• This record comes from PubMed

Anaerobic Fungi: Past, Present, and Future

. 2020 ; 11 () : 584893. [epub] 20201021

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article, Review

Anaerobic fungi (AF) play an essential role in feed conversion due to their potent fiber degrading enzymes and invasive growth. Much has been learned about this unusual fungal phylum since the paradigm shifting work of Colin Orpin in the 1970s, when he characterized the first AF. Molecular approaches targeting specific phylogenetic marker genes have facilitated taxonomic classification of AF, which had been previously been complicated by the complex life cycles and associated morphologies. Although we now have a much better understanding of their diversity, it is believed that there are still numerous genera of AF that remain to be described in gut ecosystems. Recent marker-gene based studies have shown that fungal diversity in the herbivore gut is much like the bacterial population, driven by host phylogeny, host genetics and diet. Since AF are major contributors to the degradation of plant material ingested by the host animal, it is understandable that there has been great interest in exploring the enzymatic repertoire of these microorganisms in order to establish a better understanding of how AF, and their enzymes, can be used to improve host health and performance, while simultaneously reducing the ecological footprint of the livestock industry. A detailed understanding of AF and their interaction with other gut microbes as well as the host animal is essential, especially when production of affordable high-quality protein and other animal-based products needs to meet the demands of an increasing human population. Such a mechanistic understanding, leading to more sustainable livestock practices, will be possible with recently developed -omics technologies that have already provided first insights into the different contributions of the fungal and bacterial population in the rumen during plant cell wall hydrolysis.

See more in PubMed

Akin D. E., Borneman W. S. (1990). Role of rumen fungi in fiber degradation. J. Dairy Sci. 73 3023–3032. 10.3168/jds.s0022-0302(90)78989-8 PubMed DOI

Akin D. E., Gordon G. L., Hogan J. P. (1983). Rumen bacterial and fungal degradation of Digitaria pentzii grown with or without sulfur. Appl. Environ. Microbiol. 46 738–748. 10.1128/aem.46.3.738-748.1983 PubMed DOI PMC

Asao N., Ushida K., Kojima Y. (1993). Proteolytic activity of rumen fungi belonging to the genera Neocallimastix and Piromyces. Lett. Appl. Microbiol. 16 247–250. 10.1111/j.1472-765x.1993.tb01410.x DOI

Baldwin R. L., Allison M. J. (1983). Rumen metabolism. J. Anim. Sci. 57 461–477. PubMed

Barr D. J. S. (1980). An outline for the reclassification of the Chytridiales, and for a new order, the Spizellomycetales. Can. J. Bot. 58 2380–2394. 10.1139/b80-276 DOI

Barr D. J. S. (1988). How modern systematics relates to the rumen fungi. Biosystems 21 351–356. 10.1016/0303-2647(88)90032-9 PubMed DOI

Barr D. J. S., Kudo H., Jakober K. D., Cheng K. J. (1989). Morphology and development of rumen fungi: Neocallimastix sp., Piromyces communis, and Orpinomyces bovis gen.nov., sp.nov. Can. J. Bot. 67 2815–2824. 10.1139/b89-361 DOI

Bauchop T. (1979). Rumen anaerobic fungi of cattle and sheep. Appl. Environ. Microbiol. 38 148–158. 10.1128/aem.38.1.148-158.1979 PubMed DOI PMC

Bauchop T. (1989). Biology of gut anaerobic fungi. Biosystems 23 53–64. 10.1016/0303-2647(89)90008-7 PubMed DOI

Bauchop T., Mountfort D. O. (1981). Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl. Environ. Microbiol. 42 1103–1110. 10.1128/aem.42.6.1103-1110.1981 PubMed DOI PMC

Bayer E. A., Belaich J. P., Shoham Y., Lamed R. (2004). The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58 521–554. 10.1146/annurev.micro.57.030502.091022 PubMed DOI

Bedford M. R., Schulze H. (1998). Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 11 91–114. 10.1079/nrr19980007 PubMed DOI

Belanche A., Doreau M., Edwards J. E., Moorby J. M., Pinloche E., Newbold C. J. (2012). Shifts in the rumen microbiota due to the type of carbohydrate and level of protein ingested by dairy cattle are associated with changes in rumen fermentation. J. Nutr. 142 1684–1692. 10.3945/jn.112.159574 PubMed DOI

Boots B., Lillis L., Clipson N., Petrie K., Kenny D. A., Boland T. M., et al. (2013). Responses of anaerobic rumen fungal diversity (phylum Neocallimastigomycota) to changes in bovine diet. J. Appl. Microbiol. 114 626–635. 10.1111/jam.12067 PubMed DOI

Borrel G., O’Toole P. W., Harris H. M. B., Peyret P., Brugère J.-F., Gribaldo S. (2013). Phylogenomic data support a seventh order of methylotrophic methanogens and provide insights into the evolution of methanogenesis. Genome Biol. Evol. 5 1769–1780. 10.1093/gbe/evt128 PubMed DOI PMC

Braune R. A. (1913). Untersuchungen über die im wiederkäuermagen vorkommenden protozoen. Arch. Protistenk. 32 111–170.

Breton A., Bernalier A., Dusser M., Fonty G., Gaillard-Martinie B., Guillot J. (1990). Anaeromyces mucronatus nov. gen., nov. sp. A new strictly anaerobic rumen fungus with polycentric thallus. FEMS Microbiol. Lett. 58 177–182. 10.1111/j.1574-6968.1990.tb13974.x PubMed DOI

Brookman J. L., Ozkose E., Rogers S., Trinci A. P. J., Theodorou M. K. (2000). Identification of spores in the polycentric anaerobic gut fungi which enhance their ability to survive. FEMS Microbiol. Ecol. 31 261–267. 10.1111/j.1574-6941.2000.tb00692.x PubMed DOI

Callaghan T. M., Podmirseg S. M., Hohlweck D., Edwards J. E., Puniya A. K., Dagar S. S., et al. (2015). Buwchfawromyces eastonii gen. nov., sp. nov.: a new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. Mycokeys 9 11–28. 10.3897/mycokeys.9.9032 DOI

Capper J. L., Bauman D. E. (2013). The role of productivity in improving the environmental sustainability of ruminant production systems. Annu. Rev. Anim. Biosci. 1 469–489. 10.1146/annurev-animal-031412-103727 PubMed DOI

Cheng H. L., Hu C. Y., Lin S. H., Wang J. Y., Liu J. R., Chen Y. C. (2014). Characterization of two truncated forms of xylanase recombinantly expressed by Lactobacillus reuteri with an introduced rumen fungal xylanase gene. Enzyme Microb. Technol. 64–65 6–10. 10.1016/j.enzmictec.2014.06.004 PubMed DOI

Cheng Y. F., Edwards J. E., Allison G. G., Zhu W. Y., Theodorou M. K. (2009). Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. Bioresour. Technol. 100 4821–4828. 10.1016/j.biortech.2009.04.031 PubMed DOI

