Aspergillus niger Decreases Bioavailability of Arsenic(V) via Biotransformation of Manganese Oxide into Biogenic Oxalate Minerals
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1/0164/17, 1/0146/18
Scientific Grant Agency of the Ministry of Education, Science, Research and Sports of the Slovak Republic and the Slovak Academy of Sciences VEGA
013SPU-4/2019
Cultural and Educational Agency of the Ministry of Education, Science and Sport of the Slovak Republic KEGA
PubMed
33182297
PubMed Central
PMC7711977
DOI
10.3390/jof6040270
PII: jof6040270
Knihovny.cz E-zdroje
- Klíčová slova
- arsenic, bioaccumulation, bioextraction, filamentous fungi, manganese minerals,
- Publikační typ
- časopisecké články MeSH
The aim of this work was to evaluate the transformation of manganese oxide (hausmannite) by microscopic filamentous fungus Aspergillus niger and the effects of the transformation on mobility and bioavailability of arsenic. Our results showed that the A. niger strain CBS 140837 greatly affected the stability of hausmannite and induced its transformation into biogenic crystals of manganese oxalates-falottaite and lindbergite. The transformation was enabled by fungal acidolysis of hausmannite and subsequent release of manganese ions into the culture medium. While almost 45% of manganese was bioextracted, the arsenic content in manganese precipitates increased throughout the 25-day static cultivation of fungus. This significantly decreased the bioavailability of arsenic for the fungus. These results highlight the unique A. niger strain's ability to act as an active geochemical factor via its ability to acidify its environment and to induce formation of biogenic minerals. This affects not only the manganese speciation, but also bioaccumulation of potentially toxic metals and metalloids associated with manganese oxides, including arsenic.
Department of Earth and Environmental Studies Montclair State University Montclair NJ 07043 USA
Department of Mechanical Engineering Bapatla Engineering College Bapatla 522101 India
Institute of Measurement Science Slovak Academy of Sciences in Bratislava 84104 Bratislava Slovakia
Nanotechnology Centre VŠB Technical University of Ostrava 70833 Ostrava Czech Republic
School of Ecology and Environmental Science Yunnan University Kunming 650091 China
Zobrazit více v PubMed
Gadd G.M., Rhee Y.J., Stephenson K., Wei Z. Geomycology: Metals, actinides and biominerals. Environ. Microbiol. Rep. 2012;4:270–296. doi: 10.1111/j.1758-2229.2011.00283.x. PubMed DOI
Gadd G.M. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 2007;111:3–49. doi: 10.1016/j.mycres.2006.12.001. PubMed DOI
Li Z., Liu L.L., Chen J., Teng H.H. Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology. 2016;44:319–322. doi: 10.1130/G37561.1. DOI
Watanabe J.I., Tani Y., Miyata N., Seyama H., Mitsunobu S., Naitou H. Concurrent sorption of As (V) and Mn (II) during biogenic manganese oxide formation. Chem. Geol. 2012;306:123–128. doi: 10.1016/j.chemgeo.2012.03.004. DOI
Kolenčík M., Urík M., Gardošová K., Littera P., Matúš P. Biological and chemical leaching of arsenic and zinc from adamite. Chem. Listy. 2011;105:961–965.
Milová-Žiaková B., Urík M., Boriová K., Bujdoš M., Kolenčík M., Mikušová P., Takáčová A., Matúš P. Fungal solubilization of manganese oxide and its significance for antimony mobility. Int. Biodeterior. Biodegrad. 2016;114:157–163. doi: 10.1016/j.ibiod.2016.06.011. DOI
Mayanna S., Peacock C.L., Schäffner F., Grawunder A., Merten D., Kothe E., Büchel G. Biogenic precipitation of manganese oxides and enrichment of heavy metals at acidic soil pH. Chem. Geol. 2015;402:6–17. doi: 10.1016/j.chemgeo.2015.02.029. DOI
Gupta K., Maity A., Ghosh U.C. Manganese associated nanoparticles agglomerate of iron (III) oxide: Synthesis, characterization and arsenic (III) sorption behavior with mechanism. J. Hazard. Mater. 2010;184:832–842. doi: 10.1016/j.jhazmat.2010.08.117. PubMed DOI
Chakravarty S., Dureja V., Bhattacharyya G., Maity S., Bhattacharjee S. Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Res. 2002;36:625–632. doi: 10.1016/S0043-1354(01)00234-2. PubMed DOI
Suda A., Makino T. Functional effects of manganese and iron oxides on the dynamics of trace elements in soils with a special focus on arsenic and cadmium: A review. Geoderma. 2016;270:68–75. doi: 10.1016/j.geoderma.2015.12.017. DOI
Tebo B.M., Bargar J.R., Clement B.G., Dick G.J., Murray K.J., Parker D., Verity R., Webb S.M. Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004;32:287–328. doi: 10.1146/annurev.earth.32.101802.120213. DOI
Antao S.M., Cruickshank L.A., Hazrah K.S. Structural trends and solid-solutions based on the crystal chemistry of two hausmannite (Mn3O4) samples from the kalahari manganese field. Minerals. 2019;9:343. doi: 10.3390/min9060343. DOI
Ergül B., Bektaş N., Öncel M.S. The use of manganese oxide minerals for the removal arsenic and selenium anions from aqueous solutions. Energy Environ. Eng. 2014;2:103–112. doi: 10.13189/eee.2014.020501. DOI
Wang P., Sun G., Jia Y., Meharg A.A., Zhu Y. A review on completing arsenic biogeochemical cycle: Microbial volatilization of arsines in environment. J. Environ. Sci. 2014;26:371–381. doi: 10.1016/S1001-0742(13)60432-5. PubMed DOI
Smedley P., Kinniburgh D. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002;17:517–568. doi: 10.1016/S0883-2927(02)00018-5. DOI
Bhattacharya P., Welch A.H., Stollenwerk K.G., McLaughlin M.J., Bundschuh J., Panaullah G. Arsenic in the Environment: Biology and Chemistry. Elsevier; Amsterdam, The Netherlands: 2007. PubMed
Žemberyová M., Shearman A., Šimonovičová A., Hagarová I. Bio-accumulation of As(III) and As(V) species from water samples by two strains of Aspergillus niger using hydride generation atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2009;89:569–581. doi: 10.1080/03067310802716107. DOI
Hagarová I. Speciation of arsenic in waters by AAS techniques. Chem. Listy. 2007;101:768–775.
