Main bacterial species causing clinical disease in ornamental freshwater fish in Brazil
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
Finance Code 001
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
1808006
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
400267/2017-9
Conselho Nacional de Desenvolvimento Científico e Tecnológico
310736/2018-8
Conselho Nacional de Desenvolvimento Científico e Tecnológico
2016/25745-7
Fundação de Amparo à Pesquisa do Estado de São Paulo
PubMed
33185813
DOI
10.1007/s12223-020-00837-x
PII: 10.1007/s12223-020-00837-x
Knihovny.cz E-resources
- Keywords
- Animal health, Bacterial disease, Diagnosis in fish, Fish disease,
- MeSH
- Aeromonas * MeSH
- Humans MeSH
- Fish Diseases * MeSH
- Fishes MeSH
- Fresh Water MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Brazil MeSH
Bacterial diseases are common in ornamental fish, more frequently associated with ubiquitous bacteria from the aquarium environment. The disease can lead to fish mortality and cause high economic losses if not rapidly controlled. The aim of this study was to identify the main causative bacterial agents of infection in ornamental fish with different clinical signs. A total of 126 freshwater fish, from 12 families and 38 species, with clinical signs were collected in a wholesaler in São Paulo, SP, Brazil. Samples were taken from the eye, skin ulcers, kidneys, and gills, plated on MacConkey, CHROMagar Orientation, and blood agar and incubated under aerobic and anaerobic conditions. Bacterial identification was performed by MALDI-TOF mass spectrometry. From the 126 studied animals, 112 were positive for bacterial isolation. Among the positive animals, 32.1% presented infection caused by a single bacterial species, while in the remaining 67.9%, two to six different bacterial species were identified. A total of 259 bacterial strains were obtained and classified among 46 bacterial species. The species of higher frequency were Aeromonas veronii (26.3%), Aeromonas hydrophilla (16.2%), Shewanella putrefaciens (7.3%), Citrobacter freundii (8.1%), Vibrio albensis (5.8%), and Klebsiella pneumoniae (4.2%). MALDI-TOF MS showed to be a rapid method for diagnosis of bacterial disease outbreaks in ornamental fish establishments.
Centro Universitário Max Planck Indaiatuba Brazil
See more in PubMed
ABINPET (2019) Dados de Mercado [Internet]. Brazil: Associação Brasileira da Indústria de produtos para Animais de Estimação; http://abinpet.org.br/mercado/ . Accessed 25 Oct 2020
Abraham TJ, Paul P, Adikesavalu H, Patra A, Banerjee S (2016) Stenotrophomonas maltophilia as an opportunistic pathogen in cultured African catfish Clarias gariepinus (Burchell, 1822). Aquaculture 450:168–172. https://doi.org/10.1016/j.aquaculture.2015.07.015 DOI
Acha PN, Szyfres B (2003) Zoonoses and communicable diseases common to man and animals. Bacterioses and Mycoses, vol. I., 3rd Ed. Pan American Health Organization, Regional Office of the WHO, Washington
Al-Harbi AH, Uddin MN (2004) Seasonal variation in the intestinal bacterial flora of hybrid tilapia (Oreochromis niloticus x Oreochromis aureus) cultured in earthen ponds in Saudi Arabia. Aquaculture 229:37–44. https://doi.org/10.1016/S0044-8486(03)00388-0 DOI
Altun S, Gül Büyükekiz A, Duman M et al (2014) Isolation of Shewanella putrefaciens from goldfish (Carassius auratus). Isr J Aquacult Bamidgeh 66