Clauss M., Dittmann M. T., Vendl C., Hagen K. B., Frei S., Ortmann S., et al. (2020). Review: comparative methane production in mammalian herbivores. Animal 14 s113–s123. PubMed

Couger M. B., Youssef N. H., Struchtemeyer C. G., Liggenstoffer A. S., Elshahed M. S. (2015). Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungal isolate Orpinomyces sp. strain C1A. Biotechnol. Biofuels 8:208. PubMed PMC

Dagar S. S., Kumar S., Griffith G. W., Edwards J. E., Callaghan T. M., Singh R., et al. (2015). A new anaerobic fungus (Oontomyces anksri gen. nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biol. 119 731–737. 10.1016/j.funbio.2015.04.005 PubMed DOI

Dagar S. S., Kumar S., Mudgil P., Singh R., Puniya A. K. (2011). D1/D2 domain of large-subunit ribosomal DNA for differentiation of Orpinomyces spp. Appl. Environ. Microbiol. 77 6722–6725. 10.1128/aem.05441-11 PubMed DOI PMC

Davidson E. A., van der Giezen M., Horner D. S., Embley T. M., Howe C. J. (2002). An [Fe] hydrogenase from the anaerobic hydrogenosome-containing fungus Neocallimastix frontalis L2. Gene 296 45–52. 10.1016/s0378-1119(02)00873-9 PubMed DOI

Davies D. R., Theodorou M. K., Brooks A. E., Trinci A. P. (1993). Influence of drying on the survival of anaerobic fungi in rumen digesta and faeces of cattle. FEMS Microbiol. Lett. 106 59–63. 10.1111/j.1574-6968.1993.tb05935.x PubMed DOI

Dearing M. D., Kohl K. D. (2017). Beyond fermentation: other important services provided to endothermic herbivores by their gut microbiota. Integr. Comp. Biol. 57 723–731. 10.1093/icb/icx020 PubMed DOI

Dehority B. A. (2002). Gastrointestinal tracts of herbivores, particularly the ruminant: anatomy, physiology and microbial digestion of plants. J. Appl. Anim. Res. 21 145–160. 10.1080/09712119.2002.9706367 DOI

Denman S. E., McSweeney C. S. (2006). Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58 572–582. 10.1111/j.1574-6941.2006.00190.x PubMed DOI

Dey A., Sehgal J. P., Puniya A. K., Singh K. (2004). Influence of an anaerobic fungal culture (Orpinomyces sp.) administration on growth rate, ruminal fermentation and nutrient digestion in calves. Asian Australas. J. Anim. Sci. 17 820–824. 10.5713/ajas.2004.820 DOI

Dollhofer V., Callaghan T. M., Dorn-In S., Bauer J., Lebuhn M. (2016). Development of three specific PCR-based tools to determine quantity, cellulolytic transcriptional activity and phylogeny of anaerobic fungi. J. Microbiol. Methods 127 28–40. 10.1016/j.mimet.2016.05.017 PubMed DOI

Dollhofer V., Callaghan T. M., Griffith G. W., Lebuhn M., Bauer J. (2017). Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants. Bioresour. Technol. 235 131–139. 10.1016/j.biortech.2017.03.116 PubMed DOI

Duarte I., Huynen M. A. (2019). Contribution of lateral gene transfer to the evolution of the eukaryotic fungus Piromyces sp. E2: massive bacterial transfer of genes involved in carbohydrate metabolism. bioRxiv [Preprint] 10.1101/514042 DOI

Durham A. E. (2013). “Intestinal disease,” in Equine Applied and Clinical Nutrition, eds Geor R. J., Harris P. A., Coenen M. (Philadelphia, PA: W.B. Saunders; ), 568–581.

Ebersberger I., de Matos Simoes R., Kupczok A., Gube M., Kothe E., Voigt K., et al. (2012). A consistent phylogenetic backbone for the fungi. Mol. Biol. Evol. 29 1319–1334. 10.1093/molbev/msr285 PubMed DOI PMC

Edwards J. E., Forster R. J., Callaghan T. M., Dollhofer V., Dagar S. S., Cheng Y., et al. (2017). PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: insights, challenges and opportunities. Front. Microbiol. 8:1657. 10.3389/fmicb.2017.01657 PubMed DOI PMC

Edwards J. E., Hermes G. D. A., Kittelmann S., Nijsse B., Smidt H. (2019). Assessment of the accuracy of high-throughput sequencing of the ITS1 region of Neocallimastigomycota for community composition analysis. Front. Microbiol. 10:2370. 10.3389/fmicb.2019.02370 PubMed DOI PMC

Edwards J. E., Kingston-Smith A. H., Jimenez H. R., Huws S. A., Skot K. P., Griffith G. W., et al. (2008). Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen. FEMS Microbiol. Ecol. 66 537–545. 10.1111/j.1574-6941.2008.00563.x PubMed DOI

Edwards J. E., Schennink A., Burden F., Long S., van Doorn D. A., Pellikaan W. F., et al. (2020a). Domesticated equine species and their derived hybrids differ in their fecal microbiota. Anim. Microbiome 2:8. PubMed PMC

Edwards J. E., Shetty S. A., van den Berg P., Burden F., van Doorn D. A., Pellikaan W. F., et al. (2020b). Multi-kingdom characterization of the core equine fecal microbiota based on multiple equine (sub)species. Anim. Microbiome 2:6 10.1111/eve.03_12792 PubMed DOI PMC

Elekwachi C. O., Wang Z., Wu X., Rabee A., Forster R. J. (2017). Total rRNA-Seq analysis gives insight into bacterial, fungal, protozoal and archaeal communities in the rumen using an optimized RNA isolation method. Front. Microbiol. 8:1814. 10.3389/fmicb.2017.01814 PubMed DOI PMC

Elliott R., Ash A. J., Calderon-Cortes F., Norton B. W., Bauchop T. (1987). The influence of anaerobic fungi on rumen volatile fatty acid concentrations in vivo. J. Agric. Sci. 109 13–17. 10.1017/s0021859600080928 DOI

Embley T. M., Finlay B. J. (1994). The use of small subunit rRNA sequences to unravel the relationships between anaerobic ciliates and their methanogen endosymbionts. Microbiology 140(Pt 2), 225–235. 10.1099/13500872-140-2-225 PubMed DOI

Fanutti C., Ponyi T., Black G. W., Hazlewood G. P., Gilbert H. J. (1995). The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J. Biol. Chem. 270 29314–29322. 10.1074/jbc.270.49.29314 PubMed DOI

Ferry J. G. (2010). How to make a living by exhaling methane. Annu. Rev. Microbiol. 64 453–473. 10.1146/annurev.micro.112408.134051 PubMed DOI

