Effect of Selected Factors Influencing Biogenic Amines Degradation by Bacillus subtilis Isolated from Food

. 2023 Apr 21 ; 11 (4) : . [epub] 20230421

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37110514

Grantová podpora
IGA/FT/2023/002 The Internal Grant of TBU in Zlín
Implementation of new technologies and procedures into the logistic support of the Army of the Czech Republic Ministry of Defence of the Czech Republic, grant INTAL

Odkazy

PubMed 37110514
PubMed Central PMC10144561
DOI 10.3390/microorganisms11041091
PII: microorganisms11041091
Knihovny.cz E-zdroje

Modern food technology research has researched possible approaches to reducing the concentration of biogenic amines in food and thereby enhance and guarantee food safety. Applying adjunct cultures that can metabolise biogenic amines is a potential approach to reach the latter mentioned goal. Therefore, this study aims to study the crucial factors that could determine the decrease in biogenic amines concentration (histamine, tyramine, phenylethylamine, putrescine and cadaverine) in foodstuffs using Bacillus subtilis DEPE IB1 isolated from gouda-type cheese. The combined effects of cultivation temperature (8 °C, 23 °C and 30 °C) and the initial pH of the medium (5.0, 6.0, 7.0 and 8.0) under aerobic and also anaerobic conditions resulted in the decrease of the tested biogenic amines concentration during the cultivation time (another factor tested). Bacillus subtilis was cultivated (in vitro) in a medium supplemented with biogenic amines, and their degradation was detected using the high-performance liquid chromatography equipped with UV-detector. The course of biogenic amines degradation by Bacillus subtilis DEPE IB1 was significantly influenced by cultivation temperature and also the initial pH of the medium (p < 0.05). At the end of the cultivation, the concentration of all of the monitored biogenic amines was significantly reduced by 65-85% (p < 0.05). Therefore, this strain could be used for preventive purposes and contributes to food safety enhance.

Zobrazit více v PubMed

Silla Santos M.H. Biogenic amines: Their importance in foods. Int. J. Food Microbiol. 1996;29:213–231. doi: 10.1016/0168-1605(95)00032-1. PubMed DOI

Bardócz S., Grant G., Brow D.S., Ralph A., Pusztai A. Polyamines in food—Implications for growth and health. J. Nutr. Biochem. 1993;4:66–71. doi: 10.1016/0955-2863(93)90001-D. DOI

Shalaby A.R. Significance of biogenic amines in food safety and human health. Food Res. Int. 1996;29:675–690. doi: 10.1016/S0963-9969(96)00066-X. DOI

Ladero V., Calles-Enríquez M., Fernández M., Alvarez M.A. Toxicological effects of dietary biogenic amines. Curr. Res. Nutr. Food Sci. 2010;6:145–156. doi: 10.2174/157340110791233256. DOI

Gücügl A., Küpülü Ö. The effect of different starter cultures and ripening temperatures on formation of biogenic amine in Turkish fermented sausages. Eur. Food Res. Technol. 2010;230:875–884. doi: 10.1007/s00217-010-1220-z. DOI

Pachlová V., Buňková L., Flasarová R., Salek R.-N., Dlabajová A., Butor I., Buňka F. Biogenic amine production by nonstarter strains of Lactobacillus curvatus and Lactobacillus paracasei in the model system of Dutch-type cheese. LWT—Food Sci. Technol. 2018;97:730–735. doi: 10.1016/j.lwt.2018.07.045. DOI

Weremfo A., Kodjo Eduafo M., Agyei Gyimah H., Abassah-Oppong S. Monitoring the Levels of Biogenic Amines in Canned Fish Products Marketed in Ghana. J. Food Qual. 2020:1–6. doi: 10.1155/2020/2684235. DOI

Fusek M., Michálek J., Buňková L., Buňka F. Modelling biogenic amines in fish meat in Central Europe using censored distributions. Chemosphere. 2020;251:126390. doi: 10.1016/j.chemosphere.2020.126390. PubMed DOI

Halász A., Baráth A., Simon-Sarkadi L., Holzapfel W. Biogenic amines and their production by microorganisms in food. Trends Food Sci. Technol. 1994;5:42–49. doi: 10.1016/0924-2244(94)90070-1. DOI

Zhernov Y.V., Simanduyev M.Y., Zaostrovtseva O.K., Semeniako E.E., Kolykhalova K.I., Fadeeva I.A., Kashutina M.I., Vysokanschya S.O., Belova E.V., Scherbakov D.V., et al. Molecular Mechaisms of Scromboid Food Poisoning. Int. J. Mol. Sci. 2023;24:809. doi: 10.3390/ijms24010809. PubMed DOI PMC

Buňková L., Adamcová G., Hudcová K., Velichová H., Pachlová V., Lorencová E., Buňka F. Monitoring of biogenic amines in cheeses manufactured at small-scale farms in fermented dairy products in the Czech Republic. Food Chem. 2013;141:548–551. doi: 10.1016/j.foodchem.2013.03.036. PubMed DOI

