMed
OLDKNOW KJ, MACRAE VE, FARQUHARSON C. Endocrine role of bone: recent and emerging perspectives beyond osteocalcin. J Endocrinol. 2015;225:R1–R19. doi: 10.1530/JOE-14-0584. PubMed DOI
OURY F, SUMARA G, SUMARA O, FERRON M, CHANG H, SMITH CE, HERMO L, SUAREZ S, ROTH BL, DUCY P, KARSENTY G. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144:796–809. doi: 10.1016/j.cell.2011.02.004. PubMed DOI PMC
OURY F, FERRON M, HUIZHEN W, CONFAVREUX C, XU L, LACOMBE J, SRINIVAS P, CHAMOUNI A, LUGANI F, LEJEUNE H, RAJENDRA KUMAR T, PLOTTON I, KARSENTY G. Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. J Clin Invest. 2013;123:2421–2433. doi: 10.1172/JCI65952. PubMed DOI PMC
PRICE PA, OTSUKA AA, POSER JW, KRISTAPONIS J, RAMAN N. Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci USA. 1976;73:1447–1451. doi: 10.1073/pnas.73.5.1447. PubMed DOI PMC
STÁRKA L, DUŠKOVÁ M. Can be the bone taken for an endocrine organ? (In Czech) Čs Fyziologie. 2019;68:29–33.
ŠIMŮNKOVÁ K, DUŠKOVÁ M, KOSÁK M, KRŠEK M, HÁNA V, HILL M, JANDÍKOVÁ H, POSPÍŠILOVÁ H, ŠRÁMKOVÁ M, BIFULCO E, STÁRKA L. Response of cortisol metabolites in the insulin tolerance test and Synacthen tests. Physiol Res. 2015;64(Suppl 2):S237–S246. doi: 10.33549/physiolres.933133. PubMed DOI
WEI J, KARSENTY G. An overview of the metabolic functions of osteocalcin. Rev Endocr Metab Disord. 2015;16:93–98. doi: 10.1007/s11154-014-9307-7. PubMed DOI PMC
ZOCH ML, CLEMENS TL, RIDDLE RC. New insights into the biology of osteocalcin. Bone. 2016;82:42–49. doi: 10.1016/j.bone.2015.05.046. PubMed DOI PMC
ŽOFKOVÁ I. Bone tissue as a systemic endocrine regulator. Physiol Res. 2015;64:439–445. doi: 10.33549/physiolres.932900. PubMed DOI