Ketone- and Cyano-Selenoesters to Overcome Efflux Pump, Quorum-Sensing, and Biofilm-Mediated Resistance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SZTE ÁOK-KKA 2018/270-62-2
University of Szeged
GINOP-2.3.2-15-2016-00038
EU, Hungary
INTER-COST LTC19007
Czech Ministry of Education, Youth and Sports
COST Action CA17104 STRATAGEM
EU
PubMed
33322639
PubMed Central
PMC7763688
DOI
10.3390/antibiotics9120896
PII: antibiotics9120896
Knihovny.cz E-zdroje
- Klíčová slova
- Pseudomonas aeruginosa, Salmonella species, Staphylococcus aureus, antibacterial activity, biofilm, multidrug resistance, quorum sensing, selenoesters,
- Publikační typ
- časopisecké články MeSH
The emergence of drug-resistant pathogens leads to a gradual decline in the efficacy of many antibacterial agents, which poses a serious problem for proper therapy. Multidrug resistance (MDR) mechanisms allow resistant bacteria to have limited uptake of drugs, modification of their target molecules, drug inactivation, or release of the drug into the extracellular space by efflux pumps (EPs). In previous studies, selenoesters have proved to be promising derivatives with a noteworthy antimicrobial activity. On the basis of these results, two series of novel selenoesters were synthesized to achieve more potent antibacterial activity on Gram-positive and Gram-negative bacteria. Fifteen selenoesters (eight ketone-selenoesters and seven cyano-selenoesters) were investigated with regards to their efflux pump-inhibiting, anti-quorum-sensing (QS), and anti-biofilm effects in vitro. According to the results of the antibacterial activity, the ketone-selenoesters proved to be more potent antibacterial compounds than the cyano-selenoesters. With regard to efflux pump inhibition, one cyano-selenoester on methicillin-resistant S. aureus and one ketone-selenoester on Salmonella Typhimurium were potent inhibitors. The biofilm inhibitory capacity and the ability of the derivatives to disrupt mature biofilms were noteworthy in all the experimental systems applied. Regarding QS inhibition, four ketone-selenoesters and three cyano-selenoesters exerted a noteworthy effect on Vibrio campbellii strains.
Zobrazit více v PubMed
Ventola C.L. The antibiotic resistance crisis: part 1: Causes and threats. P T Peer-Rev. J. Formul. Manag. 2015;40:277. PubMed PMC
Bragg R.R., Meyburgh C.M., Lee J.-Y., Coetzee M. Potential Treatment Options in a Post-antibiotic Era. Adv. Exp. Med. Biol. 2018;1052:51–61. doi: 10.1007/978-981-10-7572-8_5. PubMed DOI
Coyne L.A., Latham S.M., Dawson S., Donald I.J., Pearson R.B., Smith R.F., Williams N.J., Pinchbeck G.L. Exploring Perspectives on Antimicrobial Use in Livestock: A Mixed-Methods Study of UK Pig Farmers. Front. Vet. Sci. 2019;6:257. doi: 10.3389/fvets.2019.00257. PubMed DOI PMC
Dong L.T., Espinoza H.V., Espinoza J.L. Emerging superbugs: The threat of Carbapenem Resistant Enterobacteriaceae. AIMS Microbiol. 2020;7:176–182. doi: 10.3934/microbiol.2020012. PubMed DOI PMC
El-Hamid M.I.A., El-Naenaeey E.-S.Y., Kandeel T.M., Hegazy W.A.H., Mosbah R.A., Nassar M.S., Bakhrebah M.A., Abdulaal W.H., Alhakamy N.A., Bendary M.M. Promising Antibiofilm Agents: Recent Breakthrough against Biofilm Producing Methicillin-Resistant Staphylococcus aureus. Antibiot. 2020;9:667. doi: 10.3390/antibiotics9100667. PubMed DOI PMC
Singh S., Singh S.K., Chowdhury I., Singh R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol. J. 2017;11:53–62. doi: 10.2174/1874285801711010053. PubMed DOI PMC
Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI
Davey M.E., O’Toole G.A. Microbial Biofilms: from Ecology to Molecular Genetics. Microbiol. Mol. Biol. Rev. 2000;64:847–867. doi: 10.1128/MMBR.64.4.847-867.2000. PubMed DOI PMC
Li Y.-H., Tian X. Quorum Sensing and Bacterial Social Interactions in Biofilms. Sensors. 2012;12:2519–2538. doi: 10.3390/s120302519. PubMed DOI PMC
Miller M.B., Bassler B.L. Quorum Sensing in Bacteria. Annu. Rev. Microbiol. 2001;55:165–199. doi: 10.1146/annurev.micro.55.1.165. PubMed DOI
Alcalde-Rico M., Hernando-Amado S., Blanco P., Martínez J. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence. Front. Microbiol. 2016;7:1483. doi: 10.3389/fmicb.2016.01483. PubMed DOI PMC
Yazhiniprabha M., Vaseeharan B. In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties. Mater. Sci. Eng. C. 2019;103:109763. doi: 10.1016/j.msec.2019.109763. PubMed DOI
Cihalova K., Chudobova D., Michalek P., Moulick A., Guran R., Kopel P., Adam V., Kizek R. Staphylococcus aureus and MRSA Growth and Biofilm Formation after Treatment with Antibiotics and SeNPs. Int. J. Mol. Sci. 2015;16:24656–24672. doi: 10.3390/ijms161024656. PubMed DOI PMC
Jastrzebska I., Mellea S., Salerno V., Grzes P.A., Siergiejczyk L., Niemirowicz-Laskowska K., Bucki R., Monti B., Santi C., Laskowska N.- PhSeZnCl in the Synthesis of Steroidal β-Hydroxy-Phenylselenides Having Antibacterial Activity. Int. J. Mol. Sci. 2019;20:2121. doi: 10.3390/ijms20092121. PubMed DOI PMC
Ngo H.X., Shrestha S.K., Green K.D., Garneau-Tsodikova S. Development of ebsulfur analogues as potent antibacterials against methicillin-resistant Staphylococcus aureus. Bioorganic Med. Chem. 2016;24:6298–6306. doi: 10.1016/j.bmc.2016.03.060. PubMed DOI PMC
Gajdács M., Spengler G., Sanmartín C., Marć M.A., Handzlik J., Domínguez-Álvarez E. Selenoesters and selenoanhydrides as novel multidrug resistance reversing agents: A confirmation study in a colon cancer MDR cell line. Bioorganic Med. Chem. Lett. 2017;27:797–802. doi: 10.1016/j.bmcl.2017.01.033. PubMed DOI
Kharma A., Misak A., Grman M., Brezova V., Kurakova L., Barath P., Jacob C., Chovanec M., Ondrias K., Domínguez-Álvarez E. Release of reactive selenium species from phthalic selenoanhydride in the presence of hydrogen sulfide and glutathione with implications for cancer research. New J. Chem. 2019;43:11771–11783. doi: 10.1039/C9NJ02245G. DOI
Reich H.J., Hondal R.J. Why Nature Chose Selenium. ACS Chem. Biol. 2016;11:821–841. doi: 10.1021/acschembio.6b00031. PubMed DOI
Fernandez-Lazaro D., Fernandez-Lazaro C.I., Mielgo-Ayuso J., Navascués L.J., Córdova A., Seco-Calvo J. The Role of Selenium Mineral Trace Element in Exercise: Antioxidant Defense System, Muscle Performance, Hormone Response, and Athletic Performance. A Systematic Review. Nutrients. 2020;12:1790. doi: 10.3390/nu12061790. PubMed DOI PMC
Stolwijk J.M., Garje R., Sieren J.C., Buettner G.R., Zakharia Y. Understanding the Redox Biology of Selenium in the Search of Targeted Cancer Therapies. Antioxidants. 2020;9:420. doi: 10.3390/antiox9050420. PubMed DOI PMC
Sumner S.E., Markley R.L., Kirimanjeswara G.S. Role of Selenoproteins in Bacterial Pathogenesis. Biol. Trace Element Res. 2019;192:69–82. doi: 10.1007/s12011-019-01877-2. PubMed DOI PMC
Rayman M.P. The importance of selenium to human health. Lancet. 2000;356:233–241. doi: 10.1016/S0140-6736(00)02490-9. PubMed DOI
Mosolygó T., Kincses A., Mosolygó T., Marć M.A., Nové M., Gajdács M., Sanmartín C., McNeil H.E., Blair J.M.A., Domínguez-Álvarez E. Antiviral, Antimicrobial and Antibiofilm Activity of Selenoesters and Selenoanhydrides. Molecules. 2019;24:4264. doi: 10.3390/molecules24234264. PubMed DOI PMC
