• This record comes from PubMed

Worldwide inertia to the use of cardiorenal protective glucose-lowering drugs (SGLT2i and GLP-1 RA) in high-risk patients with type 2 diabetes

. 2020 Oct 23 ; 19 (1) : 185. [epub] 20201023

Language English Country England, Great Britain Media electronic

Document type Journal Article

Links

PubMed 33097060
PubMed Central PMC7585305
DOI 10.1186/s12933-020-01154-w
PII: 10.1186/s12933-020-01154-w
Knihovny.cz E-resources

The disclosure of proven cardiorenal benefits with certain antidiabetic agents was supposed to herald a new era in the management of type 2 diabetes (T2D), especially for the many patients with T2D who are at high risk for cardiovascular and renal events. However, as the evidence in favour of various sodium-glucose transporter-2 inhibitor (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1 RA) accumulates, prescriptions of these agents continue to stagnate, even among eligible, at-risk patients. By contrast, dipeptidyl peptidase-4 inhibitors (DPP-4i) DPP-4i remain more widely used than SGLT2i and GLP-1 RA in these patients, despite a similar cost to SGLT2i and a large body of evidence showing no clear benefit on cardiorenal outcomes. We are a group of diabetologists united by a shared concern that clinical inertia is preventing these patients from receiving life-saving treatments, as well as placing them at greater risk of hospitalisation for heart failure and progression of renal disease. We propose a manifesto for change, in order to increase uptake of SGLT2i and GLP-1 RA in appropriate patients as a matter of urgency, especially those who could be readily switched from an agent without proven cardiorenal benefit. Central to our manifesto is a shift from linear treatment algorithms based on HbA1c target setting to parallel, independent considerations of atherosclerotic cardiovascular disease, heart failure and renal risks, in accordance with newly updated guidelines. Finally, we call upon all colleagues to play their part in implementing our manifesto at a local level, ensuring that patients do not pay a heavy price for continued clinical inertia in T2D.

3rd Department of Internal Medicine 1st Faculty of Medicine Charles University 1 Ulice Nemocnice 128 08 Prague 2 Czech Republic

5th Medical Department With Endocrinology Rheumatology and Acute Geriatrics Vienna Health Association Clinic Ottakring 37 Montleartstraße 1160 Vienna Austria

Clinic for Endocrinology Diabetes and Metabolic Diseases Clinical Center of Serbia Faculty of Medicine University of Belgrade Belgrade Serbia

Clinic of Internal Diseases Family Medicine and Oncology Institute of Clinical Medicine Faculty of Medicine Vilnius University Vilnius Lithuania

Department of Diabetes Carol Davila University of Medicine and Pharmacy Bucharest Romania

Department of Diabetology National Medical Academy for Postgraduate Education Kiev Ukraine

Department of Endocrinology Diabetes and Metabolic Diseases University Medical Center Ljubljana 7 Zaloška Cesta 1000 Ljubljana Slovenia

Department of Endocrinology Medical University Sofia 2 Zdrave Street Sofia Bulgaria

Department of Internal Medicine 3 Astana Medical University 49A Beybitshilik Street Nur Sultan City Kazakhstan

Department of Internal Medicine and Oncology Semmelweis University 2 a Korányi Sándor Utca Budapest 1083 Hungary

Department of Nephrology Dialysis N C Paulescu National Institute for Diabetes Nutrition and Metabolic Diseases Bucharest Romania

Division of Endocrinology Diabetes and Metabolism University Hospital Basel Basel Switzerland

Division of Gastroenterology University Center for Gastrointestinal and Liver Diseases St Clara Hospital and University Hospital Basel Switzerland

Faculty of Medicine Josip Juraj Strossmayer University of Osijek Osijek Croatia

Head of Endocrinology Russian Medical Academy of Continuous Professional Education Ministry of Healthcare of the Russian Federation Moscow Russia

Institute of Diabetes Endocrinology and Metabolism Rambam Health Care Campus and the Bruce Rappaport Faculty of Medicine Technion P O Box 9602 3109601 Haifa Israel

Medical University of Vienna Vienna Austria

National Institute of Endocrinology and Diabetology Lubochna Slovak Republic

Riga East Clinical Hospital Riga Latvia

Riga Stradins University Riga Latvia

School of Medicine University of Zagreb Zagreb Croatia

Vuk Vrhovac University Clinic for Diabetes Endocrinology and Metabolic Diseases Merkur University Hospital Zagreb Croatia

See more in PubMed

Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720. PubMed DOI

Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–334. doi: 10.1056/NEJMoa1515920. PubMed DOI

Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, et al. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J. 2016;37:1526–1534. doi: 10.1093/eurheartj/ehv728. PubMed DOI PMC

Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–357. doi: 10.1056/NEJMoa1812389. PubMed DOI

Mosenzon O, Wiviott SD, Cahn A, Rozenberg A, Yanuv I, Goodrich EL, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019;7:606–617. doi: 10.1016/S2213-8587(19)30180-9. PubMed DOI

Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–2306. doi: 10.1056/NEJMoa1811744. PubMed DOI

Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–657. doi: 10.1056/NEJMoa1611925. PubMed DOI

Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Erondu N, Shaw W, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6:691–704. doi: 10.1016/S2213-8587(18)30141-4. PubMed DOI

McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008. doi: 10.1056/NEJMoa1911303. PubMed DOI

van der Aart-van der Beek AB, Heerspink HJL. Renal outcomes of SGLT2 inhibitors and GLP1 agonists in clinical practice. Nat Rev Nephrol. 2020;16:433–434. doi: 10.1038/s41581-020-0312-7. PubMed DOI

Cannon CP, McGuire DK, Cherney DZI, Dagogo-Jack S, Pratley RE. Results of the eValuation of ERTugliflozin EffIcacy and Safety CardioVascular Outcomes Trial (VERTIS CV). Symposium. https://www.acc.org/~/media/Clinical/PDF-Files/Approved-PDFs/2020/05/15/12/18/ADA20-Presentation-Slides-VERTIS-CV.pdf. Accessed 07 Oct 2020. PubMed

Cherney DZI, Heerspink HJL, Frederich R, Maldonado M, Liu J, Pong A, et al. Effects of ertugliflozin on renal function over 104 weeks of treatment: a post hoc analysis of two randomised controlled trials. Diabetologia. 2020;63:1128–1140. doi: 10.1007/s00125-020-05133-4. PubMed DOI PMC

Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U, et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020;383:1425–1435. doi: 10.1056/NEJMoa2004967. PubMed DOI

Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JFE, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–322. doi: 10.1056/NEJMoa1603827. PubMed DOI PMC

Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–1844. doi: 10.1056/NEJMoa1607141. PubMed DOI

Husain M, Birkenfeld AL, Donsmark M, Dungan K, Eliaschewitz FG, Franco DR, et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019;381:841–851. doi: 10.1056/NEJMoa1901118. PubMed DOI

Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet Lond Engl. 2019;394:121–130. doi: 10.1016/S0140-6736(19)31149-3. PubMed DOI

Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, et al. Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial. Lancet. 2019;394:131–138. doi: 10.1016/S0140-6736(19)31150-X. PubMed DOI

Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377:1228–1239. doi: 10.1056/NEJMoa1612917. PubMed DOI PMC

Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou F-F, et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–1446. doi: 10.1056/NEJMoa2024816. PubMed DOI

Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–1424. doi: 10.1056/NEJMoa2022190. PubMed DOI

Schernthaner G, Wanner C, Jurišić-Eržen D, Guja C, Gumprecht J, Jarek-Martynowa IR, et al. CARMELINA: An important piece of the DPP-4 inhibitor CVOT puzzle. Diabetes Res Clin Pract. 2019;153:30–40. doi: 10.1016/j.diabres.2019.05.013. PubMed DOI

Rawshani A, Rawshani A, Franzén S, Sattar N, Eliasson B, Svensson A-M, et al. Risk Factors, Mortality, and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. 2018;379:633–644. doi: 10.1056/NEJMoa1800256. PubMed DOI

Schernthaner G, Lotan C, Baltadzhieva-Trendafilova E, Ceponis J, Clodi M, Ducena K, et al. Unrecognised cardiovascular disease in type 2 diabetes: is it time to act earlier? Cardiovasc Diabetol. 2018;17:145. doi: 10.1186/s12933-018-0788-7. PubMed DOI PMC

Bruno G, Merletti F, Bargero G, Novelli G, Melis D, Soddu A, et al. Estimated glomerular filtration rate, albuminuria and mortality in type 2 diabetes: the Casale Monferrato study. Diabetologia. 2007;50:941–948. doi: 10.1007/s00125-007-0616-1. PubMed DOI

Ganz M, Ustyugova A, Sawalhi-Leckenby N, de Souza S, Zhang L, Gunnarsson E, et al. Utilization of glucose-lowering drugs in patients with T2DM and established CVD in US: a descriptive study using Optum clinformatics data. J Am Coll Cardiol. 2020;75(Supplement 1):2017. doi: 10.1016/S0735-1097(20)32644-9. DOI

Bang C, Mortensen MB, Lauridsen KG, Bruun JM. Trends in antidiabetic drug utilization and expenditure in Denmark: A 22-year nationwide study. Diabetes Obes Metab. 2020;22:167–172. doi: 10.1111/dom.13877. PubMed DOI

Knudsen JS, Baggesen LM, Lajer M, Nurkanovic L, Ustyugova A, Sørensen HT, et al. Changes in SGLT2i and GLP-1RA real-world initiator profiles following cardiovascular outcome trials: A Danish nationwide population-based study. PLoS ONE. 2020;15:e0229621. doi: 10.1371/journal.pone.0229621. PubMed DOI PMC

Rattelman CR, Ciemins EL, Cuddeback JK. 1247-P: anticipating the impact of 2019 guidelines: use of SGLT2i and GLP-1RA in patients with diabetes and cardiovascular disease. Diabetes. 2019;68(Supplement 1):1247-P. doi: 10.2337/db19-1247-P. DOI

Rattelman CR, Ciemins EL, Cuddeback JK. Update: Adoption of new therapies and guidelines in the management of patients with T2DM and CVD. 2019. https://www.amga.org/AMGA/media/PDFs/About%20AMGA%20Family/Family/Foundation/CCR/Past%20Meetings/20191113.pdf. Accessed 07 Oct 2020.