Finlay B. J., Esteban G., Clarke K. J., Williams A. G., Embley T. M., Hirt R. P. (1994). Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol. Lett. 117 157–161. 10.1111/j.1574-6968.1994.tb06758.x PubMed DOI

Fontes C. M., Gilbert H. J. (2010). Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annu. Rev. Biochem. 79 655–681. 10.1146/annurev-biochem-091208-085603 PubMed DOI

Fonty G., Grenet E. (1994). “Effects of diet on the fungal population of the digestive tract of ruminants,” in Anaerobic Fungi: Biology, Ecology and Function, eds Mountfort D. O., Orpin C. G. (New York, NY: Marcel Dekker; ), 229–239. 10.1201/9781003067085-8 DOI

France J., Theodorou M. K., Davies D. (1990). Use of zoospore concentrations and life cycle parameters in determining the population of anaerobic fungi in the rumen ecosystem. J. Theor. Biol. 147 413–422. 10.1016/s0022-5193(05)80496-5 PubMed DOI

Garcia-Vallvé S., Romeu A., Palau J. (2000). Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol. Biol. Evol. 17 352–361. 10.1093/oxfordjournals.molbev.a026315 PubMed DOI

Gay L. (1991). Chitin content and chitin synthase activity as indicators of the growth of three different anaerobic rumen fungi. FEMS Microbiol. Lett. 64 99–102. 10.1111/j.1574-6968.1991.tb04643.x PubMed DOI

Gilmore S. P., Lankiewicz T. S., Wilken S. E., Brown J. L., Sexton J. A., Henske J. K., et al. (2019). Top-down enrichment guides in formation of synthetic microbial consortia for biomass degradation. ACS Synth. Biol. 8 2174–2185. 10.1021/acssynbio.9b00271 PubMed DOI

Gilmore S. P., Lillington S. P., Haitjema C. H., de Groot R., O’Malley M. A. (2020). Designing chimeric enzymes inspired by fungal cellulosomes. Synth. Syst. Biotechnol. 5 23–32. 10.1016/j.synbio.2020.01.003 PubMed DOI PMC

Gold J. J., Heath I. B., Bauchop T. (1988). Ultrastructural description of a new chytrid genus of caecum anaerobe, Caecomyces equi gen. nov., sp. nov., assigned to the Neocallimasticaceae. Biosystems 21 403–415. 10.1016/0303-2647(88)90039-1 PubMed DOI

Gordon G. L., Phillips M. W. (1998). The role of anaerobic gut fungi in ruminants. Nutr. Res. Rev. 11 133–168. 10.1079/nrr19980009 PubMed DOI

Gordon G. L., Phillips M. W. (2002). Fungal sulphur source and methods of using the same. U.S. Patent No 645,858,0B1. Washington, DC: U.S. Patent and Trademark Office.

Gordon G. L. R., Gulati S. K., Ashes J. R. (1983). Influence of low-sulphur straw on anaerobic fungal numbers in a sheep rumen. Proc. Nutr. Soc. Aust. 8:188.

Gordon G. L. R., Phillips M. W. (1993). Removal of anaerobic fungi from the rumen of sheep by chemical treatment and the effect on feed consumption and in vivo fibre digestion. Lett. Appl. Microbiol. 17 220–223. 10.1111/j.1472-765x.1993.tb01451.x DOI

Griffith G. W., Ozkose E., Theodorou M. K., Davies D. R. (2009). Diversity of anaerobic fungal populations in cattle revealed by selective enrichment culture using different carbon sources. Fungal Ecol. 2 87–97. 10.1016/j.funeco.2009.01.005 DOI

Grigoriev I. V., Nikitin R., Haridas S., Kuo A., Ohm R., Otillar R., et al. (2013). MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 42 D699–D704. PubMed PMC

Gulati S. K., Ashes J. R., Gordon G. L. (1988). Digestibility of sulphur amino acids in rumen fungal species. Proc. Nutr. Soc. Aust. 13:133.

Gulati S. K., Ashes J. R., Gordon G. L. R. (1990). Comparative digestibility of sulphur amino acids in rumen bacteria and fungal proteins by sheep. Proc. Nutr. Aust. 15 128–131.

Gulati S. K., Ashes J. R., Gordon G. L. R., Connell P. J., Rogers P. L. (1989). Nutritional availability of amino acids from the rumen anaerobic fungus Neocallimastix sp. LM1 in sheep. J. Agric. Sci. 113 383–387. 10.1017/s002185960007009x DOI

Gulati S. K., Ashes J. R., Gordon G. L. R., Phillips M. W. (1985). Possible contribution of rumen fungi to fibre digestion in sheep. Proc. Nutr. Soc. Aust. 10:96.

Hagen L. H., Brooke C. G., Shaw C., Norbeck A. D., Piao H., Arntzen M. Ø., et al. (2020). Proteome specialization of anaerobic fungi during ruminal degradation of recalcitrant plant fiber. ISME J. 10.1038/s41396-020-00769-x [Epub ahead of print]. PubMed DOI PMC

Haitjema C. H., Gilmore S. P., Henske J. K., Solomon K. V., de Groot R., Kuo A., et al. (2017). A parts list for fungal cellulosomes revealed by comparative genomics. Nat. Microbiol. 2:17087. PubMed

Haitjema C. H., Solomon K. V., Henske J. K., Theodorou M. K., O’Malley M. A. (2014). Anaerobic gut fungi: advances in isolation, culture, and cellulolytic enzyme discovery for biofuel production. Biotechnol. Bioeng. 111 1471–1482. 10.1002/bit.25264 PubMed DOI

Hanafy R. A., Elshahed M. S., Liggenstoffer A. S., Griffith G. W., Youssef N. H. (2017). Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia 109 231–243. 10.1080/00275514.2017.1317190 PubMed DOI

Hanafy R. A., Elshahed M. S., Youssef N. H. (2018). Feramyces austinii, gen. nov., sp. nov., an anaerobic gut fungus from rumen and fecal samples of wild Barbary sheep and fallow deer. Mycologia 110 513–525. 10.1080/00275514.2018.1466610 PubMed DOI

Hanafy R. A., Lanjekar V. B., Dhakephalkar P. K., Callaghan T. M., Dagar S. S., Griffith G. W., et al. (2020). Seven new Neocallimastigomycota genera from wild, zoo-housed, and domesticated herbivores greatly expand the taxonomic diversity of the phylum. Mycologia 10.1080/00275514.2019.1696619 [Epub ahead of print]. PubMed DOI

Heath I. B., Bauchop T., Skipp R. A. (1983). Assignment of the rumen anaerobe Neocallimastix frontalis to the Spizellomycetales (Chytridiomycetes) on the basis of its polyflagellate zoospore ultrastructure. Can. J. Bot. 61 295–307. 10.1139/b83-033 DOI

Heath I. B., Kaminskyj S. G., Bauchop T. (1986). Basal body loss during fungal zoospore encystment: evidence against centriole autonomy. J. Cell Sci. 83 135–140. PubMed

Hegarty R., Gerdes R. (1999). Hydrogen production and transfer in the rumen. Recent Adv. Anim. Nutr. Aust. 12 37–44.