Bandeira Junior G, dos Santos AC, Souza CF et al (2018) Citrobacter freundii infection in silver catfish (Rhamdia quelen): hematological and histological alterations. Microb Pathog 125:276–280. https://doi.org/10.1016/j.micpath.2018.09.038 PubMed DOI
Beaz-Hidalgo R, Agüeria D, Latif-Eugenín F, Yeannes MI, Figueras MJ (2015) Molecular characterization of Shewanella and Aeromonas isolates associated with spoilage of common carp (Cyprinus carpio). FEMS Microbiol Lett 362(1):1–8. https://doi.org/10.1093/femsle/fnu029 PubMed DOI
Behera BK, Bera AK, Paria P, Das A, Parida PK, Kumari S, Bhowmick S, Das BK (2018) Identification and pathogenicity of Plesiomonas shigelloides in silver carp. Aquaculture 493:314–318. https://doi.org/10.1016/j.aquaculture.2018.04.063 DOI
Boom R, Sol CJA, Salimans MMM, Jansen CL, Wertheim-Van Dillen PME, Van Der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503 DOI
Bretzinger A, Fisher-Scherl T, Oumouna M et al (1999) Mass mortalities in koi carp, Cyprinus carpio, associated with gill and skin disease. Bull Eur Assoc Fish Pathol 19:182–199
Burbick CR, Nydam SD, Hendrix GK, Besser TE, Diaz D, Snekvik K (2018) Use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the identification of pathogenic Vibrio in fish. J Aquat Anim Health 30:332–338. https://doi.org/10.1002/aah.10044 PubMed DOI
Chen YS, Liu YC, Yen MY, Wang JH, Wang JH, Wann SR, Cheng DL (1997) Skin and soft-tissue manifestations of Shewanella putrefaciens infection. Clin Infect Dis 25(2):225–229. https://doi.org/10.1086/514537 PubMed DOI
Citarasu T, Alfred Dhas K, Velmurugan S et al (2011) Isolation of Aeromonas hydrophila from infected ornamental fish hatchery during massive outbreaks. Int J Curr Res 2(1):37–41
Davis KB, Griffin BR, Gray WL (2002) Effect of handling stress on susceptibility of channel catfish Ictalurus punctatus to Ichthyophthirius multifiliis and channel catfish virus infection. Aquaculture 214(1–4):55–66. https://doi.org/10.1016/S0044-8486(02)00362-9 DOI
Dobiasova H, Kutilova I, Piackova V, Vesely T, Cizek A, Dolejska M (2014) Ornamental fish as a source of plasmid-mediated quinolone resistance genes and antibiotic resistance plasmids. Vet Microbiol 171(3–4):413–421. https://doi.org/10.1016/j.vetmic.2014.02.011 PubMed DOI
El-Jeni R, El Bour M, Calo-Mata P et al (2016) In vitro probiotic profiling of novel Enterococcus faecium and Leuconostoc mesenteroides from Tunisian freshwater fish. Can J Microbiol 62(1):60–71. https://doi.org/10.1139/cjm-2015-0481 PubMed DOI
Gallani SU, Sebastião FA, Valladão GMR et al (2016) Pathogenesis of mixed infection by Spironucleus sp. and Citrobacter freundii in freshwater angelfish Pterophyllum scalare. Microb Pathog 100:119–123. https://doi.org/10.1016/j.micpath.2016.09.002 PubMed DOI
Gauthier DT (2015) Bacterial zoonoses of fish: a review and appraisal of evidence for linkages between fish and human infections. Vet J 203(1):27–35. https://doi.org/10.1016/j.tvjl.2014.10.028 PubMed DOI
Geng Y, Wang K, Chen D, Huang X, He M, Yin Z (2010) Stenotrophomonas maltophilia, an emerging opportunist pathogen for cultured channel catfish, Ictalurus punctatus, in China. Aquaculture 308(3–4):132–135. https://doi.org/10.1016/j.aquaculture.2010.08.032 DOI
Grim CJ, Kozlov EV, Sha J, Fitts EC et al (2013) Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes. mBio 4(2):1–13. https://doi.org/10.1128/mBio.00064-13 DOI
