Occurrence of Biogenic Amines Producers in the Wastewater of the Dairy Industry
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1710156
The National Agency for Agriculture Research
IGA/FT/2020/009
The Internal Grant Agency of the Tomas Bata University in Zlín
PubMed
33167326
PubMed Central
PMC7663843
DOI
10.3390/molecules25215143
PII: molecules25215143
Knihovny.cz E-zdroje
- Klíčová slova
- bacteria, biogenic amines, decarboxylase activity, wastewater,
- MeSH
- Acinetobacter MeSH
- Aeromonas MeSH
- biogenní aminy chemie MeSH
- chemické látky znečišťující vodu chemie izolace a purifikace MeSH
- Enterobacter MeSH
- Enterococcus MeSH
- karboxylyasy chemie MeSH
- Klebsiella MeSH
- Lactobacillus MeSH
- Lactococcus MeSH
- Microbacterium MeSH
- mikrobiologie vody MeSH
- mlékárenství * MeSH
- odpadní voda analýza mikrobiologie MeSH
- Pediococcus MeSH
- Pseudomonas MeSH
- spektrofotometrie ultrafialová MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- Staphylococcus MeSH
- Streptococcus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- biogenní aminy MeSH
- chemické látky znečišťující vodu MeSH
- karboxylyasy MeSH
- odpadní voda MeSH
Out of six samples of wastewater produced in the dairy industry, taken in 2017 at various places of dairy operations, 86 bacterial strains showing decarboxylase activity were isolated. From the wastewater samples, the species of genera Staphylococcus, Lactococcus, Enterococcus, Microbacterium, Kocuria, Acinetobacter, Pseudomonas, Aeromonas, Klebsiella and Enterobacter were identified by the MALDI-TOF MS and biochemical methods. The in vitro produced quantity of eight biogenic amines (BAs) was detected by the HPLC/UV-Vis method. All the isolated bacteria were able to produce four to eight BAs. Tyramine, putrescine and cadaverine belonged to the most frequently produced BAs. Of the isolated bacteria, 41% were able to produce BAs in amounts >100 mg L-1. Therefore, wastewater embodies a potential vector of transmission of decarboxylase positive microorganisms, which should be taken into consideration in hazard analyses within foodstuff safety control. The parameters of this wastewater (contents of nitrites, nitrates, phosphates, and proteins) were also monitored.
Zobrazit více v PubMed
Santos M.S. Biogenic amines: Their importance in foods. Int. J. Food Microbiol. 1996;29:213–231. doi: 10.1016/0168-1605(95)00032-1. PubMed DOI
Fernández M., Del Río B., Linares D.M., Martín M.C., Alvarez M.A. Real-time polymerase chain reaction for quantitative detection of histamine-producing bacteria: Use in cheese production. J. Dairy Sci. 2006;89:3763–3769. doi: 10.3168/jds.S0022-0302(06)72417-1. PubMed DOI
Landete J.M., de las Rivas B., Marcobal A., Muñoz R. Molecular methods for the detection of biogenic amine-producing bacteria on foods. Int. J. Food Microbiol. 2007;117:258–269. doi: 10.1016/j.ijfoodmicro.2007.05.001. PubMed DOI
Ladero V., Cañedo E., Pérez M., Martín M.C., Fernández M., Alvarez M.A. Multiplex qPCR for the detection and quantification of putrescine-producing lactic acid bacteria in dairy products. Food Control. 2012;27:307–313. doi: 10.1016/j.foodcont.2012.03.024. DOI
Pachlová V., Buňka F., Buňková L., Purkrtová S., Havlíková Š., Němečková I. Biogenic amines and their producers in Akawi white cheese. Int. J. Dairy Technol. 2016;69:386–392. doi: 10.1111/1471-0307.12294. DOI
Zuljan F.A., Mortera P., Alarcón S.H., Blancato V.S., Espariz M., Magni C. Lactic acid bacteria decarboxylation reactions in cheese. Int. Dairy J. 2016;62:53–62. doi: 10.1016/j.idairyj.2016.07.007. DOI
Barbieri F., Montanari C., Gardini F., Tabanelli G. Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods. 2019;8:17. doi: 10.3390/foods8010017. PubMed DOI PMC
Murray R.K., Granner D.K., Mayes P.A., Rodwell V.W. Harper’s Biochemistry. 23rd ed. Appleton & Lange, a Publishing Division of Prentice-Hall International Inc.; East Norwalk, CT, USA: 1993. pp. 344–348.
Farooqui T., Farooqui A.A., editors. Biogenic Amines: Pharmacological, Neurochemical and Molecular Aspects in the CNS. 1st ed. Nova Science Publishers Inc.; New York, NY, USA: 2010.