Diaz M., Ladero V., del Rio B., Redruello B., Fernández M., Cruz Martin M., Alvarez M.A. Biofilm-forming capacity of biogenic amine-producing bacteria isolated from dairy products. Front. Microbiol. 2016;7:591. doi: 10.3389/fmicb.2016.00591. PubMed DOI PMC

Gardini F., Özogul Y., Suzzi G., Tabanelli G., Özogul F. Technological Factors Affecting Biogenic Amine Content in Foods: A Review. Front. Microbiol. 2016;7:1218. doi: 10.3389/fmicb.2016.01218. PubMed DOI PMC

Fernández M., Linares D.M., del Río B., Ladero V., Alvarez M.A. HPLC quantification of biogenic amines in cheeses: Correlation with PCR-detection of tyramineproducing microorganisms. J. Dairy Res. 2007;74:276–282. doi: 10.1017/S0022029907002488. PubMed DOI

Kim J.M., Ku S., Kim S.J., Lee H.H., Jin H., Kang S., Li R., Johnston T.V., Park M.S., Ji G.E. Safety Evaluations of Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI. Int. J. Mol. Sci. 2018;19:1422. doi: 10.3390/ijms19051422. PubMed DOI PMC

European Food Safety Authority (EFSA) Scientific opinion on risk based control of biogenic amine formation in fermented foods. EFSA J. 2011;9:2393. doi: 10.2903/j.efsa.2011.2393. DOI

Pištěková H., Jančová P., Berčíková L., Buňka F., Sokolová I., Šopík T., Maršálková K., Pacheco De Amaral O.M.R., Buňková L. Application of qPCR for multicopper oxidase gene (MCO) in biogenic amines degradation by Lactobacillus Casei. Food Microbiol. 2020;91:103550. doi: 10.1016/j.fm.2020.103550. PubMed DOI

Laranjo M., Elias M., Fraqueza M.J. The Use of Starter Cultures in Traditional Meat Products. J. Food Qual. 2017;42:1–18. doi: 10.1155/2017/9546026. DOI

Sun X., Sun E., Sun L., Su L., Jin Y., Ren L., Zhao L. Effect of Biogenic Amine-Degrading Lactobacillus on the Biogenic Amines and Quality in Fermented Lamb Jerky. Foods. 2022;11:2057. doi: 10.3390/foods11142057. PubMed DOI PMC

Wang X., Zhao Y., Zhang S., Lin X., Liang H., Chen Y., Ji C. Heterologous Expression of the Lactobacillus sakei Multiple Copper Oxidase to Degrade Histamine and Tyramine at Different Environmental Conditions. Foods. 2022;11:3306. doi: 10.3390/foods11203306. PubMed DOI PMC

Alvarez M., Moreno-Arribas M. The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends Food Sci. Technol. 2014;39:146–155. doi: 10.1016/j.tifs.2014.07.007. DOI

Li B., Lu S. The Importance of Amine-degrading Enzymes on the Biogenic Amine Degradation in Fermented Foods: A review. Process Biochem. 2020;99:331–339. doi: 10.1016/j.procbio.2020.09.012. DOI

Zaman M.Z., Abu Bakar F., Selamat J., Bakar J. Occurrence of biogenic amines and amines degrading bacteria in fish sauce. Czech J. Food Sci. 2010;28:440–449. doi: 10.17221/312/2009-CJFS. DOI

Adámek R., Pachlová V., Salek R.N., Němečková I., Buňka F., Buňková L. Reduction of biogenic amine content in Dutch-type cheese as affected by the applied adjunct culture. LWT—Food Sci. Technol. 2021;152:112397. doi: 10.1016/j.lwt.2021.112397. DOI

Papageorgiou M., Lambropoulou D., Morrison C., Kłodzińska E., Namieśnik C., Płotka-Wasylka J. Literature update of analytical methods for biogenic amines determination in food and beverages. Trends Anal. Chem. 2018;98:128–142. doi: 10.1016/j.trac.2017.11.001. DOI

Herrero-Fresno A., Martínez N., Sánchez-Llana E., Díaz M., Fernández M., Martin M.C., Ladero V., Alvarez M.A. Lactobacillus casei strains isolated from cheese reduce biogenic amine accumulation in an experimental model. Int. J. Food Microbiol. 2012;157:297–304. doi: 10.1016/j.ijfoodmicro.2012.06.002. PubMed DOI

Postollec F., Falentin H., Pavan S., Combrisson J., Sohier D. Recent advances in quantitative PCR (qPCR) applications in food mikrobiology. Food Microbiol. 2011;157:848–861. doi: 10.1016/j.fm.2011.02.008. PubMed DOI

Dadáková E., Křížek M., Pelikánová T. Determination of biogenic amines in foods using ultra-performance liquid chromatography (UPLC) Food Chem. 2009;116:365–370. doi: 10.1016/j.foodchem.2009.02.018. DOI

