One-Dimensional Nanostructures of Polypyrrole for Shielding of Electromagnetic Interference in the Microwave Region
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DKRVO (RP/CPS/2020/006)
Ministry of Education, Youth and Sports of the Czech Republic
grant No A2_FCHI_2020_030
specific university research
PubMed
33233379
PubMed Central
PMC7700242
DOI
10.3390/ijms21228814
PII: ijms21228814
Knihovny.cz E-zdroje
- Klíčová slova
- 1D nanostructures, conducting polymers, electromagnetic shielding, microwave region, thermal stability,
- MeSH
- azosloučeniny chemie MeSH
- elektromagnetické záření * MeSH
- methylenová modř chemie MeSH
- mikroskopie elektronová rastrovací MeSH
- nanostruktury chemie účinky záření ultrastruktura MeSH
- nanotrubičky chemie účinky záření ultrastruktura MeSH
- nanovlákna chemie účinky záření MeSH
- polymery chemie účinky záření MeSH
- pyrroly chemie účinky záření MeSH
- silikony chemie účinky záření MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- azosloučeniny MeSH
- Eriochrome Black T MeSH Prohlížeč
- methyl orange MeSH Prohlížeč
- methylenová modř MeSH
- polymery MeSH
- polypyrrole MeSH Prohlížeč
- pyrroly MeSH
- silikony MeSH
Polypyrrole one-dimensional nanostructures (nanotubes, nanobelts and nanofibers) were prepared using three various dyes (Methyl Orange, Methylene Blue and Eriochrome Black T). Their high electrical conductivity (from 17.1 to 60.9 S cm-1), good thermal stability (in the range from 25 to 150 °C) and resistivity against ageing (half-time of electrical conductivity around 80 days and better) were used in preparation of lightweight and flexible composites with silicone for electromagnetic interference shielding in the C-band region (5.85-8.2 GHz). The nanostructures' morphology and chemical structure were characterized by scanning electron microscopy, Brunauer-Emmett-Teller specific surface measurement and attenuated total reflection Fourier-transform infrared spectroscopy. DC electrical conductivity was measured using the Van der Pauw method. Complex permittivity and AC electrical conductivity of respective silicone composites were calculated from the measured scattering parameters. The relationships between structure, electrical properties and shielding efficiency were studied. It was found that 2 mm-thick silicone composites of polypyrrole nanotubes and nanobelts shield almost 80% of incident radiation in the C-band at very low loading of conductive filler in the silicone (5% w/w). Resulting lightweight and flexible polypyrrole composites exhibit promising properties for shielding of electromagnetic interference in sensitive biological and electronic systems.
Central Laboratory University of Chemistry and Technology Prague 166 28 Prague 6 Czech Republic
Centre of Polymer Systems Tomas Bata University in Zlín 760 01 Zlín Czech Republic
Faculty of Mathematics and Physics Charles University 180 00 Prague 8 Czech Republic
Zobrazit více v PubMed
Masetti G., Graffi S., Golzio D., KovacsV Z.M. Failures induced on analog integrated circuits by conveyed electromagnetic interferences: A review. Microelectron. Reliab. 1996;36:955–972. doi: 10.1016/0026-2714(96)00025-X. DOI
Turczyn R., Krukiewicz K., Katunin A., Sroka J., Sul P. Fabrication and application of electrically conducting composites for electromagnetic interference shielding of remotely piloted aircraft systems. Compos. Struct. 2020;232:111498. doi: 10.1016/j.compstruct.2019.111498. DOI
Carlberg M., Hedendahl L., Ahonen M., Koppel T., Hardell L. Increasing incidence of thyroid cancer in the Nordic countries with main focus on Swedish data. BMC Cancer. 2016;16:426. doi: 10.1186/s12885-016-2429-4. PubMed DOI PMC
Carlberg M., Koppel T., Ahonen M., Hardell L. Case-control study on occupational exposure to extremely low-frequency electromagnetic fields and glioma risk. Am. J. Ind. Med. 2017;60:494–503. doi: 10.1002/ajim.22707. PubMed DOI
Carlberg M., Koppel T., Ahonen M., Hardell L. Case-Control Study on Occupational Exposure to Extremely Low-Frequency Electromagnetic Fields and the Association with Meningioma. BioMed Res. Int. 2018;2018:5912394. doi: 10.1155/2018/5912394. PubMed DOI PMC
Celozzi S., Araneo R., Lovat G. Electromagnetic Shielding. IEEE Press; Hoboken, NJ, USA: 2008. Wiley-Interscience.