Novella-Rodríguez S., Veciana-Nogués M.T., Vidal-Carou M.C. Biogenic amines and polyamines in milks and cheeses by ion-pair high performance liquid chromatography. J. Agric. Food Chem. 2000;48:5117–5123. doi: 10.1021/jf0002084. PubMed DOI
Buňková L., Adamcová G., Hudcová K., Velichová H., Pachlová V., Lorencová E., Buňka F. Monitoring of biogenic amines in cheeses manufactured at small-scale farms and in fermented dairy products in the Czech Republic. Food Chem. 2013;141:548–551. doi: 10.1016/j.foodchem.2013.03.036. PubMed DOI
Gardini F., Martuscelli M., Caruso M.C., Galgano F., Crudele M.A., Favati F., Guerzoni M.E., Suzzi G. Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int. J. Food Microbiol. 2001;64:105–117. doi: 10.1016/S0168-1605(00)00445-1. PubMed DOI
Cid S.B., Miguélez-Arrizado M.J., Becker B., Holzapfel W.H., Vidal-Carou M.C. Amino acid decarboxylation by Lactobacillus curvatus CTC273 affected by the pH and glucose availability. Food Microbiol. 2008;25:269–277. doi: 10.1016/j.fm.2007.10.013. PubMed DOI
Buňková L., Buňka F., Pollaková E., Podešvová T., Dráb V. The effect of lactose, NaCl and an aero/anaerobic environment on the tyrosine decarboxylase activity of Lactococcus lactis subsp. cremoris and Lactococcus lactis subsp. lactis. Int. J. Food Microbiol. 2011;147:112–119. doi: 10.1016/j.ijfoodmicro.2011.03.017. PubMed DOI
Arena M.E., Manca De Nadra M.C. Biogenic amine production by Lactobacillus. J. Appl. Microbiol. 2001;90:158–162. doi: 10.1046/j.1365-2672.2001.01223.x. PubMed DOI
Cortesi M.L., Vollano L., Peruzy M.F., Marrone R., Mercogliano R. Determination of nitrate and nitrite levels in infant foods marketed in Southern Italy. CYTA J. Food. 2015;13:629–634. doi: 10.1080/19476337.2015.1035337. DOI
Shivsharan V.S., Wani M.P., Kulkarani S.W. Isolation of Microorganism from Dairy Effluent for Activated Sludge Treatment. IJCER. 2013;3:161–167.
Shivsharan V.S., Wani M., Khetmalas M.B. Isolation of Microorganisms from Dairy Effluent. Br. Microbiol. Res. J. 2013;3:346–354. doi: 10.9734/BMRJ/2013/3445. DOI
Barnali A., Subhankar P. Isolation and characterization of lactic acid bacteria from dairy effluents. J. Environ. Res. Dev. 2010;4:983–991.
Prakashveni R., Jagadeesan M. Isolation identification and distribution of bacteria in Dairy Effluent. Adv. Appl. Sci. Res. 2012;3:1316–1318.
Linares D.M., del Río B., Ladero V., Martínez N., Fernández M., Martín M.C., Álvarez M.A. Factors influencing biogenic amines accumulation in dairy products. Front. Microbiol. 2012;3:180. doi: 10.3389/fmicb.2012.00180. PubMed DOI PMC
Torracca B., Pedonese F., Turchi B., Fratini F., Nuvoloni R. Qualitative and quantitative evaluation of biogenic amines in vitro production by bacteria isolated from ewes’ milk cheeses. Eur. Food Res. Technol. 2018;244:721–728. doi: 10.1007/s00217-017-2992-1. DOI
Bonetta S., Bonetta S., Carraro E., Coïsson J.D., Travaglia F., Arlorio M. Detection of biogenic amine producer bacteria in a typical Italian goat cheese. J. Food Prot. 2008;71:205–209. doi: 10.4315/0362-028X-71.1.205. PubMed DOI
Calles-Enríquez M., Eriksen B.H., Andersen P.S., Rattray F.P., Johansen A.H., Fernández M., Ladero V., Álvarez M.A. Sequencing and transcriptional analysis of the Streptococcus thermophilus histamine biosynthesis gene cluster: Factors that affect differential hdcA expression. Appl. Environ. Microbiol. 2010;76:6231–6238. doi: 10.1128/AEM.00827-10. PubMed DOI PMC
Ladero V., Rattray F.P., Mayo B., Martín M.C., Fernández M., Álvarez M.A. Putrescine producing Lactococcus lactis: Sequencing and transcriptional analysis of the biosynthesis gene cluster. Appl. Environ. Microbiol. 2011;77:5507–5511. doi: 10.1128/AEM.05507-11. PubMed DOI PMC
Buňková L., Buňka F., Mantlová G., Čablová A., Sedláček I., Švec P., Pachlová V., Kráčmar S. The effect of ripening and storage conditions on the distribution of tyramine, putrescine and cadaverine in Edam-cheese. Food Microbiol. 2010;27:880–888. doi: 10.1016/j.fm.2010.04.014. PubMed DOI
Linares D.M., Martín M.C., Ladero V., Álvarez M.A., Fernández M. Biogenic amines in dairy products. Crit. Rev. Food Sci. Nutr. 2011;51:691–703. doi: 10.1080/10408398.2011.582813. PubMed DOI
Glória M.B.A.U. Bioactive amines. In: Hui Y.H., Sherkat F., editors. Handbook of Food Science, Technology, and Engineering. 1st ed. Volume 4. CRC Press; Boca Raton, FL, USA: 2005. pp. 25–27.
