Ketone- and Cyano-Selenoesters to Overcome Efflux Pump, Quorum-Sensing, and Biofilm-Mediated Resistance

. 2020 Dec 11 ; 9 (12) : . [epub] 20201211

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33322639

Grantová podpora
SZTE ÁOK-KKA 2018/270-62-2 University of Szeged
GINOP-2.3.2-15-2016-00038 EU, Hungary
INTER-COST LTC19007 Czech Ministry of Education, Youth and Sports
COST Action CA17104 STRATAGEM EU

The emergence of drug-resistant pathogens leads to a gradual decline in the efficacy of many antibacterial agents, which poses a serious problem for proper therapy. Multidrug resistance (MDR) mechanisms allow resistant bacteria to have limited uptake of drugs, modification of their target molecules, drug inactivation, or release of the drug into the extracellular space by efflux pumps (EPs). In previous studies, selenoesters have proved to be promising derivatives with a noteworthy antimicrobial activity. On the basis of these results, two series of novel selenoesters were synthesized to achieve more potent antibacterial activity on Gram-positive and Gram-negative bacteria. Fifteen selenoesters (eight ketone-selenoesters and seven cyano-selenoesters) were investigated with regards to their efflux pump-inhibiting, anti-quorum-sensing (QS), and anti-biofilm effects in vitro. According to the results of the antibacterial activity, the ketone-selenoesters proved to be more potent antibacterial compounds than the cyano-selenoesters. With regard to efflux pump inhibition, one cyano-selenoester on methicillin-resistant S. aureus and one ketone-selenoester on Salmonella Typhimurium were potent inhibitors. The biofilm inhibitory capacity and the ability of the derivatives to disrupt mature biofilms were noteworthy in all the experimental systems applied. Regarding QS inhibition, four ketone-selenoesters and three cyano-selenoesters exerted a noteworthy effect on Vibrio campbellii strains.

Zobrazit více v PubMed

Ventola C.L. The antibiotic resistance crisis: part 1: Causes and threats. P T Peer-Rev. J. Formul. Manag. 2015;40:277. PubMed PMC

Bragg R.R., Meyburgh C.M., Lee J.-Y., Coetzee M. Potential Treatment Options in a Post-antibiotic Era. Adv. Exp. Med. Biol. 2018;1052:51–61. doi: 10.1007/978-981-10-7572-8_5. PubMed DOI

Coyne L.A., Latham S.M., Dawson S., Donald I.J., Pearson R.B., Smith R.F., Williams N.J., Pinchbeck G.L. Exploring Perspectives on Antimicrobial Use in Livestock: A Mixed-Methods Study of UK Pig Farmers. Front. Vet. Sci. 2019;6:257. doi: 10.3389/fvets.2019.00257. PubMed DOI PMC

Dong L.T., Espinoza H.V., Espinoza J.L. Emerging superbugs: The threat of Carbapenem Resistant Enterobacteriaceae. AIMS Microbiol. 2020;7:176–182. doi: 10.3934/microbiol.2020012. PubMed DOI PMC

El-Hamid M.I.A., El-Naenaeey E.-S.Y., Kandeel T.M., Hegazy W.A.H., Mosbah R.A., Nassar M.S., Bakhrebah M.A., Abdulaal W.H., Alhakamy N.A., Bendary M.M. Promising Antibiofilm Agents: Recent Breakthrough against Biofilm Producing Methicillin-Resistant Staphylococcus aureus. Antibiot. 2020;9:667. doi: 10.3390/antibiotics9100667. PubMed DOI PMC

Singh S., Singh S.K., Chowdhury I., Singh R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol. J. 2017;11:53–62. doi: 10.2174/1874285801711010053. PubMed DOI PMC

Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science. 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI

Davey M.E., O’Toole G.A. Microbial Biofilms: from Ecology to Molecular Genetics. Microbiol. Mol. Biol. Rev. 2000;64:847–867. doi: 10.1128/MMBR.64.4.847-867.2000. PubMed DOI PMC

Li Y.-H., Tian X. Quorum Sensing and Bacterial Social Interactions in Biofilms. Sensors. 2012;12:2519–2538. doi: 10.3390/s120302519. PubMed DOI PMC

Miller M.B., Bassler B.L. Quorum Sensing in Bacteria. Annu. Rev. Microbiol. 2001;55:165–199. doi: 10.1146/annurev.micro.55.1.165. PubMed DOI