Henderson G., Cox F., Ganesh S., Jonker A., Young W., Global Rumen Census C., et al. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5:14567. PubMed PMC

Henske J. K., Gilmore S. P., Knop D., Cunningham F. J., Sexton J. A., Smallwood C. R., et al. (2017). Transcriptomic characterization of Caecomyces churrovis: a novel, non-rhizoid-forming lignocellulolytic anaerobic fungus. Biotechnol. Biofuels 10:305. PubMed PMC

Henske J. K., Wilken S. E., Solomon K. V., Smallwood C. R., Shutthanandan V., Evans J. E., et al. (2018). Metabolic characterization of anaerobic fungi provides a path forward for bioprocessing of crude lignocellulose. Biotechnol. Bioeng. 115 874–884. 10.1002/bit.26515 PubMed DOI

Hess M., Sczyrba A., Egan R., Kim T., Chokhawala H., Schroth G., et al. (2011). Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331 463–467. 10.1126/science.1200387 PubMed DOI

Hibbett D. S., Binder M., Bischoff J. F., Blackwell M., Cannon P. F., Eriksson O. E., et al. (2007). A higher-level phylogenetic classification of the Fungi. Mycol. Res. 111 509–547. PubMed

Ho Y. W., Abdullah N., Jalaludin S. (1988). Penetrating structures of anaerobic rumen fungi in cattle and swamp buffalo. Microbiology 134 177–181. 10.1099/00221287-134-1-177 DOI

Ho Y. W., Bauchop T. (1991). Morphology of three polycentric rumen fungi and description of a procedure for the induction of zoosporogenesis and release of zoospores in cultures. J. Gen. Microbiol. 137 213–217. 10.1099/00221287-137-1-213 PubMed DOI

Huws S. A., Creevey C. J., Oyama L. B., Mizrahi I., Denman S. E., Popova M., et al. (2018). Addressing global ruminant agricultural challenges through understanding the rumen microbiome: past, present, and future. Front. Microbiol. 9:2161. 10.3389/fmicb.2018.02161 PubMed DOI PMC

Irbis C., Ushida K. (2004). Detection of methanogens and proteobacteria from a single cell of rumen ciliate protozoa. J. Gen. Appl. Microbiol. 50 203–212. 10.2323/jgam.50.203 PubMed DOI

Ishaq S. L., AlZahal O., Walker N., McBride B. (2017). An investigation into rumen fungal and protozoal diversity in three rumen fractions, during high-fiber or grain-induced sub-acute ruminal acidosis conditions, with or without active dry yeast supplementation. Front. Microbiol. 8:1943. 10.3389/fmicb.2017.01943 PubMed DOI PMC

Janssen P. H. (2010). Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Technol. 160 1–22. 10.1016/j.anifeedsci.2010.07.002 DOI

Jeyanathan J., Martin C., Morgavi D. P. (2014). The use of direct-fed microbials for mitigation of ruminant methane emissions: a review. Animal 8 250–261. 10.1017/s1751731113002085 PubMed DOI

Jin W., Cheng Y. F., Mao S. Y., Zhu W. Y. (2011). Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresour. Technol. 102 7925–7931. 10.1016/j.biortech.2011.06.026 PubMed DOI

Joblin K. N., Campbell G. P., Richardson A. J., Stewart C. S. (1989). Fermentation of barley straw by anaerobic rumen bacteria and fungi in axenic culture and in co-culture with methanogens. Lett. Appl. Microbiol. 9 195–197. 10.1111/j.1472-765x.1989.tb00323.x DOI

Joshi A., Lanjekar V. B., Dhakephalkar P. K., Callaghan T. M., Griffith G. W., Dagar S. S. (2018). Liebetanzomyces polymorphus gen. et sp. nov., a new anaerobic fungus (Neocallimastigomycota) isolated from the rumen of a goat. Mycokeys 40 89–110. PubMed PMC

Julliand V., Grimm P. (2017). The impact of diet on the hindgut microbiome. J. Equine Vet. Sci. 52 23–28. 10.1016/j.jevs.2017.03.002 DOI

Julliand V., Riondet C., de Vaux A., Alcaraz G., Fonty G. (1998). Comparison of metabolic activities between Piromyces citronii, an equine fungal species, and Piromyces communis, a ruminal species. Anim. Feed Sci. Technol. 70 161–168. 10.1016/s0377-8401(97)00043-6 DOI

Kittelmann S., Naylor G. E., Koolaard J. P., Janssen P. H. (2012). A proposed taxonomy of anaerobic fungi (class neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS One 7:e36866. 10.1371/journal.pone.0036866 PubMed DOI PMC

Kittelmann S., Pinares-Patino C. S., Seedorf H., Kirk M. R., Ganesh S., McEwan J. C., et al. (2014). Two different bacterial community types are linked with the low-methane emission trait in sheep. PLoS One 9:e103171. 10.1371/journal.pone.0103171 PubMed DOI PMC

Kittelmann S., Seedorf H., Walters W. A., Clemente J. C., Knight R., Gordon J. I., et al. (2013). Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS One 8:e47879. 10.1371/journal.pone.0047879 PubMed DOI PMC

Koetschan C., Kittelmann S., Lu J., Al-Halbouni D., Jarvis G. N., Müller T., et al. (2014). Internal transcribed spacer 1 secondary structure analysis reveals a common core throughout the anaerobic fungi (Neocallimastigomycota). PLoS One 9:e91928. 10.1371/journal.pone.0091928 PubMed DOI PMC

Kok C. M., Sieo C. C., Tan H. Y., Saad W. Z., Liang J. B., Ho Y. W. (2013). Anaerobic cellulolytic rumen fungal populations in goats fed with and without Leucaena leucocephala hybrid, as determined by real-time PCR. J. Microbiol. 51 700–703. 10.1007/s12275-013-2540-z PubMed DOI

Kostyukovsky V. A., Okunev O. N., Tarakanov B. V. (1991). Description of two anaerobic fungal strains from the bovine rumen and influence of diet on the fungal population in vivo. J. Gen. Microbiol. 137 1759–1764. 10.1099/00221287-137-7-1759 PubMed DOI

Krauss J., Zverlov V. V., Schwarz W. H. (2012). In vitro reconstitution of the complete Clostridium thermocellum cellulosome and synergistic activity on crystalline cellulose. Appl. Environ. Microbiol. 78 4301–4307. 10.1128/aem.07959-11 PubMed DOI PMC

Lamed R., Setter E., Bayer E. A. (1983). Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J. Bacteriol. 156 828–836. 10.1128/jb.156.2.828-836.1983 PubMed DOI PMC