Marino M., Maifreni M., Moret S., Rondinini G. The capacity of Enterobacteriaceae species to produce biogenic amines in cheese. Lett. Appl. Microbiol. 2000;31:169–173. doi: 10.1046/j.1365-2672.2000.00783.x. PubMed DOI
Gubartallah E.A., Makahleh A., Quirino J.P., Saad B. Determination of Biogenic Amines in Seawater Using Capillary Electrophoresis with Capacitively Coupled Contactless Conductivity Detection. Molecules. 2018;23:1112. doi: 10.3390/molecules23051112. PubMed DOI PMC
Slavov A.K. General Characteristics and Treatment Possibilities of Dairy Wastewater—A Review. Food Technol. Biotechnol. 2017;55:14–28. doi: 10.17113/ftb.55.01.17.4520. PubMed DOI PMC
Porwal H.J., Mane A.V., Velhal S.G. Biodegradation of dairy effluent by using microbial isolates obtained from activated sludge. Water Resour. Ind. 2015;9:1–15. doi: 10.1016/j.wri.2014.11.002. DOI
Guinee T.P., Carić M., Kaláb M. Pasteurized processed cheese and substitute/imitation cheese products. In: Fox P.F., McSweeney P.L.H., Cogan T.M., Guinee T.P., editors. Cheese: Chemistry, Physics and Microbiology. 3rd ed. Volume 2. Academic Press; San Diego, CA, USA: 2004. pp. 349–394.
De Wit J.N. Lecturer´s Handbook on Whey and Whey Products. 1st ed. European Whey Products Association; Brussels, Belgium: 2001. pp. 12–15.
Solak B.B., Akin N. Health Benefits of Whey Protein: A Review. J. Food Sci. Eng. 2012;2:129–137. doi: 10.17265/2159-5828/2012.03.001. DOI
Westgate P.J., Park C. Evaluation of Proteins and Organic Nitrogen in Wastewater Treatment Effluents. Environ. Sci. Technol. 2010;44:5352–5357. doi: 10.1021/es100244s. PubMed DOI
Kántor A., Mareček J., Ivanišová E., Terentjeva M., Kačániová M. Microorganisms of grape berries. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2017;71:502–508. doi: 10.1515/prolas-2017-0087. DOI
Lorencová E., Buňková L., Matoulková D., Dráb V., Pleva P., Kubáň V., Buňka F. Production of biogenic amines by lactic acid bacteria and bifidobacteria isolated from dairy products and beer. Int. J. Food Sci. Technol. 2012;47:2086–2091. doi: 10.1111/j.1365-2621.2012.03074.x. DOI
Dadáková E., Křížek M., Pelikánová T. Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC) Food Chem. 2009;116:365–370. doi: 10.1016/j.foodchem.2009.02.018. DOI
Aydin A., Ercan O., Tascioglu S. A novel method for the spectrophotometric determination of nitrite in water. Talanta. 2005;66:1181–1186. doi: 10.1016/j.talanta.2005.01.024. PubMed DOI
Baird R.B., Eaton A.D., Rice E.W., editors. Standard Methods for the Examination of Water and Wastewater. 23rd ed. American Public Health Association, American Water Works Association, Water Environment Federation; Washington, DC, USA: 2017. pp. 124–161. Part 4000.
Patnaik P. Handbook of Environmental Analysis: Chemical Pollutants in Air, Water, Soil, and Solid Wastes. 2nd ed. CRC Press; Boca Raton, FL, USA: 2010. pp. 343–346.
Le C., Kunacheva C., Stuckey D.C. “Protein” Measurement in Biological Wastewater Treatment Systems: A Critical Evaluation. Environ. Sci. Technol. 2016;50:3074–3081. doi: 10.1021/acs.est.5b05261. PubMed DOI