Arnold SV, Inzucchi SE, Tang F, McGuire DK, Mehta SN, Maddox TM, et al. Real-world use and modeled impact of glucose-lowering therapies evaluated in recent cardiovascular outcomes trials: An NCDR® Research to Practice project. Eur J Prev Cardiol. 2017;24:1637–1645. doi: 10.1177/2047487317729252. PubMed DOI

Shehadeh N, Raz I, Nakhleh A. Cardiovascular benefit in the limelight: shifting type 2 diabetes treatment paradigm towards early combination therapy in patients with overt cardiovascular disease. Cardiovasc Diabetol. 2018;17:117. doi: 10.1186/s12933-018-0760-6. PubMed DOI PMC

Lim WH, Johnson DW, Hawley C, Lok C, Polkinghorne KR, Roberts MA, et al. Type 2 diabetes in patients with end-stage kidney disease: influence on cardiovascular disease-related mortality risk. Med J Aust. 2018;209:440–446. doi: 10.5694/mja18.00195. PubMed DOI

Drury PL, Ting R, Zannino D, Ehnholm C, Flack J, Whiting M, et al. Estimated glomerular filtration rate and albuminuria are independent predictors of cardiovascular events and death in type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) study. Diabetologia. 2011;54:32–43. doi: 10.1007/s00125-010-1854-1. PubMed DOI

Buse JB, Wexler DJ, Tsapas A, Rossing P, Mingrone G, Mathieu C, et al. 2019 update to: Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetologia. 2020;63:221–228. doi: 10.1007/s00125-019-05039-w. PubMed DOI

American Diabetes Association 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2020. Diabetes Care. 2020;43(Supplement 1):S98–110. doi: 10.2337/dc20-S009. PubMed DOI

Nassif ME, Kosiborod M. Are we ready to bell the cat?: A call for cardiologists to embrace glucose-lowering therapies proven to improve cardiovascular outcomes. Circulation. 2018;138:4–6. doi: 10.1161/CIRCULATIONAHA.117.022680. PubMed DOI

Cherney DZI, Odutayo A, Verma S. A big win for diabetic kidney disease: credence. Cell Metab. 2019;29:1024–1027. doi: 10.1016/j.cmet.2019.04.011. PubMed DOI

Schernthaner G, Drexel H, Moshkovich E, Zilaitiene B, Martinka E, Czupryniak L, et al. SGLT2 inhibitors in T2D and associated comorbidities—differentiating within the class. BMC Endocr Disord. 2019;19:64. doi: 10.1186/s12902-019-0387-y. PubMed DOI PMC

Yin WL, Bain SC, Min T. The effect of glucagon-like peptide-1 receptor agonists on renal outcomes in type 2 diabetes. Diabetes Ther. 2020;11:835–844. doi: 10.1007/s13300-020-00798-x. PubMed DOI PMC

Patorno E, Pawar A, Bessette LG, Najafzadeh M, Wexler DJ, Franklin JM, et al. 134-LB - Effectiveness and safety of empagliflozin in routine care patients: interim results from the EMPagliflozin compaRative effectIveness and SafEty (EMPRISE) Study. https://plan.core-apps.com/tristar_ada20/abstract/b80d7fb5-1357-4208-932b-6a828fbb99fa. Accessed 07 Oct 2020. PubMed PMC

Kosiborod M, Cavender MA, Fu AZ, Wilding JP, Khunti K, Holl RW, et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors) Circulation. 2017;136:249–259. doi: 10.1161/CIRCULATIONAHA.117.029190. PubMed DOI PMC

Kosiborod M, Lam CSP, Kohsaka S, Kim DJ, Karasik A, Shaw J, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J Am Coll Cardiol. 2018;71:2628–2639. doi: 10.1016/j.jacc.2018.03.009. PubMed DOI

Kohsaka S, Lam CSP, Kim DJ, Cavender MA, Norhammar A, Jørgensen ME, et al. Risk of cardiovascular events and death associated with initiation of SGLT2 inhibitors compared with DPP-4 inhibitors: an analysis from the CVD-REAL 2 multinational cohort study. Lancet Diabetes Endocrinol. 2020;8:606–615. doi: 10.1016/S2213-8587(20)30130-3. PubMed DOI

