One-Dimensional Nanostructures of Polypyrrole for Shielding of Electromagnetic Interference in the Microwave Region

. 2020 Nov 21 ; 21 (22) : . [epub] 20201121

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33233379

Grantová podpora
DKRVO (RP/CPS/2020/006) Ministry of Education, Youth and Sports of the Czech Republic
grant No A2_FCHI_2020_030 specific university research

Polypyrrole one-dimensional nanostructures (nanotubes, nanobelts and nanofibers) were prepared using three various dyes (Methyl Orange, Methylene Blue and Eriochrome Black T). Their high electrical conductivity (from 17.1 to 60.9 S cm-1), good thermal stability (in the range from 25 to 150 °C) and resistivity against ageing (half-time of electrical conductivity around 80 days and better) were used in preparation of lightweight and flexible composites with silicone for electromagnetic interference shielding in the C-band region (5.85-8.2 GHz). The nanostructures' morphology and chemical structure were characterized by scanning electron microscopy, Brunauer-Emmett-Teller specific surface measurement and attenuated total reflection Fourier-transform infrared spectroscopy. DC electrical conductivity was measured using the Van der Pauw method. Complex permittivity and AC electrical conductivity of respective silicone composites were calculated from the measured scattering parameters. The relationships between structure, electrical properties and shielding efficiency were studied. It was found that 2 mm-thick silicone composites of polypyrrole nanotubes and nanobelts shield almost 80% of incident radiation in the C-band at very low loading of conductive filler in the silicone (5% w/w). Resulting lightweight and flexible polypyrrole composites exhibit promising properties for shielding of electromagnetic interference in sensitive biological and electronic systems.

Zobrazit více v PubMed

Masetti G., Graffi S., Golzio D., KovacsV Z.M. Failures induced on analog integrated circuits by conveyed electromagnetic interferences: A review. Microelectron. Reliab. 1996;36:955–972. doi: 10.1016/0026-2714(96)00025-X. DOI

Turczyn R., Krukiewicz K., Katunin A., Sroka J., Sul P. Fabrication and application of electrically conducting composites for electromagnetic interference shielding of remotely piloted aircraft systems. Compos. Struct. 2020;232:111498. doi: 10.1016/j.compstruct.2019.111498. DOI

Carlberg M., Hedendahl L., Ahonen M., Koppel T., Hardell L. Increasing incidence of thyroid cancer in the Nordic countries with main focus on Swedish data. BMC Cancer. 2016;16:426. doi: 10.1186/s12885-016-2429-4. PubMed DOI PMC

Carlberg M., Koppel T., Ahonen M., Hardell L. Case-control study on occupational exposure to extremely low-frequency electromagnetic fields and glioma risk. Am. J. Ind. Med. 2017;60:494–503. doi: 10.1002/ajim.22707. PubMed DOI

Carlberg M., Koppel T., Ahonen M., Hardell L. Case-Control Study on Occupational Exposure to Extremely Low-Frequency Electromagnetic Fields and the Association with Meningioma. BioMed Res. Int. 2018;2018:5912394. doi: 10.1155/2018/5912394. PubMed DOI PMC

Celozzi S., Araneo R., Lovat G. Electromagnetic Shielding. IEEE Press; Hoboken, NJ, USA: 2008. Wiley-Interscience.

Chung D.D.L. Materials for electromagnetic interference shielding. Mater. Chem. Phys. 2020;255:123587. doi: 10.1016/j.matchemphys.2020.123587. DOI

Singh A.K., Shishkin A., Koppel T., Gupta N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B Eng. 2018;149:188–197. doi: 10.1016/j.compositesb.2018.05.027. DOI

Kumar P., Maiti U.N., Sikdar A., Das T.K., Kumar A., Sudarsan V. Recent Advances in Polymer and Polymer Composites for Electromagnetic Interference Shielding: Review and Future Prospects. Polym. Rev. 2019;59:687–738. doi: 10.1080/15583724.2019.1625058. DOI

Jiang D.W., Murugadoss V., Wang Y., Lin J., Ding T., Wang Z.C., Shao Q., Wang C., Liu H., Lu N., et al. Electromagnetic Interference Shielding Polymers and Nanocomposites-A Review. Polym. Rev. 2019;59:280–337. doi: 10.1080/15583724.2018.1546737. DOI