Lee S. S., Ha J. K., Cheng K. J. (2000a). Influence of an anaerobic fungal culture administration on in vivo ruminal fermentation and nutrient digestion. Anim. Feed Sci. Technol. 88 201–217. 10.1016/s0377-8401(00)00216-9 DOI

Lee S. S., Ha J. K., Cheng K. J. (2000b). Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Appl. Environ. Microbiol. 66 3807–3813. 10.1128/aem.66.9.3807-3813.2000 PubMed DOI PMC

Li Y., Jin W., Mu C., Cheng Y., Zhu W. (2017). Indigenously associated methanogens intensified the metabolism in hydrogenosomes of anaerobic fungi with xylose as substrate. J. Basic Microbiol. 57 933–940. 10.1002/jobm.201700132 PubMed DOI

Li Y., Li Y., Jin W., Sharpton T. J., Mackie R. I., Cann I., et al. (2019). Combined genomic, transcriptomic, proteomic, and physiological characterization of the growth of Pecoramyces sp. F1 in monoculture and co-culture with a syntrophic methanogen. Front. Microbiol. 10:435. 10.3389/fmicb.2019.00435 PubMed DOI PMC

Liebetanz E. (1910). Die parasitischen protozoen des wiederkauermagens. Arch. Protistenkunde 19 19–90.

Liggenstoffer A. S., Youssef N. H., Couger M. B., Elshahed M. S. (2010). Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. ISME J. 4 1225–1235. 10.1038/ismej.2010.49 PubMed DOI

Liu C., Meng Q., Chen Y., Xu M., Shen M., Gao R., et al. (2017). Role of age-related shifts in rumen bacteria and methanogens in methane production in cattle. Front. Microbiol. 8:1563. 10.3389/fmicb.2017.01563 PubMed DOI PMC

Liu J. R., Yu B., Lin S. H., Cheng K. J., Chen Y. C. (2005a). Direct cloning of a xylanase gene from the mixed genomic DNA of rumen fungi and its expression in intestinal Lactobacillus reuteri. FEMS Microbiol. Lett. 251 233–241. 10.1016/j.femsle.2005.08.008 PubMed DOI

Liu J. R., Yu B., Liu F. H., Cheng K. J., Zhao X. (2005b). Expression of rumen microbial fibrolytic enzyme genes in probiotic Lactobacillus reuteri. Appl. Environ. Microbiol. 71 6769–6775. 10.1128/aem.71.11.6769-6775.2005 PubMed DOI PMC

Liu J. R., Yu B., Zhao X., Cheng K. J. (2007). Coexpression of rumen microbial beta-glucanase and xylanase genes in Lactobacillus reuteri. Appl. Microbiol. Biotechnol. 77 117–124. 10.1007/s00253-007-1123-5 PubMed DOI

Ljungdahl L. G. (2008). The cellulase/hemicellulase system of the anaerobic fungus Orpinomyces PC-2 and aspects of its applied use. Ann. N. Y. Acad. Sci. 1125 308–321. 10.1196/annals.1419.030 PubMed DOI

Lowe S. E., Grifith G. G., Milne A., Theodorou M. K., Trinci A. P. J. (1987a). The life cycle and growth kinetics of an anaerobic rumen fungus. J. Gen. Microbiol. 133 1815–1827. 10.1099/00221287-133-7-1815 DOI

Lowe S. E., Theodorou M. K., Trinci A. P. J. (1987b). Isolation of anaerobic fungi from saliva and faeces of sheep. Microbiology 133 1829–1834. 10.1099/00221287-133-7-1829 DOI

Lyu Z., Shao N., Akinyemi T., Whitman W. B. (2018). Methanogenesis. Curr. Biol. 28 R727–R732. PubMed

Marinier S. L., Alexander A. J. (1995). Coprophagy as an avenue for foals of the domestic horse to learn food preferences from their dams. J. Theor. Biol. 173 121–124. 10.1006/jtbi.1995.0049 DOI

Marvin-Sikkema F. D., Pedro Gomes T. M., Grivet J.-P., Gottschal J. C., Prins R. A. (1993). Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2. Arch. Microbiol. 160 388–396. PubMed

Marvin-Sikkema F. D., Richardson A. J., Stewart C. S., Gottschal J. C., Prins R. A. (1990). Influence of hydrogen-consuming bacteria on cellulose degradation by anaerobic fungi. Appl. Environ. Microbiol. 56 3793–3797. 10.1128/aem.56.12.3793-3797.1990 PubMed DOI PMC

Matsui H., Ushida K., Kojima Y. (1997). Effect of dietary concentrate on fungal zoosporogenesis in sheep rumen. Asian Australas. J. Anim. Sci. 10 599–602. 10.5713/ajas.1997.599 DOI

McAllister T. A., Dong Y., Yanke L. J., Bae H. D., Cheng K. J., Costerton J. W. (1993). Cereal grain digestion by selected strains of ruminal fungi. Can. J. Microbiol. 39 367–376. 10.1139/m93-054 PubMed DOI

McGranaghan P., Davies J. C., Griffith G. W., Davies D. R., Theodorou M. K. (1999). The survival of anaerobic fungi in cattle faeces. FEMS Microbiol. Ecol. 29 293–300. 10.1111/j.1574-6941.1999.tb00620.x DOI

McSweeney C. S., Denman S. E. (2007). Effect of sulfur supplements on cellulolytic rumen micro-organisms and microbial protein synthesis in cattle fed a high fibre diet. J. Appl. Microbiol. 103 1757–1765. 10.1111/j.1365-2672.2007.03408.x PubMed DOI

McSweeney C. S., Palmer B., Bunch R., Krause D. O. (2001). Effect of the tropical forage calliandra on microbial protein synthesis and ecology in the rumen. J. Appl. Microbiol. 90 78–88. 10.1046/j.1365-2672.2001.01220.x PubMed DOI

Michel V., Fonty G., Millet L., Bonnemoy F., Gouet P. (1993). In vitro study of the proteolytic activity of rumen anaerobic fungi. FEMS Microbiol. Lett. 110 5–9. 10.1111/j.1574-6968.1993.tb06287.x PubMed DOI

Milne A., Theodorou M. K., Jordan M. G. C., Kingspooner C., Trinci A. P. J. (1989). Survival of anaerobic fungi in feces, in saliva, and in pure culture. Exp. Mycol. 13 27–37. 10.1016/0147-5975(89)90005-4 DOI

Mizrahi I. (2013). “Rumen symbioses,” in The Prokaryotes: Prokaryotic Biology and Symbiotic Associations, eds Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F. (Berlin: Springer; ), 533–544. 10.1007/978-3-642-30194-0_1 DOI

Morais S., Mizrahi I. (2019). Islands in the stream: from individual to communal fiber degradation in the rumen ecosystem. FEMS Microbiol. Rev. 43 362–379. 10.1093/femsre/fuz007 PubMed DOI PMC