Heerspink HJL, Karasik A, Thuresson M, Melzer-Cohen C, Chodick G, Khunti K, et al. Kidney outcomes associated with use of SGLT2 inhibitors in real-world clinical practice (CVD-REAL 3): a multinational observational cohort study. Lancet Diabetes Endocrinol. 2020;8:27–35. doi: 10.1016/S2213-8587(19)30384-5. PubMed DOI

Pasternak B, Wintzell V, Melbye M, Eliasson B, Svensson A-M, Franzén S, et al. Use of sodium-glucose co-transporter 2 inhibitors and risk of serious renal events: Scandinavian cohort study. BMJ. 2020;369:m1186. doi: 10.1136/bmj.m1186. PubMed DOI PMC

Longato E, Di Camillo B, Sparacino G, Gubian L, Avogaro A, Fadini GP. Cardiovascular outcomes of type 2 diabetic patients treated with SGLT-2 inhibitors versus GLP-1 receptor agonists in real-life. BMJ Open Diabetes Res Care. 2020;8:e001451. doi: 10.1136/bmjdrc-2020-001451. PubMed DOI PMC

Pasternak B, Wintzell V, Eliasson B, Svensson A-M, Franzén S, Gudbjörnsdottir S, et al. Use of glucagon-like peptide 1 receptor agonists and risk of serious renal events: scandinavian cohort study. Diabetes Care. 2020;43:1326–1335. doi: 10.2337/dc19-2088. PubMed DOI

Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2019;74:e177–232. doi: 10.1016/j.jacc.2019.03.010. PubMed DOI PMC

Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41:255–323. doi: 10.1093/eurheartj/ehz486. PubMed DOI

Davies MJ, D’Alessio DA, Fradkin J, Kernan WN, Mathieu C, Mingrone G, et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetologia. 2018;2018(61):2461–2498. doi: 10.1007/s00125-018-4729-5. PubMed DOI

Sakurai S, Jojima T, Iijima T, Tomaru T, Usui I, Aso Y. Empagliflozin decreases the plasma concentration of plasminogen activator inhibitor-1 (PAI-1) in patients with type 2 diabetes: association with improvement of fibrinolysis. J Diabetes Complications. 2020;34:107703. doi: 10.1016/j.jdiacomp.2020.107703. PubMed DOI

Bosch A, Ott C, Jung S, Striepe K, Karg MV, Kannenkeril D, et al. How does empagliflozin improve arterial stiffness in patients with type 2 diabetes mellitus? Sub analysis of a clinical trial. Cardiovasc Diabetol . 2019;18:44. doi: 10.1186/s12933-019-0839-8. PubMed DOI PMC

Koyani CN, Plastira I, Sourij H, Hallström S, Schmidt A, Rainer PP, et al. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol Res. 2020;158:104870. doi: 10.1016/j.phrs.2020.104870. PubMed DOI

Aragón-Herrera A, Feijóo-Bandín S, Otero Santiago M, Barral L, Campos-Toimil M, Gil-Longo J, et al. Empagliflozin reduces the levels of CD36 and cardiotoxic lipids while improving autophagy in the hearts of Zucker diabetic fatty rats. Biochem Pharmacol. 2019;170:113677. doi: 10.1016/j.bcp.2019.113677. PubMed DOI

Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab. 2018;20:479–487. doi: 10.1111/dom.13126. PubMed DOI

Lopaschuk GD, Verma S. Mechanisms of cardiovascular benefits of sodium glucose co-transporter 2 (SGLT2) inhibitors. JACC Basic Transl Sci. 2020;5:632–644. doi: 10.1016/j.jacbts.2020.02.004. PubMed DOI PMC

Uthman L, Baartscheer A, Bleijlevens B, Schumacher CA, Fiolet JWT, Koeman A, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia. 2018;61:722–726. doi: 10.1007/s00125-017-4509-7. PubMed DOI PMC

Nagahisa T, Saisho Y. Cardiorenal protection: potential of SGLT2 inhibitors and GLP-1 receptor agonists in the treatment of type 2 diabetes. Diabetes Ther Res Treat Educ Diabetes Relat Disord. 2019;10:1733–1752. PubMed PMC

Sposito AC, Berwanger O, de Carvalho LSF, Saraiva JFK. GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc Diabetol. 2018;17:157. doi: 10.1186/s12933-018-0800-2. PubMed DOI PMC

Almutairi M, Al Batran R, Ussher JR. Glucagon-like peptide-1 receptor action in the vasculature. Peptides. 2019;111:26–32. doi: 10.1016/j.peptides.2018.09.002. PubMed DOI

Arnold SV, Echouffo-Tcheugui JB, Lam CS, Inzucchi SE, Tang F, McGuire DK, et al. Patterns of glucose-lowering medication use in patients with type 2 diabetes and heart failure. Insights from the Diabetes Collaborative Registry (DCR) Am Heart J. 2018;203:25–29. doi: 10.1016/j.ahj.2018.05.016. PubMed DOI