Jančová P., Pachlová V., Čechová E., Cedidlová K., Šerá J., Pištěková H., Buňka F., Buňková L. Occurrence of Biogenic Amines Producers in the Wastewater of the Dairy Industry. Molecules. 2020;25:5143. doi: 10.3390/molecules25215143. PubMed DOI PMC

Purevdorj K., Buňková L., Dlabajová A., Čechová E., Pachlová V., Buňka F. The impact of cell-free supernatants of Lactococcus lactis subsp. lactis strains on the tyramine formation of Lactobacillus and Lactiplantibacillus strains isolated from cheese and beer. Food Microbiol. 2021;99:103813. doi: 10.1016/j.fm.2021.103813. PubMed DOI

Hoffmann T., Bremer E. Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J. Bacteriol. 2011;193:1552–1562. doi: 10.1128/JB.01319-10. PubMed DOI PMC

Leuschner R.G.K., Heidel M., Hammes W.P. Histamine and tyramine degradation by food fermenting microorganisms. Int. J. Food Microbiol. 1998;39:1–10. doi: 10.1016/S0168-1605(97)00109-8. PubMed DOI

Lee J., Jin Y.H., Pawluk A.M., Mah J.-H. Reduction in Biogenic Amine Content in Baechu (Napa Cabbage) Kimchi by Biogenic Amine-Degrading Lactic Acid Bacteria. Microorganisms. 2021;9:2570. doi: 10.3390/microorganisms9122570. PubMed DOI PMC

Sun L., Guo W., Zhai Y., Zhao L., Liu T., Yang L., Jin Y., Duan Y. Screening and the ability of biogenic amine-degrading strains from traditional meat products in Inner Mongolia. LWT—Food Sci. Technol. 2023;176:114533. doi: 10.1016/j.lwt.2023.114533. DOI

Leuschner R.G.K., Hammes W.P. Tyramine Degradation by Micro-cocci During Ripening of Fermented Sausage. Meat Sci. 1998;49:289–296. doi: 10.1016/S0309-1740(97)00124-1. PubMed DOI

Eom J.S., Seo B.Y., Choi H.S. Biogenic Amine Degradation by Bacillus Species Isolated from Traditional Fermented Soybean Food and Detection of Decarboxylase-Related Genes. J. Microbiol. Biotechnol. 2015;25:1519–1527. doi: 10.4014/jmb.1506.06006. PubMed DOI

Lee Y.C., Lin C.S., Liu F.L., Huang T.C., Tsai Y.H. Degradation of histamine by Bacillus polymyxa isolated from salted fish products. J. Food Drug Anal. 2015;23:836–844. doi: 10.1016/j.jfda.2015.02.003. PubMed DOI PMC

Saad M.A., Abd-Rabou H.S., Elkhtab E., Rayan A.M., Abdeen A., Abdelkader A., Ibrahim S.F., Hussien H. Occurrence of Toxic Biogenic Amines in Various Types of Soft and Hard Cheeses and Their Control by Bacillus polymyxa D05-1. Fermentation. 2022;8:327. doi: 10.3390/fermentation8070327. DOI

Chen Y., Luo W., Fu M., Yu Y., Wu J., Xu Y., Li L. Effects of selected Bacillus strains on the biogenic amines, bioactive ingredients and antioxidant capacity of shuidouchi. Int. J. Food Microbiol. 2023;388:110084. doi: 10.1016/j.ijfoodmicro.2022.110084. PubMed DOI

Tepkasikul P., Santiyanont P., Boocharoen A., Abhisingha M., Mhuantong W., Chantarasakha K., Pitaksutheepong C., Visessanguan W., Tepaamorndech S. The functional starter and its genomic insight for histamine degradation in fish sauce. Food Microbiol. 2022;104:103988. doi: 10.1016/j.fm.2022.103988. PubMed DOI

Kim S.-H., Yehuala G.A., Bang W.Y., Yang J., Jung Y.H., Park M.-K. Safety Evaluation of Bacillus subtilis IDCC1101, Newly Isolated from Cheonggukjang, for Industrial Applications. Microorganisms. 2022;10:2494. doi: 10.3390/microorganisms10122494. PubMed DOI PMC

Harirchi S., Sar T., Ramezani M., Aliyu H., Etemadifar Z., Nojoumi S.A., Yazdian F., Awasthi M.K., Taherzadeh M.J. Bacillales: From Taxonomy to Biotechnological and Industrial Perspectives. Microorganisms. 2022;10:2355. doi: 10.3390/microorganisms10122355. PubMed DOI PMC

Ouoba L.I., Diawara B., Amoa-Awua W.K., Traoré A.S., Møller P.L. Genotyping of starter cultures of Bacillus subtilis and Bacillus pumilus for fermentation of African locust bean (Parkia biglobosa) to produce Soumbala. Int. J. Food Microbiol. 2004;90:197–205. doi: 10.1016/S0168-1605(03)00302-7. PubMed DOI

Zeng J., Wu J., Chen H., Ni S. Review on biological degradation of biogenic amines in food. Int. J. Agric. Sci. Food Technol. 2021;7:331–334. doi: 10.17352/2455-815X.000127. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...