Acute Effects of Different Blood Flow Restriction Protocols on Bar Velocity During the Squat Exercise

. 2021 ; 12 () : 652896. [epub] 20210621

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34234686

The main goal of the present study was to evaluate the effects of different blood flow restriction (BFR) protocols (continuous and intermittent) on peak bar velocity (PV) and mean bar velocity (MV) during the squat exercise at progressive loads, from 40 to 90% 1RM. Eleven healthy men (age = 23.4 ± 3.1 years; body mass = 88.5 ± 12.1 kg; squat 1RM = 183.2 ± 30.7 kg; resistance training experience, 5.7 ± 3.6 years) performed experimental sessions once a week for 3 weeks in random and counterbalanced order: without BFR (NO-BFR), with intermittent BFR (I-BFR), and with continuous BFR (C-BFR). During the experimental session, the participants performed six sets of the barbell squat exercise with loads from 40 to 90% 1RM. In each set, they performed two repetitions. During the C-BFR session, the cuffs were maintained throughout the training session. During the I-BFR, the cuffs were used only during the exercise and released for each rest interval. The BFR pressure was set to ∼80% arterial occlusion pressure (AOP). Analyses of variance showed a statistically significant interaction for MV (p < 0.02; η2 = 0.18). However, the post hoc analysis did not show significant differences between particular conditions for particular loads. There was no significant condition × load interaction for PV (p = 0.16; η2 = 0.13). Furthermore, there were no main effects for conditions in MV (p = 0.38; η2 = 0.09) as well as in PV (p = 0.94; η2 = 0.01). The results indicate that the different BFR protocols used during lower body resistance exercises did not reduce peak bar velocity and mean bar velocity during the squat exercise performed with various loads.

Zobrazit více v PubMed

Andreas M., Schmid A. I., Keilani M., Doberer D., Bartko J., Crevenna R., et al. (2011). Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial. J. Cardiovasc. Magn. Reson. 13:32. 10.1186/1532-429X-13-32 PubMed DOI PMC

Bird S. P., Tarpenning K. M., Marino F. E. (2005). Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med. 35 841–851. 10.2165/00007256-200535100-00002 PubMed DOI

Bogdanis G. C., Nevill M. E., Boobis L. H., Lakomy H. K. (1996). Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J. Appl. Physiol. 80 876–884. 10.1152/jappl.1996.80.3.876 PubMed DOI

Clark B. C., Manini T. M. (2017). Can KAATSU exercise cause rhabdomyolysis? Clin. J. Sport Med. 27 e1–e2. 10.1097/JSM.0000000000000309 PubMed DOI

Crenshaw A. G., Hargens A. R., Gershuni D. H., Rydevik B. (1988). Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop. Scand. 59 447–451. 10.3109/17453678809149401 PubMed DOI

Dawson B., Goodman C., Lawrence S., Preen D., Polglaze T., Fitzsimons M., et al. (2007). Muscle phosphocreatine repletion following single and repeated short sprint efforts. Scand. J. Med. Sci. Sports 7 206–213. 10.1111/j.1600-0838.1997.tb00141.x PubMed DOI

Ellefsen S., Hammarström D., Strand T. A., Zacharoff E., Whist J. E., Rauk I., et al. (2015). Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 309 R767–R779. 10.1152/ajpregu.00497.2014 PubMed DOI PMC

Garnacho-Castaño M. V., López-Lastra S., Maté-Muñoz J. L. (2015). Reliability and validity assessment of a linear position transducer. J. Sports Sci. Med. 14 128–136. PubMed PMC

Gepfert M., Krzysztofik M., Kostrzewa M., Jarosz J., Trybulski R., Zajac A., et al. (2020). The acute impact of external compression on back squat performance in competitive athletes. Int. J. Environ. Res. Public. Health 17:4674. 10.3390/ijerph17134674 PubMed DOI PMC

Incognito A. V., Burr J. F., Millar P. J. (2016). The effects of ischemic preconditioning on human exercise performance. Sports Med. 46 531–544. 10.1007/s40279-015-0433-5 PubMed DOI

Janier M. F., Vanoverschelde J. L., Bergmann S. R. (1994). Ischemic preconditioning stimulates anaerobic glycolysis in the isolated rabbit heart. Am. J. Physiol. 267 H1353–H1360. 10.1152/ajpheart.1994.267.4.H1353 PubMed DOI