Seferović PM, Fragasso G, Petrie M, Mullens W, Ferrari R, Thum T, et al. Sodium glucose co-transporter-2 inhibitors in heart failure: beyond glycaemic control. The Position Paper of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020 doi: 10.1002/ejhf.1954. PubMed DOI

Koye DN, Montvida O, Paul SK. Third-line antidiabetic therapy intensification patterns and glycaemic control in patients with type 2 diabetes in the USA: a real-world study. Drugs. 2020;80:477–487. doi: 10.1007/s40265-020-01279-y. PubMed DOI

American Diabetes Association 9. cardiovascular disease and risk management: standards of medical care in diabetes—2018. Diabetes Care. 2018;41(Supplement 1):S86–104. doi: 10.2337/dc18-S009. PubMed DOI

Patorno E, Pawar A, Bessette LG, Najafzadeh M, Wexler DJ, Franklin JM, et al. 133-LB - Cardiovascular outcomes in older adults initiating Empagliflozin vs. DPP-4 inhibitors and GLP-1 receptor agonists: a subgroup analysis from the EMPRISE study. https://plan.core-apps.com/tristar_ada20/abstract/ff32b460-6aeb-47be-87a4-99cd64ce1381. Accessed 07 Oct 2020.

Schernthaner G, Schernthaner-Reiter MH. Diabetes in the older patient: heterogeneity requires individualisation of therapeutic strategies. Diabetologia. 2018;61:1503–1516. doi: 10.1007/s00125-018-4547-9. PubMed DOI PMC

Lupsa BC, Inzucchi SE. Use of SGLT2 inhibitors in type 2 diabetes: weighing the risks and benefits. Diabetologia. 2018;61:2118–2125. doi: 10.1007/s00125-018-4663-6. PubMed DOI

Monteiro P, Bergenstal RM, Toural E, Inzucchi SE, Zinman B, Hantel S, et al. Efficacy and safety of empagliflozin in older patients in the EMPA-REG OUTCOME® trial. Age Ageing. 2019;48:859–866. doi: 10.1093/ageing/afz096. PubMed DOI PMC

Cherney DZI, Repetto E, Wheeler DC, Arnold SV, MacLachlan S, Hunt PR, et al. Impact of cardio-renal-metabolic comorbidities on cardiovascular outcomes and mortality in type 2 diabetes mellitus. Am J Nephrol. 2020;51:74–82. doi: 10.1159/000504558. PubMed DOI

Arnold SV, Kosiborod M, Wang J, Fenici P, Gannedahl G, LoCasale RJ. Burden of cardio-renal-metabolic conditions in adults with type 2 diabetes within the Diabetes Collaborative Registry. Diabetes Obes Metab. 2018;20:2000–2003. doi: 10.1111/dom.13303. PubMed DOI

Castellana M, Procino F, Sardone R, Trimboli P, Giannelli G. Generalizability of sodium-glucose co-transporter-2 inhibitors cardiovascular outcome trials to the type 2 diabetes population: a systematic review and meta-analysis. Cardiovasc Diabetol. 2020;19:87. doi: 10.1186/s12933-020-01067-8. PubMed DOI PMC

American Diabetes Association 8. pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2018. Diabetes Care. 2018;41(Supplement 1):S73–85. doi: 10.2337/dc18-S008. PubMed DOI

Lin J, Zhou S, Wei W, Pan C, Lingohr-Smith M, Levin P. Does clinical inertia vary by personalized A1c goal? A study of predictors and prevalence of clinical inertia in a U.S. managed-care setting. Endocr Pract. 2016;22:151–161. doi: 10.4158/EP15868.OR. PubMed DOI

Okemah J, Peng J, Quiñones M. Addressing clinical inertia in type 2 diabetes mellitus: a review. Adv Ther. 2018;35:1735–1745. doi: 10.1007/s12325-018-0819-5. PubMed DOI PMC

Pantalone KM, Misra-Hebert AD, Hobbs TM, Ji X, Kong SX, Milinovich A, et al. Clinical inertia in type 2 diabetes management: evidence from a large real-world data set. Diabetes Care. 2018;41:e113–e114. doi: 10.2337/dc18-0116. PubMed DOI

Lavoie KL, Rash JA, Campbell TS. Changing provider behavior in the context of chronic disease management: focus on clinical inertia. Annu Rev Pharmacol Toxicol. 2017;57:263–283. doi: 10.1146/annurev-pharmtox-010716-104952. PubMed DOI

Giugliano D, Maiorino MI, Bellastella G, Esposito K. Clinical inertia, reverse clinical inertia, and medication non-adherence in type 2 diabetes. J Endocrinol Invest. 2019;42:495–503. doi: 10.1007/s40618-018-0951-8. PubMed DOI

Reach G, Pechtner V, Gentilella R, Corcos A, Ceriello A. Clinical inertia and its impact on treatment intensification in people with type 2 diabetes mellitus. Diabetes Metab. 2017;43:501–511. doi: 10.1016/j.diabet.2017.06.003. PubMed DOI