Chung D.D.L. Materials for electromagnetic interference shielding. Mater. Chem. Phys. 2020;255:123587. doi: 10.1016/j.matchemphys.2020.123587. DOI
Singh A.K., Shishkin A., Koppel T., Gupta N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. Part B Eng. 2018;149:188–197. doi: 10.1016/j.compositesb.2018.05.027. DOI
Kumar P., Maiti U.N., Sikdar A., Das T.K., Kumar A., Sudarsan V. Recent Advances in Polymer and Polymer Composites for Electromagnetic Interference Shielding: Review and Future Prospects. Polym. Rev. 2019;59:687–738. doi: 10.1080/15583724.2019.1625058. DOI
Jiang D.W., Murugadoss V., Wang Y., Lin J., Ding T., Wang Z.C., Shao Q., Wang C., Liu H., Lu N., et al. Electromagnetic Interference Shielding Polymers and Nanocomposites-A Review. Polym. Rev. 2019;59:280–337. doi: 10.1080/15583724.2018.1546737. DOI
Stejskal J., Trchová M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018;72:1563–1595. doi: 10.1007/s11696-018-0394-x. PubMed DOI
Stejskal J., Prokeš J. Conductivity and morphology of polyaniline and polypyrrole prepared in the presence of organic dyes. Synth. Met. 2020;264:116373. doi: 10.1016/j.synthmet.2020.116373. DOI
Madhusudhan C.K., Mahendra K., Madhukar B.S., Somesh T.E., Faisal M. Incorporation of graphite into iron decorated polypyrrole for dielectric and EMI shielding applications. Synth. Met. 2020;267:116450. doi: 10.1016/j.synthmet.2020.116450. DOI
Zhang K.C., Chen X.F., Gao X.B., Chen L., Ma S.Z., Xie C.Y., Zhang X.G., Lu W. Preparation and microwave absorption properties of carbon nanotubes/iron oxide/polypyrrole/carbon composites. Synth. Met. 2020;260:116282. doi: 10.1016/j.synthmet.2019.116282. DOI
Xie A., Jiang W.C., Wu F., Dai X.Q., Sun M.X., Wang Y., Wang M.Y. Interfacial synthesis of polypyrrole microparticles for effective dissipation of electromagnetic waves. J. Appl. Phys. 2015;118:204105. doi: 10.1063/1.4936549. DOI
Green M., Tran A.T.V., Chen X.B. Maximizing the microwave absorption performance of polypyrrole by data-driven discovery. Compos. Sci. Technol. 2020;199:108332. doi: 10.1016/j.compscitech.2020.108332. DOI
Sapurina I., Kazantseva N.E., Ryvkina N.G., Prokeš J., Sáha P., Stejskal J. Electromagnetic radiation shielding by composites of conducting polymers and wood. J. Appl. Polym. Sci. 2005;95:807–814. doi: 10.1002/app.21240. DOI
Babayan V., Kazantseva N.E., Moučka R., Stejskal J. Electromagnetic shielding of polypyrrole-sawdust composites: Polypyrrole globules and nanotubes. Cellulose. 2017;24:3445–3451. doi: 10.1007/s10570-017-1357-z. DOI
Yu L.J., Yang Q.X., Liao J.L., Zhu Y.F., Li X., Yang W.T., Fu Y.Q. A novel 3D silver nanowires@polypyrrole sponge loaded with water giving excellent microwave absorption properties. Chem. Eng. J. 2018;352:490–500. doi: 10.1016/j.cej.2018.07.047. DOI
Jiao Y.Z., Li J.J., Xie A.M., Wu F., Zhang K., Dong W., Zhu X.F. Confined polymerization strategy to construct polypyrrole/zeolitic imidazolate frameworks (PPy/ZIFs) nanocomposites for tunable electrical conductivity and excellent electromagnetic absorption. Compos. Sci. Technol. 2019;174:232–240. doi: 10.1016/j.compscitech.2019.03.003. DOI
Hong Y.K., Lee C.Y., Jeong C.K., Sim J.H., Kim K., Joo J., Kim M.S., Lee J.Y., Jeong S.H., Byun S.W. Electromagnetic interference shielding characteristics of fabric complexes coated with conductive polypyrrole and thermally evaporated Ag. Curr. Appl. Phys. 2001;1:439–442. doi: 10.1016/S1567-1739(01)00054-2. DOI
Zhao H., Hou L., Lu Y.X. Electromagnetic interference shielding of layered linen fabric/polypyrrole/nickel (LF/PPy/Ni) composites. Mater. Des. 2016;95:97–106. doi: 10.1016/j.matdes.2016.01.088. DOI