Stejskal J., Trchová M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018;72:1563–1595. doi: 10.1007/s11696-018-0394-x. PubMed DOI

Stejskal J., Prokeš J. Conductivity and morphology of polyaniline and polypyrrole prepared in the presence of organic dyes. Synth. Met. 2020;264:116373. doi: 10.1016/j.synthmet.2020.116373. DOI

Madhusudhan C.K., Mahendra K., Madhukar B.S., Somesh T.E., Faisal M. Incorporation of graphite into iron decorated polypyrrole for dielectric and EMI shielding applications. Synth. Met. 2020;267:116450. doi: 10.1016/j.synthmet.2020.116450. DOI

Zhang K.C., Chen X.F., Gao X.B., Chen L., Ma S.Z., Xie C.Y., Zhang X.G., Lu W. Preparation and microwave absorption properties of carbon nanotubes/iron oxide/polypyrrole/carbon composites. Synth. Met. 2020;260:116282. doi: 10.1016/j.synthmet.2019.116282. DOI

Xie A., Jiang W.C., Wu F., Dai X.Q., Sun M.X., Wang Y., Wang M.Y. Interfacial synthesis of polypyrrole microparticles for effective dissipation of electromagnetic waves. J. Appl. Phys. 2015;118:204105. doi: 10.1063/1.4936549. DOI

Green M., Tran A.T.V., Chen X.B. Maximizing the microwave absorption performance of polypyrrole by data-driven discovery. Compos. Sci. Technol. 2020;199:108332. doi: 10.1016/j.compscitech.2020.108332. DOI

Sapurina I., Kazantseva N.E., Ryvkina N.G., Prokeš J., Sáha P., Stejskal J. Electromagnetic radiation shielding by composites of conducting polymers and wood. J. Appl. Polym. Sci. 2005;95:807–814. doi: 10.1002/app.21240. DOI

Babayan V., Kazantseva N.E., Moučka R., Stejskal J. Electromagnetic shielding of polypyrrole-sawdust composites: Polypyrrole globules and nanotubes. Cellulose. 2017;24:3445–3451. doi: 10.1007/s10570-017-1357-z. DOI

Yu L.J., Yang Q.X., Liao J.L., Zhu Y.F., Li X., Yang W.T., Fu Y.Q. A novel 3D silver nanowires@polypyrrole sponge loaded with water giving excellent microwave absorption properties. Chem. Eng. J. 2018;352:490–500. doi: 10.1016/j.cej.2018.07.047. DOI

Jiao Y.Z., Li J.J., Xie A.M., Wu F., Zhang K., Dong W., Zhu X.F. Confined polymerization strategy to construct polypyrrole/zeolitic imidazolate frameworks (PPy/ZIFs) nanocomposites for tunable electrical conductivity and excellent electromagnetic absorption. Compos. Sci. Technol. 2019;174:232–240. doi: 10.1016/j.compscitech.2019.03.003. DOI

Hong Y.K., Lee C.Y., Jeong C.K., Sim J.H., Kim K., Joo J., Kim M.S., Lee J.Y., Jeong S.H., Byun S.W. Electromagnetic interference shielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag. Curr. Appl. Phys. 2001;1:439–442. doi: 10.1016/S1567-1739(01)00054-2. DOI

Zhao H., Hou L., Lu Y.X. Electromagnetic interference shielding of layered linen fabric/polypyrrole/nickel (LF/PPy/Ni) composites. Mater. Des. 2016;95:97–106. doi: 10.1016/j.matdes.2016.01.088. DOI

Kim H.K., Byun S.W., Jeong S.H., Hong Y.K., Joo J.S., Song K., Park Y.H., Lee J.Y. Environmental staility of EMI shielding PET fabric/polypyrrole composite. Mol. Cryst. Liq. Cryst. 2002;377:369–372. doi: 10.1080/713738488. DOI

Kim M.S., Kim H.K., Byun S.W., Jeong S.H., Hong Y.K., Joo J.S., Song K.T., Kim J.K., Lee C.J., Lee J.Y. PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synth. Met. 2002;126:233–239. doi: 10.1016/S0379-6779(01)00562-8. DOI