Morgavi D. P., Kelly W. J., Janssen P. H., Attwood G. T. (2013). Rumen microbial (meta)genomics and its application to ruminant production. Animal 7 (Suppl. 1), 184–201. 10.1017/s1751731112000419 PubMed DOI

Morgavi D. P., Sakurada M., Mizokami M., Tomita Y., Onodera R. (1994). Effects of ruminal protozoa on cellulose degradation and the growth of an anaerobic ruminal fungus, Piromyces sp. strain OTS1, in vitro. Appl. Environ. Microbiol. 60 3718–3723. 10.1128/aem.60.10.3718-3723.1994 PubMed DOI PMC

Morrison M., Murray R. M., Boniface A. N. (1990). Nutrient metabolism and rumen micro-organisms in sheep fed a poor-quality tropical grass hay supplemented with sulphate. J. Agric. Sci. 115 269–275. 10.1017/s0021859600075237 DOI

Müller M. (1993). The hydrogenosome. J. Gen. Microbiol. 139 2879–2889. PubMed

Mura E., Edwards J., Kittelmann S., Kaerger K., Voigt K., Mrazek J., et al. (2019). Anaerobic fungal communities differ along the horse digestive tract. Fungal Biol. 123 240–246. 10.1016/j.funbio.2018.12.004 PubMed DOI

Murphy C. L., Youssef N. H., Hanafy R. A., Couger M. B., Stajich J. E., Wang Y., et al. (2019). Horizontal gene transfer as an indispensable driver for evolution of Neocallimastigomycota into a distinct gut-dwelling fungal lineage. Appl. Environ. Microbiol. 85:e00988-19. PubMed PMC

Nagaraja T. G. (2016). “Microbiology of the rumen,” in Rumenology, eds Millen D. D., De Beni Arrigoni M., Lauritano Pacheco R. D. (Cham: Springer International Publishing; ), 39–61.

Nagler M., Kozjek K., Etemadi M., Insam H., Podmirseg S. M. (2019). Simple yet effective: microbial and biotechnological benefits of rumen liquid addition to lignocellulose-degrading biogas plants. J. Biotechnol. 300 1–10. 10.1016/j.jbiotec.2019.05.004 PubMed DOI

Nagler M., Podmirseg S. M., Griffith G. W., Insam H., Ascher-Jenull J. (2018). The use of extracellular DNA as a proxy for specific microbial activity. Appl. Microbiol. Biotechnol. 102 2885–2898. 10.1007/s00253-018-8786-y PubMed DOI PMC

Nagy T., Tunnicliffe R. B., Higgins L. D., Walters C., Gilbert H. J., Williamson M. P. (2007). Characterization of a double dockerin from the cellulosome of the anaerobic fungus Piromyces equi. J. Mol. Biol. 373 612–622. 10.1016/j.jmb.2007.08.007 PubMed DOI

Obispo N. E., Dehority B. A. (1992). A most probable number method for enumeration of rumen fungi with studies on factors affecting their concentration in the rumen. J. Microbiol. Methods 16 259–270. 10.1016/0167-7012(92)90016-w DOI

Offre P., Spang A., Schleper C. (2013). Archaea in biogeochemical cycles. Annu. Rev. Microbiol. 67 437–457. 10.1146/annurev-micro-092412-155614 PubMed DOI

Orpin C. G. (1975). Studies on the rumen flagellate Neocallimastix frontalis. J. Gen. Microbiol. 91 249–262. 10.1099/00221287-91-2-249 PubMed DOI

Orpin C. G. (1976). Studies on the rumen flagellate Sphaeromonas communis. J. Gen. Microbiol. 94 270–280. 10.1099/00221287-94-2-270 PubMed DOI

Orpin C. G. (1977a). The occurrence of chitin in the cell walls of the rumen organisms Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis. J. Gen. Microbiol. 99 215–218. 10.1099/00221287-99-1-215 PubMed DOI

Orpin C. G. (1977b). The rumen flagellate Piromonas communis: its life-history and invasion of plant material in the rumen. J. Gen. Microbiol. 99 107–117. 10.1099/00221287-99-1-107 PubMed DOI

Orpin C. G. (1981). Isolation of cellulolytic phycomycete fungi from the caecum of the horse. J. Gen. Microbiol. 123 287–296. 10.1099/00221287-123-2-287 PubMed DOI

Orpin C. G. (1994). “Anaerobic fungi: taxonomy, biology and distribution in nature,” in Anaerobic Fungi, Vol. 12 eds Mountfort D. O., Orpin C. G. (New York, NY: Dekker; ), 1–45. 10.1201/9781003067085-1 DOI

Orpin C. G., Bountiff L. (1978). Zoospore chemotaxis in the rumen phycomycete Neocallimaslix frontalis. J. Gen. Microbiol. 104 113–122. 10.1099/00221287-104-1-113 PubMed DOI

Orpin C. G., Greenwood Y. (1986). The role of haems and related compounds in the nutrition and zoosporogenesis of the rumen chytridiomycete Neocallimastix frontalis H8. Microbiology 132 2179–2185. 10.1099/00221287-132-8-2179 DOI

Ozkose E., Thomas B. J., Davies D. R., Griffith G. W., Theodorou M. K. (2001). Cyllamyces aberensis gen.nov. sp.nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Can. J. Bot. 79 666–673. 10.1139/cjb-79-6-666 DOI

Partida-Martinez L. P., Monajembashi S., Greulich K. O., Hertweck C. (2007). Endosymbiont-dependent host reproduction maintains bacterial-fungal mutualism. Curr. Biol. 17 773–777. 10.1016/j.cub.2007.03.039 PubMed DOI

Paul S. S., Bu D., Xu J., Hyde K. D., Yu Z. (2018). A phylogenetic census of global diversity of gut anaerobic fungi and a new taxonomic framework. Fungal Divers. 89 253–266. 10.1007/s13225-018-0396-6 DOI

Paul S. S., Deb S. M., Punia B. S., Das K. S., Singh G., Ashar M. N., et al. (2011). Effect of feeding isolates of anaerobic fungus Neocallimastix sp. CF 17 on growth rate and fibre digestion in buffalo calves. Arch. Anim. Nutr. 65 215–228. 10.1080/1745039x.2011.559722 PubMed DOI

Paul S. S., Kamra D. N., Sastry V. R., Sahu N. P. (2006). Effect of adding an anaerobic fungal culture isolated from a wild blue bull (Boselophus tragocamelus) to rumen fluid from buffaloes on in vitro fibrolytic enzyme activity, fermentation and degradation of tannins and tannin-containing Kachnar tree (Bauhinia variegata) leaves and wheat straw. J. Sci. Food Agric. 86 258–270. 10.1002/jsfa.2303 DOI