Khunti K, Millar-Jones D. Clinical inertia to insulin initiation and intensification in the UK: a focused literature review. Prim Care Diabetes. 2017;11:3–12. doi: 10.1016/j.pcd.2016.09.003. PubMed DOI

Khunti K, Davies MJ. Clinical inertia—time to reappraise the terminology? Prim Care Diabetes. 2017;11:105–106. doi: 10.1016/j.pcd.2017.01.007. PubMed DOI

Seidu S, Walker NS, Bodicoat DH, Davies MJ, Khunti K. A systematic review of interventions targeting primary care or community based professionals on cardio-metabolic risk factor control in people with diabetes. Diabetes Res Clin Pract. 2016;113:1–13. doi: 10.1016/j.diabres.2016.01.022. PubMed DOI

Treadwell JS, Wong G, Milburn-Curtis C, Feakins B, Greenhalgh T. GPs’ understanding of the benefits and harms of treatments for long-term conditions: an online survey. BJGP Open. 2020;4:bjgpopen20X101016. doi: 10.3399/bjgpopen20X101016. PubMed DOI PMC

Bajaj HS, Aronson R, Venn K, Ye C, Sharaan ME. The need associated with diabetes primary care and the impact of referral to a specialist-centered multidisciplinary diabetes program (the NADIR Study) Can J Diabetes. 2016;40:120–125. doi: 10.1016/j.jcjd.2015.07.004. PubMed DOI

Schernthaner G, Barnett AH, Betteridge DJ, Carmena R, Ceriello A, Charbonnel B, et al. Is the ADA/EASD algorithm for the management of type 2 diabetes (January 2009) based on evidence or opinion? A critical analysis. Diabetologia. 2010;53:1258–1269. doi: 10.1007/s00125-010-1702-3. PubMed DOI PMC

Schempf J, Freese RL, Caramori L, Harindhanavudhi T. 29-LB: physicians’ chronic kidney disease (CKD) awareness over time in type 2 diabetes (T2D) Diabetes. 2020;69(Supplement 1):29-LB. doi: 10.2337/db20-29-LB. DOI

Szczech LA, Stewart RC, Su H-L, DeLoskey RJ, Astor BC, Fox CH, et al. Primary care detection of chronic kidney disease in adults with type-2 diabetes: the ADD-CKD study (Awareness, Detection and Drug Therapy in Type 2 Diabetes and Chronic Kidney Disease) PLoS ONE. 2014;9:e110535. doi: 10.1371/journal.pone.0110535. PubMed DOI PMC

Hamdy O, Ashrafzadeh S, Mottalib A. Weight management in patients with type 2 diabetes: a multidisciplinary real-world approach. Curr Diab Rep. 2018;18:66. doi: 10.1007/s11892-018-1030-4. PubMed DOI PMC

Thornton Snider J, Sullivan J, van Eijndhoven E, Hansen MK, Bellosillo N, Neslusan C, et al. Lifetime benefits of early detection and treatment of diabetic kidney disease. PLoS ONE. 2019;14:e0217487. doi: 10.1371/journal.pone.0217487. PubMed DOI PMC

Arnold SV, Hunt PR, Chen H, Maclachlan S, Repetto E, Vora J, et al. Cardiovascular outcomes and mortality in type 2 diabetes with associated cardio-renal-metabolic comorbidities. Diabetes. 2018;67(Supplement 1):1582-P. doi: 10.2337/db18-1582-P. PubMed DOI

Scheen AJ. SGLT2 inhibitors: benefit/risk balance. Curr Diab Rep. 2016;16:92. doi: 10.1007/s11892-016-0789-4. PubMed DOI

Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care. 2015;38:1638–1642. doi: 10.2337/dc15-1380. PubMed DOI

Burke KR, Schumacher CA, Harpe SE. SGLT2 inhibitors: a systematic review of diabetic ketoacidosis and related risk factors in the primary literature. Pharmacother J Hum Pharmacol Drug Ther. 2017;37:187–194. doi: 10.1002/phar.1881. PubMed DOI

Thomas MC, Cherney DZI. The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia. 2018;61:2098–2107. doi: 10.1007/s00125-018-4669-0. PubMed DOI

Pozniak A, Olinger L, Shier V. Physicians’ perceptions of reimbursement as a barrier to comprehensive diabetes care. Am Health Drug Benefits. 2010;3:31–40. PubMed PMC

Vigersky RA, Fitzner K, Levinson J, for the Diabetes Working Group Barriers and potential solutions to providing optimal guideline-driven care to patients with diabetes in the U.S. Diabetes Care. 2013;36:3843–3849. doi: 10.2337/dc13-0680. PubMed DOI PMC

Chen Y-W, Voelker J, Tunceli O, Pericone CD, Bookhart B, Durkin M. Real-world comparison of hospitalization costs for heart failure in type 2 diabetes mellitus patients with established cardiovascular disease treated with canagliflozin versus other antihyperglycemic agents. J Med Econ. 2020;23:401–406. doi: 10.1080/13696998.2019.1693384. PubMed DOI

Najafzadeh M, Pawar A, Schneeweiss S, Deruaz-Luyet A, Brodovicz K, Ustyugova AV, et al. Abstract 13655: healthcare resource utilization among empagliflozin initiators with and without cardiovascular disease versus DPP4i in a commercially-insured routine care population: an analysis from the Empagliflozin Comparative Effectiveness and Safety (EMPRISE) study. Circulation. 2019;140(Supplement 1):Abstract 13655.

