Acute Effects of Continuous and Intermittent Blood Flow Restriction on Movement Velocity During Bench Press Exercise Against Different Loads

. 2020 ; 11 () : 569915. [epub] 20201127

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33329020

This study evaluated the effects of continuous and intermittent blood flow restriction (BFR) with 70% of full arterial occlusion pressure on bar velocity during the bench press exercise against a wide range of resistive loads. Eleven strength-trained males (age: 23.5 ± 1.4 years; resistance training experience: 2.8 ± 0.8 years, maximal bench press strength - 1RM = 101.8 ± 13.9 kg; body mass = 79.8 ± 10.4 kg), performed three different testing protocols in random and counterbalanced order: without BFR (NO-BFR); intermittent BFR (I-BFR) and continuous BFR (C-BFR). During each experimental session, subjects performed eight sets of two repetitions each, with increasing loads from 20 to 90% 1RM (10% steps), and 3 min rest between each set. In the C-BFR condition occlusion was kept throughout the trial, while in the I-BFR, occlusion was released during each 3 min rest interval. Peak bar velocity (PV) during the bench press exercise was higher by 12-17% in both I-BFR and C-BFR compared with NO-BFR only at the loads of 20, 30, 40, and 50% 1RM (p < 0.001), while performance at higher loads remained unchanged. Mean bar velocity (MV) was unaffected by occlusion (p = 0.342). These results indicate that BFR during bench press exercise increases PV and this may be used as an enhanced stimulus during explosive resistance training. At higher workloads, bench press performance was not negatively affected by BFR, indicating that the benefits of exercise under occlusion can be obtained while explosive performance is not impaired.

Zobrazit více v PubMed

Andreas M., Schmid A. I., Keilani M., Doberer D., Bartko J., Crevenna R., et al. (2011). Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial. J. Cardiovasc. Magn. Reson. 13:32. 10.1186/1532-429X-13-32 PubMed DOI PMC

Bailey T. G., Birk G. K., Cable N. T., Atkinson G., Green D. J., Jones H., et al. (2012). Remote ischemic preconditioning prevents reduction in brachial artery flow-mediated dilation after strenuous exercise. Am. J. Physiol.-Heart Circ. Physiol. 303 H533–H538. 10.1152/ajpheart.00272.2012 PubMed DOI

Bell Z. W., Abe T., Wong V., Spitz R. W., Viana R. B., Chatakondi R. N., et al. (2020). Muscle swelling following blood flow-restricted exercise does not differ between cuff widths in the proximal or distal portions of the upper leg. Clin. Physiol. Funct. Imaging 40 269–276. 10.1111/cpf.12635 PubMed DOI

Bird S. P., Tarpenning K. M., Marino F. E. (2005). Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med. 35 841–851. 10.2165/00007256-200535100-00002 PubMed DOI

Bogdanis G. C., Nevill M. E., Boobis L. H., Lakomy H. K. (1996). Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J. Appl. Physiol. 80 876–884. 10.1152/jappl.1996.80.3.876 PubMed DOI

Clark B. C., Manini T. M. (2017). Can KAATSU exercise cause rhabdomyolysis? Clin. J. Sport Med. 27 e1–e2. 10.1097/JSM.0000000000000309 PubMed DOI

Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences, 2 Edn Hillsdale, NJ: L. Erlbaum Associates.

Cromwell H. C., Panksepp J. (2011). Rethinking the cognitive revolution from a neural perspective: how overuse/misuse of the term ‘cognition’ and the neglect of affective controls in behavioral neuroscience could be delaying progress in understanding the BrainMind. Neurosci. Biobehav. Rev. 35 2026–2035. 10.1016/j.neubiorev.2011.02.008 PubMed DOI

Dawson B., Goodman C., Lawrence S., Preen D., Polglaze T., Fitzsimons M., et al. (2007). Muscle phosphocreatine repletion following single and repeated short sprint efforts. Scand. J. Med. Sci. Sports 7 206–213. 10.1111/j.1600-0838.1997.tb00141.x PubMed DOI

de Souza H. L. R., Arriel R. A., Hohl R., da Mota G. R., Marocolo M. (2019). Is ischemic preconditioning intervention occlusion-dependent to enhance resistance exercise performance?. J. Strength Cond. Res. 1 10.1519/JSC.0000000000003224 [Online ahead of print] PubMed DOI