Kim H.K., Byun S.W., Jeong S.H., Hong Y.K., Joo J.S., Song K., Park Y.H., Lee J.Y. Environmental staility of EMI shielding PET fabric/polypyrrole composite. Mol. Cryst. Liq. Cryst. 2002;377:369–372. doi: 10.1080/713738488. DOI
Kim M.S., Kim H.K., Byun S.W., Jeong S.H., Hong Y.K., Joo J.S., Song K.T., Kim J.K., Lee C.J., Lee J.Y. PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synth. Met. 2002;126:233–239. doi: 10.1016/S0379-6779(01)00562-8. DOI
Kim H.A., Kim M.S., Chun S.Y., Park Y.H., Jeon B.S., Lee J.Y., Hong Y.K., Joo J., Kim S.H. Characteristics of electrically conducting polymer-coated textiles. Mol. Cryst. Liq. Cryst. 2003;405:161–169. doi: 10.1080/15421400390263550. DOI
Gashti M.P., Ghehi S.T., Arekhloo S.V., Mirsmaeeli A., Kiumarsi A. Electromagnetic Shielding Response of UV-induced Polypyrrole/Silver Coated Wool. Fibers Polym. 2015;16:585–592. doi: 10.1007/s12221-015-0585-9. DOI
Kathirgamanathan P. Novel Cable Shielding Materials Based on the Impregnation of Microporous Membranes with Inherently Conducting Polymers. Adv. Mater. 1993;5:281–283. doi: 10.1002/adma.19930050412. DOI
Xie A.M., Wu F., Jiang W.C., Zhang K., Sun M.X., Wang M.Y. Chiral induced synthesis of helical polypyrrole (PPy) nano-structures: A lightweight and high-performance material against electromagnetic pollution. J. Mater. Chem. C. 2017;5:2175–2181. doi: 10.1039/C6TC05057C. DOI
Hu S.C., Zhou Y., Zhang L.L., Liu S.J., Cui K., Lu Y.Y., Li K.N., Li X.D. Effects of indigo carmine concentration on the morphology and microwave absorbing behavior of PPy prepared by template synthesis. J. Mater. Sci. 2018;53:3016–3026. doi: 10.1007/s10853-017-1702-5. DOI
Moučka R., Sedlačík M., Prokeš J., Kasparyan H., Valtera S., Kopecký D. Electromagnetic interference shielding of polypyrrole nanostructures. Synth. Met. 2020;269 doi: 10.1016/j.synthmet.2020.116573. PubMed DOI PMC
Varga M., Kopecký D., Kopecká J., Křivka I., Hanuš J., Zhigunov A., Trchová M., Vrňata M., Prokes J. The ageing of polypyrrole nanotubes synthesized with methyl orange. Eur. Polym. J. 2017;96:176–189. doi: 10.1016/j.eurpolymj.2017.08.052. DOI
Bober P., Li Y., Acharya U., Panthi Y., Pfleger J., Humpolíček P., Trchová M., Stejskal J. Acid Blue dyes in polypyrrole synthesis: The control of polymer morphology at nanoscale in the promotion of high conductivity and the reduction of cytotoxicity. Synth. Met. 2018;237:40–49. doi: 10.1016/j.synthmet.2018.01.010. DOI
Valtera S., Prokeš J., Kopecká J., Vrňata M., Trchová M., Varga M., Stejskal J., Kopecký D. Dye-stimulated control of conducting polypyrrole morphology. RSC Adv. 2017;7:51495–51505. doi: 10.1039/C7RA10027B. DOI
Kopecká J., Kopecký D., Vrňata M., Fitl P., Stejskal J., Trchová M., Bober P., Moravková Z., Prokeš J., Sapurina I. Polypyrrole nanotubes: Mechanism of formation. RSC Adv. 2014;4:1551–1558. doi: 10.1039/C3RA45841E. DOI
Kopecký D., Varga M., Prokeš J., Vrňata M., Trchová M., Kopecká J., Václavik M. Optimization routes for high electrical conductivity of polypyrrole nanotubes prepared in presence of methyl orange. Synth. Met. 2017;230:89–96. doi: 10.1016/j.synthmet.2017.06.004. DOI
Trchová M., Stejskal J. Resonance Raman Spectroscopy of Conducting Polypyrrole Nanotubes: Disordered Surface versus Ordered Body. J. Phys. Chem. A. 2018;122:9298–9306. doi: 10.1021/acs.jpca.8b09794. PubMed DOI
Abbasi H., Antunes M., Velasco J.I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019;103:319–373. doi: 10.1016/j.pmatsci.2019.02.003. DOI
Weir W.B. Automatic Measurement of Complex Dielectric-Constant and Permeability at Microwave-Frequencies. Proc. IEEE. 1974;62:33–36. doi: 10.1109/PROC.1974.9382. DOI
Nicolson A.M., Ross G.F. Measurement of Intrinsic Properties of Materials by Time-Domain Techniques. IEEE Trans. Instrum. Meas. 1970;19:377–382. doi: 10.1109/TIM.1970.4313932. DOI