Pawar A, Patorno E, Deruaz-Luyet A, Brodovicz K, Ustyugova AV, Gautam N, et al. 1193-P: health-care costs and medication burden in routine care initiators of empagliflozin: a first analysis from the Empagliflozin Comparative Effectiveness and Safety (EMPRISE) study. Diabetes. 2019;68(Supplement 1):1193-P. doi: 10.2337/db19-1193-P. DOI

Manceur AM, Durkin M, Kharat A, Bookhart B, Lafeuille M-H, Pilon D, et al. Costs associated with renal and cardiovascular events among patients with type 2 diabetes mellitus and nephropathy: a cost model based on the CREDENCE clinical trial. Curr Med Res Opin. 2020;36:563–570. doi: 10.1080/03007995.2019.1708285. PubMed DOI

Kerr M, Bray B, Medcalf J, Odonoghue DJ, Matthews B. Estimating the financial cost of chronic kidney disease to the NHS in England. Nephrol Dial Transplant. 2012;27(suppl_3):iii73–80. doi: 10.1093/ndt/gfs269. PubMed DOI PMC

Kähm K, Laxy M, Schneider U, Rogowski WH, Lhachimi SK, Holle R. Health care costs associated with incident complications in patients with type 2 diabetes in Germany. Diabetes Care. 2018;41:971–978. doi: 10.2337/dc17-1763. PubMed DOI

Collins AJ, Foley RN, Gilbertson DT, Chen S-C. United States Renal Data System public health surveillance of chronic kidney disease and end-stage renal disease. Kidney Int Suppl. 2015;5:2–7. doi: 10.1038/kisup.2015.2. PubMed DOI PMC

Lesyuk W, Kriza C, Kolominsky-Rabas P. Cost-of-illness studies in heart failure: a systematic review 2004–2016. BMC Cardiovasc Disord. 2018;18:74. doi: 10.1186/s12872-018-0815-3. PubMed DOI PMC

Pawar A, Patorno E, Deruaz-Luyet A, Brodovicz K, Ustyugova A, Gautam N, et al. P5003Reduced healthcare utilization in routine care initiators of empagliflozin with and without heart failure: interim analysis from the EMPagliflozin compaRative effectIveness and SafEty (EMPRISE) study. Eur Heart J. 2019;40(Supplement 1):ehz746.0181. doi: 10.1093/eurheartj/ehz746.0181. DOI

Seidu S, Khunti K. Non-adherence to diabetes guidelines in primary care – The enemy of evidence-based practice. Diabetes Res Clin Pract. 2012;95:301–302. doi: 10.1016/j.diabres.2012.01.015. PubMed DOI

Woolley R, Colwell E, Ford E, Saxena A, Bradley S. 624-P: primary care education leads to improved diabetes knowledge and clinical practice. Diabetes. 2020;69(Supplement 1):624-P. doi: 10.2337/db20-624-P. PubMed DOI

Jorsal A, Persson F, Bruun JM. Comments on the 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases. Eur Heart J. 2020;41:328–328. doi: 10.1093/eurheartj/ehz777. PubMed DOI

Caparrotta TM, Blackbourn LAK, McGurnaghan SJ, Chalmers J, Lindsay R, McCrimmon R, et al. Prescribing paradigm shift? Applying the 2019 European Society of Cardiology–led guidelines on diabetes, prediabetes, and cardiovascular disease to assess eligibility for sodium–glucose cotransporter 2 inhibitors or glucagon-like peptide 1 receptor agonists as first-line monotherapy (or Add-on to Metformin Monotherapy) in type 2 diabetes in Scotland. Diabetes Care. 2020;43:2034–2041. doi: 10.2337/dc20-0120. PubMed DOI

Whyte MB, Munro N. Changing the care pathway for Type 2 diabetes at the time of diagnosis: the role of the multidisciplinary team. Diabet Med. 2019;36:653–654. doi: 10.1111/dme.13852. PubMed DOI PMC

Daacke I, Kandaswamy P, Tebboth A, Kansal A, Reifsnider O. Impact of Empagliflozin (Jardiance) to the NHS: estimation of budget and event impact based on empa-reg outcome data. Value Health. 2016;19:A668. doi: 10.1016/j.jval.2016.09.1852. DOI