Hagarová I., Žemberyová M., Hrušovská Z., Ševc J., Klimek J. Determination of arsenic in non-contaminated environmental samples by flow-injection hydrogen-generation AAS. Chem. Listy. 2006;100:901–905.
Hagarová I., Žemberyová M. Determination of arsenic in biological and environmental samples by AAS techniques. Chem. Listy. 2005;99:578–584.
Zwietering M.H., Jongenburger I., Rombouts F.M., van ’t Riet K. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990;56:1875–1881. doi: 10.1128/AEM.56.6.1875-1881.1990. PubMed DOI PMC
Polák F., Urík M., Bujdoš M., Uhlík P., Matúš P. Evaluation of aluminium mobilization from its soil mineral pools by simultaneous effect of Aspergillus strains’ acidic and chelating exometabolites. J. Inorg. Biochem. 2018;181:162–168. doi: 10.1016/j.jinorgbio.2017.09.006. PubMed DOI
Osman Y., Gebreil A., Mowafy A.M., Anan T.I., Hamed S.M. Characterization of Aspergillus niger siderophore that mediates bioleaching of rare earth elements from phosphorites. World J. Microbiol. Biotechnol. 2019;35:93. doi: 10.1007/s11274-019-2666-1. PubMed DOI
Kolenčík M., Urík M., Štubňa J. Heterotrophic leaching and its application in biohydrometallurgy. Chem. Listy. 2014;108:1040–1045.
Urík M., Polák F., Bujdoš M., Pifková I., Kořenková L., Littera P., Matúš P. Aluminium leaching by heterotrophic microorganism Aspergillus niger: An acidic leaching? Arab. J. Sci. Eng. 2018;43:2369–2374. doi: 10.1007/s13369-017-2784-8. DOI
Kolenčík M., Urík M., Čerñanský S., Molnárová M., Matúš P. Leaching of zinc, cadmium, lead and copper from electronic scrap using organic acids and the Aspergillus niger strain. Fresenius Environ. Bull. 2013;22:3673–3679.
Kolenčík M., Urík M., Bujdoš M., Gardošová K., Littera P., Puškelová L., Gregor M., Matúš P. Leaching of Al, Fe, Sn, Co and Au from electronics wastes using organic acid and microscopic fibrous fungus Aspergillus niger. Chem. Listy. 2013;107:182–185.
Ferrier J., Yang Y., Csetenyi L., Gadd G.M. Colonization, penetration and transformation of manganese oxide nodules by Aspergillus niger. Environ. Microbiol. 2019;21:1821–1832. doi: 10.1111/1462-2920.14591. PubMed DOI PMC
Gadd G.M., Bahri-Esfahani J., Li Q., Rhee Y.J., Wei Z., Fomina M., Liang X. Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biol. Rev. 2014;28:36–55. doi: 10.1016/j.fbr.2014.05.001. DOI
Wei Z., Hillier S., Gadd G.M. Biotransformation of manganese oxides by fungi: Solubilization and production of manganese oxalate biominerals. Environ. Microbiol. 2012;14:1744–1753. doi: 10.1111/j.1462-2920.2012.02776.x. PubMed DOI
Oggerin M., Tornos F., Rodríguez N., del Moral C., Sánchez-Román M., Amils R. Specific jarosite biomineralization by Purpureocillium lilacinum, an acidophilic fungi isolated from Río Tinto. Environ. Microbiol. 2013;15:2228–2237. doi: 10.1111/1462-2920.12094. PubMed DOI
Livne A., Mijowska S.C., Polishchuk I., Mashikoane W., Katsman A., Pokroy B. A fungal mycelium templates the growth of aragonite needles. J. Mater. Chem. B. 2019;7:5725–5731. doi: 10.1039/C9TB01169B. PubMed DOI
Fungal Mobilization of Selenium in the Presence of Hausmannite and Ferric Oxyhydroxides