Grutter AS, Pankhurst NW (2000) The effects of capture, handling, confinement and ectoparasite load on plasma levels of cortisol, glucose and lactate in the coral reef fish Hemigymnus melapterus. J Fish Biol 57(2):391–401. https://doi.org/10.1006/jfbi.2000.1312 DOI
Hijazin M, Alber J, Lämmler C, Weitzel T, Hassan AA, Timke M, Kostrzewa M, Prenger-Berninghoff E, Zschöck M (2012) Identification of Trueperella (Arcanobacterium) bernardiae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis and by species-specific PCR. J Med Microbiol 61(3):457–459. https://doi.org/10.1099/jmm.0.035774-0 PubMed DOI
Holt HM, Gahrn-Hansen B, Bruun B (2005) Shewanella algae and Shewanella putrefaciens: clinical and microbiological characteristics. Clin Microbiol Infect 11(5):347–352. https://doi.org/10.1111/j.1469-0691.2005.01108.x PubMed DOI
Honein K, Jagoda SSSS, Arulkanthan A et al (2018) Draft genome sequence of Aeromonas hydrophila strain Ae25, isolated from a septicemic moribund koi carp (Cyprinus carpio) in Sri Lanka. Genome Announc 6(5):e01523–e01517. https://doi.org/10.1128/genomeA.01523-17 PubMed DOI PMC
Janda JM (2014) Shewanella: a marine pathogen as an emerging cause of human disease. Clin Microbiol Newsl 36(4):25–29. https://doi.org/10.1016/j.clinmicnews.2014.01.006 DOI
Kačániová M, Klūga A, Kántor A, Medo J, Žiarovská J, Puchalski C, Terentjeva M (2019) Comparison of MALDI-TOF MS Biotyper and 16S rDNA sequencing for the identification of Pseudomonas species isolated from fish. Microb Pathog 132:313–318. https://doi.org/10.1016/j.micpath.2019.04.024 PubMed DOI
Kazazić SP, Topić Popović N, Strunjak-Perović I, Babić S, Florio D, Fioravanti M, Bojanić K, Čož-Rakovac R (2019) Matrix-assisted laser desorption/ionization time of flight mass spectrometry identification of Vibrio (Listonella) anguillarum isolated from sea bass and sea bream. PLoS One 14:e0225343. https://doi.org/10.1371/journal.pone.0225343 PubMed DOI PMC
Khashe S, Janda JM (1998) Biochemical and pathogenic properties of Shewanella alga and Shewanella putrefaciens. J Clin Microbiol 36(3):783–787 DOI
Koziñska A, Pêkala A (2004) First isolation of Shewanella putrefaciens from freshwater fish - a potential new pathogen of fish. Bull Eur Ass Fish Patholl 24(4):199–203
Ksenija A, Jelena A, Dušan M et al (2016) Differentiation between Pseudomonas and Stenotrophomonas species isolated from fish using molecular and MALDI-TOF method. Acta Vet 66(3):304–316. https://doi.org/10.1515/acve-2016-0027 DOI
Kusdarwati R, Rozi, Dinda D et al (2018) Antimicrobial resistance prevalence of Aeromonas hydrophila isolates from motile Aeromonas septicemia disease Antimicrobial resistance prevalence of Aeromonas hydrophila isolates from motile Aeromonas septicemia disease. In Science, IOP Conference Series: Earth and Environmental 137:012076. https://doi.org/10.1088/1755-1315/137/1/012076
Larsen AM, Mohammed HH, Arias CR (2014) Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol 116(6):1396–1404. https://doi.org/10.1111/jam.12475 PubMed DOI
Liu R, Lian Z, Hu X, Lü A, Sun J, Chen C, Liu X, Song Y, Yiksung Y (2019) First report of Vibrio vulnificus infection in grass carp Ctenopharyngodon idellus in China. Aquaculture 499:283–289. https://doi.org/10.1016/j.aquaculture.2018.09.051 DOI
Noga EJ (2010) Fish disease: diagnosis and treatment, 2nd edn. Willey, Iowa, pp 49–55 DOI
Oliveira RV, Peixoto PG, Ribeiro DDC et al (2014) Klebsiella pneumoniae as a main cause of infection in nishikigoi Cyprinus carpio (carp) by inadequate handling. Braz J Vet Parasitol 7(2):86–88
Pagniez H, Berche P (2005) Les infections à Shewanella, un pathogene opportuniste émergent. Med Mal Infect 35(4):186–191. https://doi.org/10.1016/j.medmal.2005.03.008 PubMed DOI
Parker JL, Shaw JG (2011) Aeromonas spp. clinical microbiology and disease. J Inf Secur 62(2):109–118. https://doi.org/10.1016/j.jinf.2010.12.003 DOI
Pękala A, Kozińska A, Paździor E, Głowacka H (2015) Phenotypical and genotypical characterization of Shewanella putrefaciens strains isolated from diseased freshwater fish. J Fish Dis 38(3):283–293. https://doi.org/10.1111/jfd.12231 PubMed DOI
Pérez-Sancho M, Cerdá I, Fernández-Bravo A, Domínguez L, Figueras MJ, Fernández-Garayzábal JF, Vela AI (2018) Limited performance of MALDI-TOF for identification of fish Aeromonas isolates at species level. J Fish Dis 41(10):1485–1493. https://doi.org/10.1111/jfd.12837 PubMed DOI
Persson S, Al-Shuweli S, Yapici S, Jensen JN, Olsen KE (2015) Identification of clinical Aeromonas species by rpoB and gyrB sequencing and development of a multiplex PCR method for detection of Aeromonas hydrophila, A. caviae, A. veronii, and A. media. J Clin Microbiol 53(2):653–656. https://doi.org/10.1128/JCM.01963-14 PubMed DOI PMC
Piamsomboon P, Jaresitthikunchai J, Hung TQ, Roytrakul S, Wongtavatchai J (2020) Identification of bacterial pathogens in cultured fish with a custom peptide database constructed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). BMC Vet Res 16:52. https://doi.org/10.1186/s12917-020-2274-1 PubMed DOI PMC
Roberts HE, Palmeiro B, Weber ES (2009) Bacterial and parasitic diseases of pet fish. Vet Clin North Am Exot Anim Pract 12(3):609–638. https://doi.org/10.1016/j.cvex.2009.06.010 PubMed DOI
Roubach R, Gomes LC, Leão Fonseca FA et al (2005) Eugenol as an efficacious anaesthetic for tambaqui, Colossoma macropomum (Cuvier). Aquac Res 36(11):1056–1061. https://doi.org/10.1111/j.1365-2109.2005.01319.x DOI
Russo R, Mitchell H, Yanong RPE (2006) Characterization of Streptococcus iniae isolated from ornamental cyprinid fish and development of challenge models. Aquaculture 256(1–4):105–110. https://doi.org/10.1016/j.aquaculture.2006.02.046 DOI
Saeed M, Alamoudi M, Al-Harbi A (1987) A Pseudomonas associated with disease in cultured rabbitfish Siganus rivulatus in the Red Sea. Dis Aquat Org 3:177–180. https://doi.org/10.3354/dao003177 DOI
Sebastião FA (2015) Validação de técnicas moleculares para o diagnóstico de bactérias em peixes, visando redução de tempo e custo. Tese, Universidade Estadual Paulista Júlio Mesquisa Filho
Sharifuzzaman SM, Rahman H, Austin DA, Austin B (2018) Properties of probiotics Kocuria SM1 and Rhodococcus SM2 isolated from fish guts. Probiotics Antimicrob Proteins 10(3):534–542. https://doi.org/10.1007/s12602-017-9290-x PubMed DOI
Silva ERDFS, Castro V, Prianti MG et al (2017) Occurrence of antibodies against Leptospira spp in dogs from Teresina, Piauí, Brazil. Braz J Vet Res Anim Sci 54(1):88. https://doi.org/10.11606/issn.1678-4456.bjvras.2017.110588 DOI
Sreedharan K, Philip R, Singh ISB (2011) Isolation and characterization of virulent Aeromonas veronii from ascitic fluid of oscar Astronotus ocellatus showing signs of infectious dropsy. Dis Aquat Org 94(1):29–39. https://doi.org/10.3354/dao02304 DOI