Dunnick D. D., Brown L. E., Coburn J. W., Lynn S. K., Barillas S. R. (2015). Bench Press Upper-Body Muscle Activation Between Stable and Unstable Loads. J. Strength Cond. Res. 29 3279–3283. 10.1519/JSC.0000000000001198 PubMed DOI

Ellefsen S., Hammarström D., Strand T. A., Zacharoff E., Whist J. E., Rauk I., et al. (2015). Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 309 R767–R779. 10.1152/ajpregu.00497.2014 PubMed DOI PMC

Garnacho-Castaño M. V., López-Lastra S., Maté-Muñoz J. L. (2015). Reliability and validity assessment of a linear position transducer. J. Sports Sci. Med. 14 128–136. PubMed PMC

Golas A., Maszczyk A., Wilk M., Stastny P. (2015). Changes in bar velocity and muscular activity during the bench press in relation to the load lifted. Cent. Eur. J. Sport Sci. Med. 11 95–101. 10.18276/cej.2015.3-11 DOI

Harman E., Frykman P. (1990). The effects of knee wraps on weightlifting per- formance and injury. J. Strength Cond. Res. 12 30–35. 10.1519/0744-0049(1990)012<0030:teokwo>2.3.co;2 DOI

Incognito A. V., Burr J. F., Millar P. J. (2016). The effects of ischemic preconditioning on human exercise performance. Sports Med. 46 531–544. 10.1007/s40279-015-0433-5 PubMed DOI

Jessee M. B., Buckner S. L., Dankel S. J., Counts B. R., Abe T., Loenneke J. P. (2016). The influence of cuff width, sex, and race on arterial occlusion: implications for blood flow restriction research. Sports Med. 46 913–921. 10.1007/s40279-016-0473-5 PubMed DOI

Kacin A., Strazar K. (2011). Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity: ischemic training and muscle endurance. Scand. J. Med. Sci. Sports 21 e231–e241. 10.1111/j.1600-0838.2010.01260.x PubMed DOI

Krzysztofik M., Wilk M., Wojdala G., Golas A. (2019). Maximizing muscle hypertrophy: a systematic review of advanced resistance training techniques and methods. Int. J. Environ. Res. Public. Health 16:4897. 10.3390/ijerph16244897 PubMed DOI PMC

Loenneke J., Fahs C., Thiebaud R., Rossow L., Abe T., Ye X., et al. (2012). The acute muscle swelling effects of blood flow restriction. Acta Physiol. Hung. 99 400–410. 10.1556/APhysiol.99.2012.4.4 PubMed DOI

Loenneke J. P., Balapur A., Thrower A. D., Barnes J., Pujol T. J. (2012a). Blood flow restriction reduces time to muscular failure. Eur. J. Sport Sci. 12 238–243. 10.1080/17461391.2010.551420 DOI

Loenneke J. P., Fahs C. A., Rossow L. M., Sherk V. D., Thiebaud R. S., Abe T., et al. (2012b). Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur. J. Appl. Physiol. 112 2903–2912. 10.1007/s00421-011-2266-2268 PubMed DOI PMC

Loenneke J. P., Allen K. M., Mouser J. G., Thiebaud R. S., Kim D., Abe T., et al. (2015). Blood flow restriction in the upper and lower limbs is predicted by limb circumference and systolic blood pressure. Eur. J. Appl. Physiol. 115 397–405. 10.1007/s00421-014-3030-3037 PubMed DOI

Loenneke J. P., Pujol T. J. (2009). The use of occlusion training to produce muscle hypertrophy. Strength Cond. J. 31 77–84. 10.1519/SSC.0b013e3181a5a352 DOI

Luebbers P. E., Fry A. C., Kriley L. M., Butler M. S. (2014). The effects of a 7-week practical blood flow restriction program on well-trained collegiate athletes. J. Strength Cond. Res. 28 2270–2280. 10.1519/JSC.0000000000000385 PubMed DOI

Marocolo I. C., da Mota G. R., Londe A. M., Patterson S. D., Barbosa Neto O., Marocolo M. (2017). Acute ischemic preconditioning does not influence high-intensity intermittent exercise performance. PeerJ 5:e4118. 10.7717/peerj.4118 PubMed DOI PMC

Marocolo M., Billaut F., da Mota G. R. (2018). Ischemic preconditioning and exercise performance: an ergogenic aid for whom? Front. Physiol. 9:1874. 10.3389/fphys.2018.01874 PubMed DOI PMC