Kacin A., Strazar K. (2011). Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity: ischemic training and muscle endurance. Scand. J. Med. Sci. Sports 21 e231–e241. 10.1111/j.1600-0838.2010.01260.x PubMed DOI

Lee J.-Y., Lee D.-Y. (2018). Effect of different speeds and ground environment of squat exercises on lower limb muscle activation and balance ability. Technol. Health Care 26 593–603. 10.3233/THC-181201 PubMed DOI

Loenneke J. P., Balapur A., Thrower A. D., Barnes J., Pujol T. J. (2012a). Blood flow restriction reduces time to muscular failure. Eur. J. Sport Sci. 12 238–243. 10.1080/17461391.2010.551420 DOI

Loenneke J. P., Fahs C. A., Rossow L. M., Sherk V. D., Thiebaud R. S., Abe T., et al. (2012b). Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur. J. Appl. Physiol. 112 2903–2912. 10.1007/s00421-011-2266-8 PubMed DOI PMC

Loenneke J. P., Pujol T. J. (2009). The use of occlusion training to produce muscle hypertrophy. Strength Cond. J. 31 77–84. 10.1519/SSC.0b013e3181a5a352 DOI

Marocolo I. C., da Mota G. R., Londe A. M., Patterson S. D., Barbosa Neto O., Marocolo M. (2017). Acute ischemic preconditioning does not influence high-intensity intermittent exercise performance. PeerJ 5:e4118. 10.7717/peerj.4118 PubMed DOI PMC

Marocolo M., Billaut F., da Mota G. R. (2018). Ischemic preconditioning and exercise performance: an ergogenic aid for whom? Front. Physiol. 9:1874. 10.3389/fphys.2018.01874 PubMed DOI PMC

Marocolo M., Simim M. A. M., Bernardino A., Monteiro I. R., Patterson S. D., da Mota G. R. (2019). Ischemic preconditioning and exercise performance: shedding light through smallest worthwhile change. Eur. J. Appl. Physiol. 119 2123–2149. 10.1007/s00421-019-04214-6 PubMed DOI

Marocolo M., Willardson J. M., Marocolo I. C., da Mota G. R., Simão R., Maior A. S. (2016). Ischemic preconditioning and placebo intervention improves resistance exercise performance. J. Strength Cond. Res. 30 1462–1469. 10.1519/JSC.0000000000001232 PubMed DOI

Martínez-Cava A., Morán-Navarro R., Sánchez-Medina L., González-Badillo J. J., Pallarés J. G. (2019). Velocity- and power-load relationships in the half, parallel and full back squat. J. Sports Sci. 37 1088–1096. 10.1080/02640414.2018.1544187 PubMed DOI

McEwen J. A., Owens J. G., Jeyasurya J. (2019). Why is it crucial to use personalized occlusion pressures in Blood Flow Restriction (BFR) Rehabilitation? J. Med. Biol. Eng. 39 173–177. 10.1007/s40846-018-0397-7 DOI

Mendez-Villanueva A., Edge J., Suriano R., Hamer P., Bishop D. (2012). The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PLoS One 7:e51977. 10.1371/journal.pone.0051977 PubMed DOI PMC

Myer G. D., Kushner A. M., Brent J. L., Schoenfeld B. J., Hugentobler J., Lloyd R. S., et al. (2014). The back squat: a proposed assessment of functional deficits and technical factors that limit performance. Strength Cond. J. 36 4–27. 10.1519/SSC.0000000000000103 PubMed DOI PMC

Neto G. R., Novaes J. S., Salerno V. P., Gonçalves M. M., Batista G. R., Cirilo-Sousa M. S. (2018). Does a resistance exercise session with continuous or intermittent blood flow restriction promote muscle damage and increase oxidative stress? J. Sports Sci. 36 104–110. 10.1080/02640414.2017.1283430 PubMed DOI

Okita K., Takada S., Morita N., Takahashi M., Hirabayashi K., Yokota T., et al. (2019). Resistance training with interval blood flow restriction effectively enhances intramuscular metabolic stress with less ischemic duration and discomfort. Appl. Physiol. Nutr. Metab. 44 759–764. 10.1139/apnm-2018-0321 PubMed DOI

Pearson S. J., Hussain S. R. (2015). A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 45 187–200. 10.1007/s40279-014-0264-9 PubMed DOI

Rawska M., Gepfert M., Mostowik A., Krzysztofik M., Wojdala G., Lulinska A., et al. (2019). Does blood flow restriction influence the maximal number of repetitions performed during the bench press? a pilot study. Balt. J. Health Phys. Act. 11 4. 10.29359/BJHPA.11.4.02 DOI