Kim H.A., Kim M.S., Chun S.Y., Park Y.H., Jeon B.S., Lee J.Y., Hong Y.K., Joo J., Kim S.H. Characteristics of electrically conducting polymer-coated textiles. Mol. Cryst. Liq. Cryst. 2003;405:161–169. doi: 10.1080/15421400390263550. DOI

Gashti M.P., Ghehi S.T., Arekhloo S.V., Mirsmaeeli A., Kiumarsi A. Electromagnetic Shielding Response of UV-induced Polypyrrole/Silver Coated Wool. Fibers Polym. 2015;16:585–592. doi: 10.1007/s12221-015-0585-9. DOI

Kathirgamanathan P. Novel Cable Shielding Materials Based on the Impregnation of Microporous Membranes with Inherently Conducting Polymers. Adv. Mater. 1993;5:281–283. doi: 10.1002/adma.19930050412. DOI

Xie A.M., Wu F., Jiang W.C., Zhang K., Sun M.X., Wang M.Y. Chiral induced synthesis of helical polypyrrole (PPy) nano-structures: A lightweight and high-performance material against electromagnetic pollution. J. Mater. Chem. C. 2017;5:2175–2181. doi: 10.1039/C6TC05057C. DOI

Hu S.C., Zhou Y., Zhang L.L., Liu S.J., Cui K., Lu Y.Y., Li K.N., Li X.D. Effects of indigo carmine concentration on the morphology and microwave absorbing behavior of PPy prepared by template synthesis. J. Mater. Sci. 2018;53:3016–3026. doi: 10.1007/s10853-017-1702-5. DOI

Moučka R., Sedlačík M., Prokeš J., Kasparyan H., Valtera S., Kopecký D. Electromagnetic interference shielding of polypyrrole nanostructures. Synth. Met. 2020;269 doi: 10.1016/j.synthmet.2020.116573. PubMed DOI PMC

Varga M., Kopecký D., Kopecká J., Křivka I., Hanuš J., Zhigunov A., Trchová M., Vrňata M., Prokes J. The ageing of polypyrrole nanotubes synthesized with methyl orange. Eur. Polym. J. 2017;96:176–189. doi: 10.1016/j.eurpolymj.2017.08.052. DOI

Bober P., Li Y., Acharya U., Panthi Y., Pfleger J., Humpolíček P., Trchová M., Stejskal J. Acid Blue dyes in polypyrrole synthesis: The control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity. Synth. Met. 2018;237:40–49. doi: 10.1016/j.synthmet.2018.01.010. DOI

Valtera S., Prokeš J., Kopecká J., Vrňata M., Trchová M., Varga M., Stejskal J., Kopecký D. Dye-stimulated control of conducting polypyrrole morphology. RSC Adv. 2017;7:51495–51505. doi: 10.1039/C7RA10027B. DOI

Kopecká J., Kopecký D., Vrňata M., Fitl P., Stejskal J., Trchová M., Bober P., Moravková Z., Prokeš J., Sapurina I. Polypyrrole nanotubes: Mechanism of formation. RSC Adv. 2014;4:1551–1558. doi: 10.1039/C3RA45841E. DOI

Kopecký D., Varga M., Prokeš J., Vrňata M., Trchová M., Kopecká J., Václavik M. Optimization routes for high electrical conductivity of polypyrrole nanotubes prepared in presence of methyl orange. Synth. Met. 2017;230:89–96. doi: 10.1016/j.synthmet.2017.06.004. DOI

Trchová M., Stejskal J. Resonance Raman Spectroscopy of Conducting Polypyrrole Nanotubes: Disordered Surface versus Ordered Body. J. Phys. Chem. A. 2018;122:9298–9306. doi: 10.1021/acs.jpca.8b09794. PubMed DOI

Abbasi H., Antunes M., Velasco J.I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019;103:319–373. doi: 10.1016/j.pmatsci.2019.02.003. DOI

Weir W.B. Automatic Measurement of Complex Dielectric-Constant and Permeability at Microwave-Frequencies. Proc. IEEE. 1974;62:33–36. doi: 10.1109/PROC.1974.9382. DOI

Nicolson A.M., Ross G.F. Measurement of Intrinsic Properties of Materials by Time-Domain Techniques. IEEE Trans. Instrum. Meas. 1970;19:377–382. doi: 10.1109/TIM.1970.4313932. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...