Marocolo M., Simim M. A. M., Bernardino A., Monteiro I. R., Patterson S. D., da Mota G. R. (2019). Ischemic preconditioning and exercise performance: shedding light through smallest worthwhile change. Eur. J. Appl. Physiol. 119 2123–2149. 10.1007/s00421-019-04214-4216 PubMed DOI

Marocolo M., Willardson J. M., Marocolo I. C., da Mota G. R., Simão R., Maior A. S. (2016). Ischemic preconditioning and placebo intervention improves resistance exercise performance. J. Strength Cond. Res. 30 1462–1469. 10.1519/JSC.0000000000001232 PubMed DOI

Neto G. R., Novaes J. S., Salerno V. P., Gonçalves M. M., Batista G. R., Cirilo-Sousa M. S. (2018). Does a resistance exercise session with continuous or intermittent blood flow restriction promote muscle damage and increase oxidative stress? J. Sports Sci. 36 104–110. 10.1080/02640414.2017.1283430 PubMed DOI

Okita K., Takada S., Morita N., Takahashi M., Hirabayashi K., Yokota T., et al. (2019). Resistance training with interval blood flow restriction effectively enhances intramuscular metabolic stress with less ischemic duration and discomfort. Appl. Physiol. Nutr. Metab. 44 759–764. 10.1139/apnm-2018-2321 PubMed DOI

Paradis-Deschênes P., Joanisse D. R., Billaut F. (2016). Ischemic preconditioning increases muscle perfusion, oxygen uptake, and force in strength-trained athletes. Appl. Physiol. Nutr. Metab. 41 938–944. 10.1139/apnm-2015-2561 PubMed DOI

Pearson S. J., Hussain S. R. (2015). A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 45 187–200. 10.1007/s40279-014-0264-9 PubMed DOI

Ploutz-Snyder L. L., Convertino V. A., Dudley G. A. (1995). Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 269 R536–R543. 10.1152/ajpregu.1995.269.3.R536 PubMed DOI

Rawska M., Gepfert M., Mostowik A., Krzysztofik M., Wojdala G., Lulinska A., et al. (2019). Does blood flow restriction influence the maximal number of repetitions performed during the bench press? A pilot study. Balt. J. Health Phys. Act. 11 9–17. 10.29359/BJHPA.11.4.02 DOI

Rossow L. M., Fahs C. A., Loenneke J. P., Thiebaud R. S., Sherk V. D., Abe T., et al. (2012). Cardiovascular and perceptual responses to blood-flow-restricted resistance exercise with differing restrictive cuffs. Clin. Physiol. Funct. Imaging 32 331–337. 10.1111/j.1475-097X.2012.01131.x PubMed DOI

Scott B. R., Loenneke J. P., Slattery K. M., Dascombe B. J. (2015). Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med. 45 313–325. 10.1007/s40279-014-0288-1 PubMed DOI

Shimizu R., Hotta K., Yamamoto S., Matsumoto T., Kamiya K., Kato M., et al. (2016). Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur. J. Appl. Physiol. 116 749–757. 10.1007/s00421-016-3328-3328 PubMed DOI

Sieljacks P., Matzon A., Wernbom M., Ringgaard S., Vissing K., Overgaard K. (2016). Muscle damage and repeated bout effect following blood flow restricted exercise. Eur. J. Appl. Physiol. 116 513–525. 10.1007/s00421-015-3304-8 PubMed DOI

Singh L., Randhawa P. K., Singh N., Jaggi A. S. (2017). Redox signaling in remote ischemic preconditioning-induced cardioprotection: evidences and mechanisms. Eur. J. Pharmacol. 809 151–155. 10.1016/j.ejphar.2017.05.033 PubMed DOI

Sjøgaard G., Savard G., Juel C. (1988). Muscle blood flow during isometric activity and its relation to muscle fatigue. Eur. J. Appl. Physiol. Occup. Physiol. 57 327–335. 10.1007/BF00635992 PubMed DOI

Stastny P., Golas A., Blazek D., Maszczyk A., Wilk M., Pietraszewski P., et al. (2017). A systematic review of surface electromyography analyses of the bench press movement task. PLoS One 12:e0171632. 10.1371/journal.pone.0171632 PubMed DOI PMC

Takano H., Morita T., Iida H., Asada K., Kato M., Uno K., et al. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur. J. Appl. Physiol. 95 65–73. 10.1007/s00421-005-1389-1381 PubMed DOI