Steinhagen D, Katharina H, Ellmer B et al (1998) Goussia carpelli (Protozoa: Coccidia) infection in stressed and immunosuppressed commom carp Cyprinus carpio. Dis Aquat Org 34(3):199–204 DOI
Thanigaive S, Vijayakumar S, Gopinath S et al (2015) In vivo and in vitro antimicrobial activity of Azadirachta indica (Lin) against Citrobacter freundii isolated from naturally infected Tilapia (Oreochromis mossambicus). Aquaculture 437:252–255. https://doi.org/10.1016/j.aquaculture.2014.12.008 DOI
Topić Popović N, Kazazić SP, Strunjak-Perović I et al (2017) Differentiation of environmental aquatic bacterial isolates by MALDI-TOF MS. Environ Res 152:7–16. https://doi.org/10.1016/j.envres.2016.09.020 DOI
Trust TJ, Whitby JL (1976) Antibiotic resistance of bacteria in water containing ornamental fish. Antimicrob Agents Chemother 10(4):598–603 DOI
Vávrová A, Balážová T, Sedláček I, Tvrzová L, Šedo O (2015) Evaluation of the MALDI-TOF MS profiling for identification of newly described Aeromonas spp. Folia Microbiol (Praha) 60(5):375–383. https://doi.org/10.1007/s12223-014-0369-4 DOI
Walczak N, Puk K, Guz L (2017) Bacterial flora associated with diseased freshwater ornamental fish. J Vet Res 61(4):445–449. https://doi.org/10.1515/jvetres-2017-0070 PubMed DOI PMC
Wang E, Yuan Z, Wang K, Gao D, Liu Z, Liles MR (2019) Consumption of florfenicol-medicated feed alters the composition of the channel catfish intestinal microbiota including enriching the relative abundance of opportunistic pathogens. Aquaculture 501:111–118. https://doi.org/10.1016/j.aquaculture.2018.11.019 DOI
Weir M, Rajić A, Dutil L et al (2012) Zoonotic bacteria, antimicrobial use and antimicrobial resistance in ornamental fish: a systematic review of the existing research and survey of aquaculture-allied professionals. Epidemiol Infect 140(2):192–206. https://doi.org/10.1017/S0950268811001798 PubMed DOI
Whittington RJ, Chong R (2007) Global trade in ornamental fish from an Australian perspective: the case for revised import risk analysis and management strategies. Prev Vet Med 81(1–3):92–116. https://doi.org/10.1016/j.prevetmed.2007.04.007 PubMed DOI
Wu TS, Chiu CH, Yang CH, Leu HS, Huang CT, Chen YC, Wu TL, Chang PY, Su LH, Kuo AJ, Chia JH, Lu CC, Lai HC (2012) Fish tank granuloma caused by Mycobacterium marinum. PLoS One 7(7):e41296. https://doi.org/10.1371/journal.pone.0041296 PubMed DOI PMC
Wu CJ, Ko WC, Lee NY, Su SL, Li CW, Li MC, Chen YW, Su YC, Shu CY, Lin YT, Chen PL (2019) Isolates from fish and patients in Tainan City, Taiwan: genotypic and phenotypic characteristics. Appl Environ Microbiol 85(21):e01360–e01319. https://doi.org/10.1128/AEM.01360-19 PubMed DOI PMC
Yan L, Pei X, Zhang X, Guan W, Chui H, Jia H, Ma G, Yang S, Li Y, Li N, Yang D (2019) Occurrence of four pathogenic Vibrios in Chinese freshwater fish farms in 2016. Food Control 95:85–89. https://doi.org/10.1016/j.foodcont.2018.07.043 DOI
Yucel N, Aslim B, Beyatli Y (2005) Prevalence and resistance to antibiotics for Aeromonas species isolated from retail fish in Turkey. J Food Qual 28:313–324. https://doi.org/10.1111/j.1745-4557.2005.00037.x DOI
Zhang D, Xu DH, Shoemaker C (2016) Experimental induction of motile Aeromonas septicemia in channel catfish (Ictalurus punctatus) by waterborne challenge with virulent Aeromonas hydrophila. Aquac Rep 3:18–23. https://doi.org/10.1016/j.aqrep.2015.11.003 DOI