Paul S. S., Kamra D. N., Sastry V. R., Sahu N. P., Kumar A. (2003). Effect of phenolic monomers on biomass and hydrolytic enzyme activities of an anaerobic fungus isolated from wild nil gai (Baselophus tragocamelus). Lett. Appl. Microbiol. 36 377–381. 10.1046/j.1472-765x.2003.01331.x PubMed DOI

Paul S. S., Kamra D. N., Sastry V. R. B., Sahu N. P., Agarwal N. (2004). Effect of administration of an anaerobic gut fungus isolated from wild blue bull (Boselaphus tragocamelus) to buffaloes (Bubalus bubalis) on in vivo ruminal fermentation and digestion of nutrients. Anim. Feed Sci. Technol. 115 143–157. 10.1016/j.anifeedsci.2004.01.010 DOI

Peng X. N., Gilmore S. P., O’Malley M. A. (2016). Microbial communities for bioprocessing: lessons learned from nature. Curr. Opin. Chem. Eng. 14 103–109. 10.1016/j.coche.2016.09.003 DOI

Phillips M. W., Gordon G. L. R. (1988). Sugar and polysaccharide fermentation by rumen anaerobic fungi from Australia, Britain and New Zealand. Biosystems 21 377–383. 10.1016/0303-2647(88)90036-6 PubMed DOI

Poulsen M., Schwab C., Borg Jensen B., Engberg R. M., Spang A., Canibe N., et al. (2013). Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nat. Commun. 4:1428. PubMed

Promkot C., Wanapat M. (2009). Effect of elemental sulfur supplementation on rumen environment parameters and utilization efficiency of fresh cassava foliage and cassava hay in dairy cattle. Asian Australas. J. Anim. Sci. 22 1366–1376. 10.5713/ajas.2009.90141 DOI

Reay D. S., Smith P., Christensen T. R., James R. H., Clark H. (2018). Methane and global environmental change. Annu. Rev. Environ. Resour. 43 165–192.

Rezaeian M., Beakes G. W., Parker D. S. (2004a). Distribution and estimation of anaerobic zoosporic fungi along the digestive tracts of sheep. Mycol. Res. 108(Pt 10), 1227–1233. 10.1017/s0953756204000929 PubMed DOI

Rezaeian M., Beakes G. W., Parker D. S. (2004b). Methods for the isolation, culture and assessment of the status of anaerobic rumen chytrids in both in vitro and in vivo systems. Mycol. Res. 108 1215–1226. 10.1017/s0953756204000917 PubMed DOI

Ribeiro G. O., Gruninger R. J., Badhan A., McAllister T. A. (2016). Mining the rumen for fibrolytic feed enzymes. Anim. Front. 6 20–26. 10.2527/af.2016-0019 PubMed DOI

Ricard G., McEwan N. R., Dutilh B. E., Jouany J.-P., Macheboeuf D., Mitsumori M., et al. (2006). Horizontal gene transfer from Bacteria to rumen Ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics 7:22. 10.1186/1471-2164-7-22 PubMed DOI PMC

Roehe R., Dewhurst R. J., Duthie C. A., Rooke J. A., McKain N., Ross D. W., et al. (2016). Bovine host genetic variation influences rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLoS Genet. 12:e1005846. 10.1371/journal.pgen.1005846 PubMed DOI PMC

Rotterová J., Salomaki E., Pánek T., Bourland W., Žihala D., Táborskı P., et al. (2020). Genomics of new ciliate lineages provides insight into the evolution of obligate anaerobiosis. Curr. Biol. 30 2037–2050.e6. PubMed

Saminathan M., Kumari Ramiah S., Gan H. M., Abdullah N., Wong C. M. V. L., Ho Y. W., et al. (2019). In vitro study on the effects of condensed tannins of different molecular weights on bovine rumen fungal population and diversity. Ital. J. Anim. Sci. 18 1451–1462. 10.1080/1828051x.2019.1681304 DOI

Sánchez-Rodríguez C., Bauer S., Hématy K., Saxe F., Ibáñez A. B., Vodermaier V., et al. (2012). Chitinase-like1/pom-pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis. Plant Cell 24 589–607. 10.1105/tpc.111.094672 PubMed DOI PMC

Saxena S., Sehgal J., Puniya A., Singh K. (2010). Effect of administration of rumen fungi on production performance of lactating buffaloes. Benef. Microbes 1 183–188. 10.3920/bm2009.0018 PubMed DOI

Sehgal J. P., Jit D., Puniya A. K., Singh K. (2008). Influence of anaerobic fungal administration on growth, rumen fermentation and nutrient digestion in female buffalo calves. J. Anim. Feed Sci. 17 510–518. 10.22358/jafs/66678/2008 DOI

Sekine J., Shinoda M., Kamel H., Oura R. (1995). Effect of kinds of bay on population densities of rumen anaerobic fungi. Indian J. Anim. Sci. 65 1352–1355.

Seshadri R., Leahy S. C., Attwood G. T., Teh K. H., Lambie S. C., Cookson A. L., et al. (2018). Cultivation and sequencing of rumen microbiome members from the Hungate1000 collection. Nat. Biotechnol. 36 359–367. 10.1038/nbt.4110 PubMed DOI PMC

Shi W., Moon C. D., Leahy S. C., Kang D., Froula J., Kittelmann S., et al. (2014). Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Res. 24 1517–1525. 10.1101/gr.168245.113 PubMed DOI PMC

Shirazi-Beechey S. P. (2008). Molecular insights into dietary induced colic in the horse. Equine Vet. J. 40 414–421. 10.2746/042516408x314075 PubMed DOI

Sijtsma L., Tan B. (1996). Degradation of perennial ryegrass leaf and stem cell walls by the anaerobic fungus Neocallimastix sp. strain CS3b. Appl. Environ. Microbiol. 62 1437–1440. 10.1128/aem.62.4.1437-1440.1996 PubMed DOI PMC

Solomon K. V., Haitjema C. H., Henske J. K., Gilmore S. P., Borges-Rivera D., Lipzen A., et al. (2016). Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351 1192–1195. 10.1126/science.aad1431 PubMed DOI PMC

Stewart R. D., Auffret M. D., Warr A., Walker A. W., Roehe R., Watson M. (2019). Compendium of 4,941 rumen metagenome-assembled genomes for rumen microbiome biology and enzyme discovery. Nat. Biotechnol. 37 953–961. 10.1038/s41587-019-0202-3 PubMed DOI PMC

Tapio I., Fischer D., Blasco L., Tapio M., Wallace R. J., Bayat A. R., et al. (2017). Taxon abundance, diversity, co-occurrence and network analysis of the ruminal microbiota in response to dietary changes in dairy cows. PLoS One 12:e0180260. 10.1371/journal.pone.0180260 PubMed DOI PMC

Tedersoo L., Sánchez-Ramírez S., Kõljalg U., Bahram M., Döring M., Schigel D., et al. (2018). High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers. 90 135–159. 10.1007/s13225-018-0401-0 DOI

Theodorou M. K., Gill M., King-Spooner C., Beever D. E. (1990). Enumeration of anaerobic chytridiomycetes as thallus-forming units: novel method for quantification of fibrolytic fungal populations from the digestive tract ecosystem. Appl. Environ. Microbiol. 56 1073–1078. 10.1128/aem.56.4.1073-1078.1990 PubMed DOI PMC

Theodorou M. K., Zhu W. Y., Rickers A., Nielsen B. B., Gull K., Trinci A. P. J. (1996). “Biochemistry and ecology of anaerobic fungi,” in Human and Animal Relationships, eds Howard D. H., Miller J. D. (Berlin: Springer; ), 265–295.