Alcalde-Rico M., Hernando-Amado S., Blanco P., Martínez J. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence. Front. Microbiol. 2016;7:1483. doi: 10.3389/fmicb.2016.01483. PubMed DOI PMC

Yazhiniprabha M., Vaseeharan B. In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties. Mater. Sci. Eng. C. 2019;103:109763. doi: 10.1016/j.msec.2019.109763. PubMed DOI

Cihalova K., Chudobova D., Michalek P., Moulick A., Guran R., Kopel P., Adam V., Kizek R. Staphylococcus aureus and MRSA Growth and Biofilm Formation after Treatment with Antibiotics and SeNPs. Int. J. Mol. Sci. 2015;16:24656–24672. doi: 10.3390/ijms161024656. PubMed DOI PMC

Jastrzebska I., Mellea S., Salerno V., Grzes P.A., Siergiejczyk L., Niemirowicz-Laskowska K., Bucki R., Monti B., Santi C., Laskowska N.- PhSeZnCl in the Synthesis of Steroidal β-Hydroxy-Phenylselenides Having Antibacterial Activity. Int. J. Mol. Sci. 2019;20:2121. doi: 10.3390/ijms20092121. PubMed DOI PMC

Ngo H.X., Shrestha S.K., Green K.D., Garneau-Tsodikova S. Development of ebsulfur analogues as potent antibacterials against methicillin-resistant Staphylococcus aureus. Bioorganic Med. Chem. 2016;24:6298–6306. doi: 10.1016/j.bmc.2016.03.060. PubMed DOI PMC

Gajdács M., Spengler G., Sanmartín C., Marć M.A., Handzlik J., Domínguez-Álvarez E. Selenoesters and selenoanhydrides as novel multidrug resistance reversing agents: A confirmation study in a colon cancer MDR cell line. Bioorganic Med. Chem. Lett. 2017;27:797–802. doi: 10.1016/j.bmcl.2017.01.033. PubMed DOI

Kharma A., Misak A., Grman M., Brezova V., Kurakova L., Barath P., Jacob C., Chovanec M., Ondrias K., Domínguez-Álvarez E. Release of reactive selenium species from phthalic selenoanhydride in the presence of hydrogen sulfide and glutathione with implications for cancer research. New J. Chem. 2019;43:11771–11783. doi: 10.1039/C9NJ02245G. DOI

Reich H.J., Hondal R.J. Why Nature Chose Selenium. ACS Chem. Biol. 2016;11:821–841. doi: 10.1021/acschembio.6b00031. PubMed DOI

Fernandez-Lazaro D., Fernandez-Lazaro C.I., Mielgo-Ayuso J., Navascués L.J., Córdova A., Seco-Calvo J. The Role of Selenium Mineral Trace Element in Exercise: Antioxidant Defense System, Muscle Performance, Hormone Response, and Athletic Performance. A Systematic Review. Nutrients. 2020;12:1790. doi: 10.3390/nu12061790. PubMed DOI PMC

Stolwijk J.M., Garje R., Sieren J.C., Buettner G.R., Zakharia Y. Understanding the Redox Biology of Selenium in the Search of Targeted Cancer Therapies. Antioxidants. 2020;9:420. doi: 10.3390/antiox9050420. PubMed DOI PMC

Sumner S.E., Markley R.L., Kirimanjeswara G.S. Role of Selenoproteins in Bacterial Pathogenesis. Biol. Trace Element Res. 2019;192:69–82. doi: 10.1007/s12011-019-01877-2. PubMed DOI PMC

Rayman M.P. The importance of selenium to human health. Lancet. 2000;356:233–241. doi: 10.1016/S0140-6736(00)02490-9. PubMed DOI

Mosolygó T., Kincses A., Mosolygó T., Marć M.A., Nové M., Gajdács M., Sanmartín C., McNeil H.E., Blair J.M.A., Domínguez-Álvarez E. Antiviral, Antimicrobial and Antibiofilm Activity of Selenoesters and Selenoanhydrides. Molecules. 2019;24:4264. doi: 10.3390/molecules24234264. PubMed DOI PMC

Nové M., Kincses A., Szalontai B., Rácz B., Blair J.M.A., González-Prádena A., Benito-Lama M., Domínguez-Álvarez E., Spengler G. Biofilm Eradication by Symmetrical Selenoesters for Food-Borne Pathogens. Microorganisms. 2020;8:566. doi: 10.3390/microorganisms8040566. PubMed DOI PMC