Kilkenny MF, Dunstan L, Busingye D, Purvis T, Reyneke M, Orgill M, et al. Knowledge of risk factors for diabetes or cardiovascular disease (CVD) is poor among individuals with risk factors for CVD. PLoS ONE. 2017;12:e0172941. doi: 10.1371/journal.pone.0172941. PubMed DOI PMC

Stoner KC, Fitts EN, Gopisetty D, Carracher A, Florissi CS, Kurian MJ, et al. 1477-P: insights from type 2 diabetes patients suggest need for cardiovascular health education. Diabetes. 2019;68(Supplement 1):1477-P. doi: 10.2337/db19-1477-P. DOI

Whaley-Connell A, Sowers JR, McCullough PA, Roberts T, McFarlane SI, Chen S-C, et al. Diabetes mellitus and ckd awareness: the kidney early evaluation program (KEEP) and national health and nutrition examination survey (NHANES) Am J Kidney Dis. 2009;53:S11–21. doi: 10.1053/j.ajkd.2009.01.004. PubMed DOI

Whaley-Connell A, Bomback AS, McFarlane SI, Li S, Roberts T, Chen S-C, et al. Diabetic cardiovascular disease predicts chronic kidney disease awareness in the kidney early evaluation program. Cardiorenal Med. 2011;1:45–52. doi: 10.1159/000322862. PubMed DOI PMC

Richard C, Glaser E, Lussier M-T. Communication and patient participation influencing patient recall of treatment discussions. Health Expect. 2017;20:760–770. doi: 10.1111/hex.12515. PubMed DOI PMC

du Pon E, Wildeboer AT, van Dooren AA, Bilo HJG, Kleefstra N, van Dulmen S. Active participation of patients with type 2 diabetes in consultations with their primary care practice nurses – what helps and what hinders: a qualitative study. BMC Health Serv Res. 2019;19:814. doi: 10.1186/s12913-019-4572-5. PubMed DOI PMC

Yoshida Y, Boren SA, Soares J, Popescu M, Nielson SD, Koopman RJ, et al. Effect of health information technologies on cardiovascular risk factors among patients with diabetes. Curr Diab Rep. 2019;19:28. doi: 10.1007/s11892-019-1152-3. PubMed DOI PMC

Khunti K, Davies MJ. Clinical inertia versus overtreatment in glycaemic management. Lancet Diabetes Endocrinol. 2018;6:266–268. doi: 10.1016/S2213-8587(17)30339-X. PubMed DOI

Cleveringa FGW, Gorter KJ, van den Donk M, van Gijsel J, Rutten GEHM. Computerized decision support systems in primary care for type 2 diabetes patients only improve patients’ outcomes when combined with feedback on performance and case management: a systematic review. Diabetes Technol Ther. 2013;15:180–192. doi: 10.1089/dia.2012.0201. PubMed DOI

Strain WD, Blüher M, Paldánius P. Clinical inertia in individualising care for diabetes: is there time to do more in type 2 diabetes? Diabetes Ther. 2014;5:347–354. doi: 10.1007/s13300-014-0077-8. PubMed DOI PMC

Mann JFE, Ørsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med. 2017;377:839–848. doi: 10.1056/NEJMoa1616011. PubMed DOI

Hramiak I, Vilsbøll T, Gumprecht J, Silver R, Hansen T, Pettersson J, et al. Semaglutide treatment and renal function in the SUSTAIN 6 trial. Can J Diabetes. 2018;42:S42. doi: 10.1016/j.jcjd.2018.08.126. PubMed DOI

Bethel MA, Mentz RJ, Merrill P, Buse JB, Chan JC, Goodman SG, et al. Renal outcomes in the exenatide study of cardiovascular event lowering (EXSCEL) Diabetes. 2018;67(Supplement 1):522-P. doi: 10.2337/db18-522-P. DOI

Najafzadeh M, Pawar A, Déruaz-Luyet A, Brodovicz KG, Ustyugova A, Bessette LG, et al. PDB128 Reduced healthcare utilization in patients using empagliflozin: an interim analysis from the empagliflozin comparative effectiveness and safety (EMPRISE) study. Value Health. 2019;22:S161. doi: 10.1016/j.jval.2019.04.675. DOI

Pawar A, Patorno E, Déruaz-Luyet A, Brodovicz KG, Ustyugova A, Bessette LG, et al. PDB126 Comparative healthcare costs and medication burden in real-world patients augmenting metformin monotherapy with empagliflozin from the empagliflozin comparative effectiveness and safety (EMPRISE) study. Value Health. 2019;22:S161. doi: 10.1016/j.jval.2019.04.673. DOI

Taylor RS, Sadler S, Dalal HM, Warren FC, Jolly K, Davis RC, et al. The cost effectiveness of REACH-HF and home-based cardiac rehabilitation compared with the usual medical care for heart failure with reduced ejection fraction: a decision model-based analysis. Eur J Prev Cardiol. 2019;26:1252–1261. doi: 10.1177/2047487319833507. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...