Robergs R. A., Pearson D. R., Costill D. L., Fink W. J., Pascoe D. D., Benedict M. A., et al. (1991). Muscle glycogenolysis during differing intensities of weight-resistance exercise. J. Appl. Physiol. 70 1700–1706. 10.1152/jappl.1991.70.4.1700 PubMed DOI

Scott B. R., Loenneke J. P., Slattery K. M., Dascombe B. J. (2015). Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med. 45 313–325. 10.1007/s40279-014-0288-1 PubMed DOI

Shimizu R., Hotta K., Yamamoto S., Matsumoto T., Kamiya K., Kato M., et al. (2016). Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur. J. Appl. Physiol. 116 749–757. 10.1007/s00421-016-3328-8 PubMed DOI

Takano H., Morita T., Iida H., Asada K., Kato M., Uno K., et al. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur. J. Appl. Physiol. 95 65–73. 10.1007/s00421-005-1389-1 PubMed DOI

Teixeira E. L., Barroso R., Silva-Batista C., Laurentino G. C., Loenneke J. P., Roschel H., et al. (2018). Blood flow restriction increases metabolic stress but decreases muscle activation during high-load resistance exercise. Muscle Nerve 57 107–111. 10.1002/mus.25616 PubMed DOI

Torma F., Gombos Z., Fridvalszki M., Langmar G., Tarcza Z., Merkely B., et al. (2019). Blood flow restriction in human skeletal muscle during rest periods after high-load resistance training down-regulates miR 206 and induces Pax7. J. Sport Health Sci. [Epub ahead of print]. 10.1016/j.jshs.2019.08.00 PubMed DOI PMC

Wernbom M., Järrebring R., Andreasson M. A., Augustsson J. (2009). Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J. Strength Cond. Res. 23 2389–2395. 10.1519/JSC.0b013e3181bc1c2a PubMed DOI

Wernbom M., Paulsen G., Bjørnsen T., Cumming K., Raastad T. (2019). Risk of muscle damage with blood flow–restricted exercise should not be overlooked. Clin. J. Sport Med. 10.1097/JSM.0000000000000755 Online ahead of print. PubMed DOI

Wernbom M., Schoenfeld B. J., Paulsen G., Bjørnsen T., Cumming K. T., Aagaard P., et al. (2020). Commentary: can blood flow restricted exercise cause muscle damage? commentary on blood flow restriction exercise: considerations of methodology, application, and safety. Front. Physiol. 11:243. 10.3389/fphys.2020.00243 PubMed DOI PMC

Wilk M., Gepfert M., Krzysztofik M., Stastny P., Zajac A., Bogdanis G. C. (2020a). Acute effects of continuous and intermittent blood flow restriction on movement velocity during bench press exercise against different loads. Front. Physiol. 11:569915. 10.3389/fphys.2020.569915 PubMed DOI PMC

Wilk M., Golas A., Zmijewski P., Krzysztofik M., Filip A., Coso J. D., et al. (2020b). The effects of the movement tempo on the one-repetition maximum bench press results. J. Hum. Kinet. 72 151–159. 10.2478/hukin-2020-0001 PubMed DOI PMC

Wilk M., Krzysztofik M., Bialas M. (2020c). The influence of compressive gear on maximal load lifted in competitive powerlifting. Biol. Sport 37 437–441. 10.5114/biolsport.2021.100145 PubMed DOI PMC

Wilk M., Krzysztofik M., Filip A., Szkudlarek A., Lockie R. G., Zajac A. (2020d). Does post-activation performance enhancement occur during the bench press exercise under blood flow restriction? Int. J. Environ. Res. Public. Health 17:3752. 10.3390/ijerph17113752 PubMed DOI PMC

Wilk M., Krzysztofik M., Filip A., Zajac A., Bogdanis G. C., Lockie R. G. (2020e). Short-Term blood flow restriction increases power output and bar velocity during the bench press. J. Strength Cond. Res. 10.1519/JSC.0000000000003649 Online ahead of print. PubMed DOI

Wilk M., Krzysztofik M., Gepfert M., Poprzecki S., Gołaś A., Maszczyk A. (2018). Technical and training related aspects of resistance training using blood flow restriction in competitive sport - a review. J. Hum. Kinet. 65 249–260. 10.2478/hukin-2018-0101 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...