Taylor A. G., Goehler L. E., Galper D. I., Innes K. E., Bourguignon C. (2010). Top-Down and bottom-up mechanisms in mind-body medicine: development of an integrative framework for psychophysiological research. Explore 6 29–41. 10.1016/j.explore.2009.10.004 PubMed DOI PMC

Teixeira E. L., Barroso R., Silva-Batista C., Laurentino G. C., Loenneke J. P., Roschel H., et al. (2018). Blood flow restriction increases metabolic stress but decreases muscle activation during high-load resistance exercise. Muscle Nerve 57 107–111. 10.1002/mus.25616 PubMed DOI

Teixeira V., Voci S. M., Mendes-Netto R. S., da Silva D. G. (2018). The relative validity of a food record using the smartphone application MyFitnessPal: relative validity of a smartphone dietary record. Nutr. Diet. 370 219–225. 10.1111/1747-0080.12401 PubMed DOI

Wernbom M., Järrebring R., Andreasson M. A., Augustsson J. (2009). Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J. Strength Cond. Res. 23 2389–2395. 10.1519/JSC.0b013e3181bc1c2a PubMed DOI

Wernbom M., Paulsen G., Bjørnsen T., Cumming K., Raastad T. (2019). Risk of muscle damage with blood flow–restricted exercise should not be overlooked. Clin. J. Sport Med. 10.1097/JSM.0000000000000755 [Epubh ahead of print]. PubMed DOI

Wernbom M., Schoenfeld B. J., Paulsen G., Bjørnsen T., Cumming K. T., Aagaard P., et al. (2020). Commentary: can blood flow restricted exercise cause muscle damage? Commentary on blood flow restriction exercise: considerations of methodology, application, and safety. Front. Physiol. 11:243. 10.3389/fphys.2020.00243 PubMed DOI PMC

Wilk M., Gepfert M., Krzysztofik M., Golas A., Mostowik A., Maszczyk A., et al. (2019). The influence of grip width on training volume during the bench press with different movement tempos. J. Hum. Kinet. 68 49–57. 10.2478/hukin-2019-2055 PubMed DOI PMC

Wilk M., Gepfert M., Krzysztofik M., Mostowik A., Filip A., Hajduk G., et al. (2020a). Impact of duration of eccentric movement in the one-repetition maximum test result in the bench press among women. J. Sports Sci. Med. 19 317–322. PubMed PMC

Wilk M., Golas A., Zmijewski P., Krzysztofik M., Filip A., Coso J. D., et al. (2020b). The effects of the movement tempo on the one-repetition maximum bench press results. J. Hum. Kinet. 72 151–159. 10.2478/hukin-2020-2021 PubMed DOI PMC

Wilk M., Krzysztofik M., Drozd M., Zajac A. (2020c). Changes of power output and velocity during successive sets of the bench press with different duration of eccentric movement. Int. J. Sports Physiol. Perform. 15 162–167. 10.1123/ijspp.2019-2164 PubMed DOI

Wilk M., Krzysztofik M., Filip A., Lockie R. G., Zajac A. (2020d). The acute effects of external compression with blood flow restriction on maximal strength and strength-endurance performance of the upper limbs. Front. Physiol. 10.3389/fphys.2020.00567 [Epub ahead of print], PubMed DOI PMC

Wilk M., Krzysztofik M., Filip A., Szkudlarek A., Lockie R. G., Zajac A. (2020e). Does post-activation performance enhancement occur during the bench press exercise under blood flow restriction? Int. J. Environ. Res. Public. Health 17:3752. 10.3390/ijerph17113752 PubMed DOI PMC

Wilk M., Krzysztofik M., Filip A., Zajac A., Bogdanis G. C., Lockie R. G. (2020f). Short-term blood flow restriction increases power output and bar velocity during the bench press. J. Strength Cond. Res. 10.1519/JSC.0000000000003649 [Online ahead of print] PubMed DOI

Wilk M., Krzysztofik M., Gepfert M., Poprzecki S., Golas A., Maszczyk A. (2018). Technical and training related aspects of resistance training using blood flow restriction in competitive sport - a review. J. Hum. Kinet. 65 249–260. 10.2478/hukin-2018-2101 PubMed DOI PMC

Yasuda T., Fukumura K., Iida H., Nakajima T. (2015). Effect of low-load resistance exercise with and without blood flow restriction to volitional fatigue on muscle swelling. Eur. J. Appl. Physiol. 115 919–926. 10.1007/s00421-014-3073-9 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...