Nové M., Kincses A., Szalontai B., Rácz B., Blair J.M.A., González-Prádena A., Benito-Lama M., Domínguez-Álvarez E., Spengler G. Biofilm Eradication by Symmetrical Selenoesters for Food-Borne Pathogens. Microorganisms. 2020;8:566. doi: 10.3390/microorganisms8040566. PubMed DOI PMC
Mosolygó T., Kincses A., Csonka A., Tönki Á.S., Witek K., Sanmartín C., Marć M.A., Handzlik J., Kieć-Kononowicz K., Domínguez-Álvarez E., et al. Selenocompounds as Novel Antibacterial Agents and Bacterial Efflux Pump Inhibitors. Molecules. 2019;24:1487. doi: 10.3390/molecules24081487. PubMed DOI PMC
Peña-Morán O.A., Villarreal M.L., Alvarez L., Meneses-Acosta A., Rodríguez-López V. Cytotoxicity, Post-Treatment Recovery, and Selectivity Analysis of Naturally Occurring Podophyllotoxins from Bursera fagaroides var. fagaroides on Breast Cancer Cell Lines. Molecules. 2016;21:1013. doi: 10.3390/molecules21081013. PubMed DOI PMC
Spengler G., Kincses A., Gajdács M., Amaral L. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria. Molecules. 2017;22:468. doi: 10.3390/molecules22030468. PubMed DOI PMC
Yong Y.-C., Zhong J.-J. Impacts of Quorum Sensing on Microbial Metabolism and Human Health. In: Zhong J.-J., editor. Future Trends in Biotechnology. Volume 131. Springer; Berlin/Heidelberg, Germany: 2012. pp. 25–61. PubMed DOI
Chatterjee R., Shreenivas M.M., Sunil R., Chakravortty D. Enteropathogens: Tuning Their Gene Expression for Hassle-Free Survival. Front. Microbiol. 2019;9:3303. doi: 10.3389/fmicb.2018.03303. PubMed DOI PMC
Gibbons S., Oluwatuyi M., Kaatz G.W. A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J. Antimicrob. Chemother. 2003;51:13–17. doi: 10.1093/jac/dkg044. PubMed DOI
Rezzonico F., Smits T.H.M., Duffy B. Detection of AI-2 Receptors in Genomes of Enterobacteriaceae Suggests a Role of Type-2 Quorum Sensing in Closed Ecosystems. Sensors. 2012;12:6645–6665. doi: 10.3390/s120506645. PubMed DOI PMC
Taga M.E., Semmelhack J.L., Bassler B.L. The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol. Microbiol. 2008;42:777–793. doi: 10.1046/j.1365-2958.2001.02669.x. PubMed DOI
Domínguez Álvarez E., Spengler G., Jacob C., Sanmartín Grijalba M.C. Selenoester-Containing Compounds for Use in the Treatment of Microbial Infections or Colorectal Cancer. EP18382693. European Patent. 2018 Sep 28;
Christopher P.J., Polgar E.P., editors. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. Clinical and Laboratory Standards Institute; Wayne, MI, USA: 2018.
Viktorova J., Stupák M., Rehorova K., Dobiasova S., Hoang L., Hajslova J., Van Thanh T., Van Tri L., Van Tuan N., Ruml T. Lemon Grass Essential Oil does not Modulate Cancer Cells Multidrug Resistance by Citral—Its Dominant and Strongly Antimicrobial Compound. Foods. 2020;9:585. doi: 10.3390/foods9050585. PubMed DOI PMC
Hoang L., Beneš F., Fenclova M., Kronusova O., Švarcová V., Rehorova K., Švecová E.B., Vosátka M., Hajslova J., Kaštánek P., et al. Phytochemical Composition and In Vitro Biological Activity of Iris spp. (Iridaceae): A New Source of Bioactive Constituents for the Inhibition of Oral Bacterial Biofilms. Antibiot. 2020;9:403. doi: 10.3390/antibiotics9070403. PubMed DOI PMC
Sandberg M.E., Schellmann D., Brunhofer G., Erker T., Busygin I., Leino R., Vuorela P., Fallarero A. Pros and cons of using resazurin staining for quantification of viable Staphylococcus aureus biofilms in a screening assay. J. Microbiol. Methods. 2009;78:104–106. doi: 10.1016/j.mimet.2009.04.014. PubMed DOI
Haney E.F., Trimble M.J., Cheng J.T., Vallé Q., Hancock R.E.W. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules. 2018;8:29. doi: 10.3390/biom8020029. PubMed DOI PMC
Selectively Halogenated Flavonolignans-Preparation and Antibacterial Activity