Trinci A. P. J., Davies D. R., Gull K., Lawrence M. I., Nielsen B. B., Rickers A., et al. (1994). Anaerobic fungi in herbivorous animals. Mycol. Res. 98 129–152. 10.1016/s0953-7562(09)80178-0 DOI

Tripathi V. K., Sehgal J. P., Puniya A. K., Singh K. (2007). Effect of administration of anaerobic fungi isolated from cattle and wild blue bull (Boselaphus tragocamelus) on growth rate and fibre utilization in buffalo calves. Arch. Anim. Nutr. 61 416–423. 10.1080/17450390701556759 PubMed DOI

Ushida K., Tanaka H., Kojima Y. (1989). A simple in situ method for estimating fungal population size in the rumen. Lett. Appl. Microbiol. 9 109–111. 10.1111/j.1472-765x.1989.tb00302.x DOI

Ushida K., Umeda M., Kishigami N., Kojima Y. (1992). Effect of medium-chain and long-chain fatty acid calcium salts on rumen microorganisms and fiber digestion in sheep. Nihon Chikusan Gakkaiho 63 591–597. 10.2508/chikusan.63.591 DOI

Valle E. R., Henderson G., Janssen P. H., Cox F., Alexander T. W., McAllister T. A. (2015). Considerations in the use of fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy to characterize rumen methanogens and define their spatial distributions. Can. J. Microbiol. 61 417–428. 10.1139/cjm-2014-0873 PubMed DOI

van der Giezen M. (2009). Hydrogenosomes and mitosomes: conservation and evolution of functions. J. Eukaryot. Microbiol. 56 221–231. 10.1111/j.1550-7408.2009.00407.x PubMed DOI

Vogels G. D., Hoppe W. F., Stumm C. K. (1980). Association of methanogenic bacteria with rumen ciliates. Appl. Environ. Microbiol. 40 608–612. 10.1128/aem.40.3.608-612.1980 PubMed DOI PMC

Wallace R. J., Joblin K. N. (1985). Proteolytic activity of a rumen anaerobic fungus. FEMS Microbiol. Lett. 29 19–25. 10.1111/j.1574-6968.1985.tb00828.x DOI

Wallace R. J., Munro C. A. (1986). Influence of the rumen anaerobic fungus Neocallimastix frontalis on the proteolytic activity of a defined mixture of rumen bacteria growing on a solid substrate. Lett. Appl. Microbiol. 3 23–26. 10.1111/j.1472-765x.1986.tb01539.x DOI

Wallace R. J., Sasson G., Garnsworthy P. C., Tapio I., Gregson E., Bani P., et al. (2019). A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci. Adv. 5:eaav8391. 10.1126/sciadv.aav8391 PubMed DOI PMC

Wang X., Liu X., Groenewald J. Z. (2017). Phylogeny of anaerobic fungi (phylum Neocallimastigomycota), with contributions from yak in China. Antonie Van Leeuwenhoek 110 87–103. 10.1007/s10482-016-0779-1 PubMed DOI PMC

Wang Y., Youssef N. H., Couger M. B., Hanafy R. A., Elshahed M. S., Stajich J. E. (2019). Molecular dating of the emergence of anaerobic rumen fungi and the impact of laterally acquired genes. mSystems 4:e00247-19. PubMed PMC

Weston R. H., Lindsay J. R., Purser D. B., Gordon G. L. R., Davis P. (1988). Feed intake and digestion responses in sheep to the addition of inorganic sulfur to a herbage diet of low sulfur content. Aust. J. Agric. Res. 39 1107–1119. 10.1071/ar9881107 DOI

Wilson C. A., Wood T. M. (1992). The anaerobic fungus Neocallimastix frontalis: isolation and properties of a cellulosome-type enzyme fraction with the capacity to solubilize hydrogen-bond-ordered cellulose. Appl. Microbiol. Biotechnol. 37 125–129.

Woese C. R., Fox G. E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. U.S.A. 74 5088–5090. 10.1073/pnas.74.11.5088 PubMed DOI PMC

Wubah D. A., Fuller M. S., Akin D. E. (1991). Resistant body formation in Neocallimastix sp., an anaerobic fungus from the rumen of cow. Mycologia 83 40–47. 10.2307/3759831 DOI

Wubah D. A., Kim D. S. H. (1996). Chemoattraction of anaerobic ruminai fungi zoospores to selected phenolic acids. Microbiol. Res. 151 257–262. 10.1016/s0944-5013(96)80022-x PubMed DOI

Wurzbacher C., Larsson E., Bengtsson-Palme J., Van den Wyngaert S., Svantesson S., Kristiansson E., et al. (2019). Introducing ribosomal tandem repeat barcoding for fungi. Mol. Ecol. Resour. 19 118–127. 10.1111/1755-0998.12944 PubMed DOI

Xue F., Nan X., Sun F., Pan X., Guo Y., Jiang L., et al. (2018). Metagenome sequencing to analyze the impacts of thiamine supplementation on ruminal fungi in dairy cows fed high-concentrate diets. AMB Express 8:159. PubMed PMC

Yanke L. J., Dong Y., McAllister T. A., Bae H. D., Cheng K. J. (1993). Comparison of amylolytic and proteolytic activities of ruminal fungi grown on cereal grains. Can. J. Microbiol. 39 817–820. 10.1139/m93-121 PubMed DOI

Yarlett N., Orpin C. G., Munn E. A., Yarlett N. C., Greenwood C. A. (1986). Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem. J. 236 729–739. 10.1042/bj2360729 PubMed DOI PMC

Youssef N. H., Couger M. B., Struchtemeyer C. G., Liggenstoffer A. S., Prade R. A., Najar F. Z., et al. (2013). The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl. Environ. Microbiol. 79 4620–4634. 10.1128/aem.00821-13 PubMed DOI PMC

Zhang Q., Difford G., Sahana G., Løvendahl P., Lassen J., Lund M. S., et al. (2020). Bayesian modeling reveals host genetics associated with rumen microbiota jointly influence methane emission in dairy cows. ISME J. 14 2019–2033. 10.1038/s41396-020-0663-x PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...