Mosolygó T., Kincses A., Csonka A., Tönki Á.S., Witek K., Sanmartín C., Marć M.A., Handzlik J., Kieć-Kononowicz K., Domínguez-Álvarez E., et al. Selenocompounds as Novel Antibacterial Agents and Bacterial Efflux Pump Inhibitors. Molecules. 2019;24:1487. doi: 10.3390/molecules24081487. PubMed DOI PMC

Peña-Morán O.A., Villarreal M.L., Alvarez L., Meneses-Acosta A., Rodríguez-López V. Cytotoxicity, Post-Treatment Recovery, and Selectivity Analysis of Naturally Occurring Podophyllotoxins from Bursera fagaroides var. fagaroides on Breast Cancer Cell Lines. Molecules. 2016;21:1013. doi: 10.3390/molecules21081013. PubMed DOI PMC

Spengler G., Kincses A., Gajdács M., Amaral L. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria. Molecules. 2017;22:468. doi: 10.3390/molecules22030468. PubMed DOI PMC

Yong Y.-C., Zhong J.-J. Impacts of Quorum Sensing on Microbial Metabolism and Human Health. In: Zhong J.-J., editor. Future Trends in Biotechnology. Volume 131. Springer; Berlin/Heidelberg, Germany: 2012. pp. 25–61. PubMed DOI

Chatterjee R., Shreenivas M.M., Sunil R., Chakravortty D. Enteropathogens: Tuning Their Gene Expression for Hassle-Free Survival. Front. Microbiol. 2019;9:3303. doi: 10.3389/fmicb.2018.03303. PubMed DOI PMC

Gibbons S., Oluwatuyi M., Kaatz G.W. A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus. J. Antimicrob. Chemother. 2003;51:13–17. doi: 10.1093/jac/dkg044. PubMed DOI

Rezzonico F., Smits T.H.M., Duffy B. Detection of AI-2 Receptors in Genomes of Enterobacteriaceae Suggests a Role of Type-2 Quorum Sensing in Closed Ecosystems. Sensors. 2012;12:6645–6665. doi: 10.3390/s120506645. PubMed DOI PMC

Taga M.E., Semmelhack J.L., Bassler B.L. The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol. Microbiol. 2008;42:777–793. doi: 10.1046/j.1365-2958.2001.02669.x. PubMed DOI

Domínguez Álvarez E., Spengler G., Jacob C., Sanmartín Grijalba M.C. Selenoester-Containing Compounds for Use in the Treatment of Microbial Infections or Colorectal Cancer. EP18382693. European Patent. 2018 Sep 28;

Christopher P.J., Polgar E.P., editors. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. Clinical and Laboratory Standards Institute; Wayne, MI, USA: 2018.

Viktorova J., Stupák M., Rehorova K., Dobiasova S., Hoang L., Hajslova J., Van Thanh T., Van Tri L., Van Tuan N., Ruml T. Lemon Grass Essential Oil does not Modulate Cancer Cells Multidrug Resistance by Citral—Its Dominant and Strongly Antimicrobial Compound. Foods. 2020;9:585. doi: 10.3390/foods9050585. PubMed DOI PMC

Hoang L., Beneš F., Fenclova M., Kronusova O., Švarcová V., Rehorova K., Švecová E.B., Vosátka M., Hajslova J., Kaštánek P., et al. Phytochemical Composition and In Vitro Biological Activity of Iris spp. (Iridaceae): A New Source of Bioactive Constituents for the Inhibition of Oral Bacterial Biofilms. Antibiot. 2020;9:403. doi: 10.3390/antibiotics9070403. PubMed DOI PMC

Sandberg M.E., Schellmann D., Brunhofer G., Erker T., Busygin I., Leino R., Vuorela P., Fallarero A. Pros and cons of using resazurin staining for quantification of viable Staphylococcus aureus biofilms in a screening assay. J. Microbiol. Methods. 2009;78:104–106. doi: 10.1016/j.mimet.2009.04.014. PubMed DOI

Haney E.F., Trimble M.J., Cheng J.T., Vallé Q., Hancock R.E.W. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules. 2018;8:29. doi: 10.3390/biom8020029. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Selectively Halogenated Flavonolignans-Preparation and Antibacterial Activity

. 2022 Dec 01 ; 23 (23) : . [epub] 20221201

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace