Acute Effects of Different Blood Flow Restriction Protocols on Bar Velocity During the Squat Exercise
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34234686
PubMed Central
PMC8255669
DOI
10.3389/fphys.2021.652896
Knihovny.cz E-zdroje
- Klíčová slova
- cuff, occlusion, peak velocity, performance, resistance exercise,
- Publikační typ
- časopisecké články MeSH
The main goal of the present study was to evaluate the effects of different blood flow restriction (BFR) protocols (continuous and intermittent) on peak bar velocity (PV) and mean bar velocity (MV) during the squat exercise at progressive loads, from 40 to 90% 1RM. Eleven healthy men (age = 23.4 ± 3.1 years; body mass = 88.5 ± 12.1 kg; squat 1RM = 183.2 ± 30.7 kg; resistance training experience, 5.7 ± 3.6 years) performed experimental sessions once a week for 3 weeks in random and counterbalanced order: without BFR (NO-BFR), with intermittent BFR (I-BFR), and with continuous BFR (C-BFR). During the experimental session, the participants performed six sets of the barbell squat exercise with loads from 40 to 90% 1RM. In each set, they performed two repetitions. During the C-BFR session, the cuffs were maintained throughout the training session. During the I-BFR, the cuffs were used only during the exercise and released for each rest interval. The BFR pressure was set to ∼80% arterial occlusion pressure (AOP). Analyses of variance showed a statistically significant interaction for MV (p < 0.02; η2 = 0.18). However, the post hoc analysis did not show significant differences between particular conditions for particular loads. There was no significant condition × load interaction for PV (p = 0.16; η2 = 0.13). Furthermore, there were no main effects for conditions in MV (p = 0.38; η2 = 0.09) as well as in PV (p = 0.94; η2 = 0.01). The results indicate that the different BFR protocols used during lower body resistance exercises did not reduce peak bar velocity and mean bar velocity during the squat exercise performed with various loads.
Department of Medical Sciences The Wojciech Korfanty School of Economics Katowice Poland
Department of Sport Games Faculty of Physical Education and Sport Charles University Prague Czechia
Faculty of Physical Education Gdansk University of Physical Education and Sport Gdańsk Poland
Institute of Sport Sciences Jerzy Kukuczka Academy of Physical Education Katowice Poland
Provita Zory Medical Center Zory Poland
Study Group and Research in Neuromuscular Responses Federal University of Lavras Lavras Brazil
Zobrazit více v PubMed
Andreas M., Schmid A. I., Keilani M., Doberer D., Bartko J., Crevenna R., et al. (2011). Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial. J. Cardiovasc. Magn. Reson. 13:32. 10.1186/1532-429X-13-32 PubMed DOI PMC
Bird S. P., Tarpenning K. M., Marino F. E. (2005). Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med. 35 841–851. 10.2165/00007256-200535100-00002 PubMed DOI
Bogdanis G. C., Nevill M. E., Boobis L. H., Lakomy H. K. (1996). Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J. Appl. Physiol. 80 876–884. 10.1152/jappl.1996.80.3.876 PubMed DOI
Clark B. C., Manini T. M. (2017). Can KAATSU exercise cause rhabdomyolysis? Clin. J. Sport Med. 27 e1–e2. 10.1097/JSM.0000000000000309 PubMed DOI
Crenshaw A. G., Hargens A. R., Gershuni D. H., Rydevik B. (1988). Wide tourniquet cuffs more effective at lower inflation pressures. Acta Orthop. Scand. 59 447–451. 10.3109/17453678809149401 PubMed DOI
Dawson B., Goodman C., Lawrence S., Preen D., Polglaze T., Fitzsimons M., et al. (2007). Muscle phosphocreatine repletion following single and repeated short sprint efforts. Scand. J. Med. Sci. Sports 7 206–213. 10.1111/j.1600-0838.1997.tb00141.x PubMed DOI
Ellefsen S., Hammarström D., Strand T. A., Zacharoff E., Whist J. E., Rauk I., et al. (2015). Blood flow-restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 309 R767–R779. 10.1152/ajpregu.00497.2014 PubMed DOI PMC
Garnacho-Castaño M. V., López-Lastra S., Maté-Muñoz J. L. (2015). Reliability and validity assessment of a linear position transducer. J. Sports Sci. Med. 14 128–136. PubMed PMC
Gepfert M., Krzysztofik M., Kostrzewa M., Jarosz J., Trybulski R., Zajac A., et al. (2020). The acute impact of external compression on back squat performance in competitive athletes. Int. J. Environ. Res. Public. Health 17:4674. 10.3390/ijerph17134674 PubMed DOI PMC
Incognito A. V., Burr J. F., Millar P. J. (2016). The effects of ischemic preconditioning on human exercise performance. Sports Med. 46 531–544. 10.1007/s40279-015-0433-5 PubMed DOI
Janier M. F., Vanoverschelde J. L., Bergmann S. R. (1994). Ischemic preconditioning stimulates anaerobic glycolysis in the isolated rabbit heart. Am. J. Physiol. 267 H1353–H1360. 10.1152/ajpheart.1994.267.4.H1353 PubMed DOI
Kacin A., Strazar K. (2011). Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity: ischemic training and muscle endurance. Scand. J. Med. Sci. Sports 21 e231–e241. 10.1111/j.1600-0838.2010.01260.x PubMed DOI
Lee J.-Y., Lee D.-Y. (2018). Effect of different speeds and ground environment of squat exercises on lower limb muscle activation and balance ability. Technol. Health Care 26 593–603. 10.3233/THC-181201 PubMed DOI
Loenneke J. P., Balapur A., Thrower A. D., Barnes J., Pujol T. J. (2012a). Blood flow restriction reduces time to muscular failure. Eur. J. Sport Sci. 12 238–243. 10.1080/17461391.2010.551420 DOI
Loenneke J. P., Fahs C. A., Rossow L. M., Sherk V. D., Thiebaud R. S., Abe T., et al. (2012b). Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur. J. Appl. Physiol. 112 2903–2912. 10.1007/s00421-011-2266-8 PubMed DOI PMC
Loenneke J. P., Pujol T. J. (2009). The use of occlusion training to produce muscle hypertrophy. Strength Cond. J. 31 77–84. 10.1519/SSC.0b013e3181a5a352 DOI
Marocolo I. C., da Mota G. R., Londe A. M., Patterson S. D., Barbosa Neto O., Marocolo M. (2017). Acute ischemic preconditioning does not influence high-intensity intermittent exercise performance. PeerJ 5:e4118. 10.7717/peerj.4118 PubMed DOI PMC
Marocolo M., Billaut F., da Mota G. R. (2018). Ischemic preconditioning and exercise performance: an ergogenic aid for whom? Front. Physiol. 9:1874. 10.3389/fphys.2018.01874 PubMed DOI PMC
Marocolo M., Simim M. A. M., Bernardino A., Monteiro I. R., Patterson S. D., da Mota G. R. (2019). Ischemic preconditioning and exercise performance: shedding light through smallest worthwhile change. Eur. J. Appl. Physiol. 119 2123–2149. 10.1007/s00421-019-04214-6 PubMed DOI
Marocolo M., Willardson J. M., Marocolo I. C., da Mota G. R., Simão R., Maior A. S. (2016). Ischemic preconditioning and placebo intervention improves resistance exercise performance. J. Strength Cond. Res. 30 1462–1469. 10.1519/JSC.0000000000001232 PubMed DOI
Martínez-Cava A., Morán-Navarro R., Sánchez-Medina L., González-Badillo J. J., Pallarés J. G. (2019). Velocity- and power-load relationships in the half, parallel and full back squat. J. Sports Sci. 37 1088–1096. 10.1080/02640414.2018.1544187 PubMed DOI
McEwen J. A., Owens J. G., Jeyasurya J. (2019). Why is it crucial to use personalized occlusion pressures in Blood Flow Restriction (BFR) Rehabilitation? J. Med. Biol. Eng. 39 173–177. 10.1007/s40846-018-0397-7 DOI
Mendez-Villanueva A., Edge J., Suriano R., Hamer P., Bishop D. (2012). The recovery of repeated-sprint exercise is associated with PCr resynthesis, while muscle pH and EMG amplitude remain depressed. PLoS One 7:e51977. 10.1371/journal.pone.0051977 PubMed DOI PMC
Myer G. D., Kushner A. M., Brent J. L., Schoenfeld B. J., Hugentobler J., Lloyd R. S., et al. (2014). The back squat: a proposed assessment of functional deficits and technical factors that limit performance. Strength Cond. J. 36 4–27. 10.1519/SSC.0000000000000103 PubMed DOI PMC
Neto G. R., Novaes J. S., Salerno V. P., Gonçalves M. M., Batista G. R., Cirilo-Sousa M. S. (2018). Does a resistance exercise session with continuous or intermittent blood flow restriction promote muscle damage and increase oxidative stress? J. Sports Sci. 36 104–110. 10.1080/02640414.2017.1283430 PubMed DOI
Okita K., Takada S., Morita N., Takahashi M., Hirabayashi K., Yokota T., et al. (2019). Resistance training with interval blood flow restriction effectively enhances intramuscular metabolic stress with less ischemic duration and discomfort. Appl. Physiol. Nutr. Metab. 44 759–764. 10.1139/apnm-2018-0321 PubMed DOI
Pearson S. J., Hussain S. R. (2015). A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 45 187–200. 10.1007/s40279-014-0264-9 PubMed DOI
Rawska M., Gepfert M., Mostowik A., Krzysztofik M., Wojdala G., Lulinska A., et al. (2019). Does blood flow restriction influence the maximal number of repetitions performed during the bench press? a pilot study. Balt. J. Health Phys. Act. 11 4. 10.29359/BJHPA.11.4.02 DOI
Robergs R. A., Pearson D. R., Costill D. L., Fink W. J., Pascoe D. D., Benedict M. A., et al. (1991). Muscle glycogenolysis during differing intensities of weight-resistance exercise. J. Appl. Physiol. 70 1700–1706. 10.1152/jappl.1991.70.4.1700 PubMed DOI
Scott B. R., Loenneke J. P., Slattery K. M., Dascombe B. J. (2015). Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development. Sports Med. 45 313–325. 10.1007/s40279-014-0288-1 PubMed DOI
Shimizu R., Hotta K., Yamamoto S., Matsumoto T., Kamiya K., Kato M., et al. (2016). Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur. J. Appl. Physiol. 116 749–757. 10.1007/s00421-016-3328-8 PubMed DOI
Takano H., Morita T., Iida H., Asada K., Kato M., Uno K., et al. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur. J. Appl. Physiol. 95 65–73. 10.1007/s00421-005-1389-1 PubMed DOI
Teixeira E. L., Barroso R., Silva-Batista C., Laurentino G. C., Loenneke J. P., Roschel H., et al. (2018). Blood flow restriction increases metabolic stress but decreases muscle activation during high-load resistance exercise. Muscle Nerve 57 107–111. 10.1002/mus.25616 PubMed DOI
Torma F., Gombos Z., Fridvalszki M., Langmar G., Tarcza Z., Merkely B., et al. (2019). Blood flow restriction in human skeletal muscle during rest periods after high-load resistance training down-regulates miR 206 and induces Pax7. J. Sport Health Sci. [Epub ahead of print]. 10.1016/j.jshs.2019.08.00 PubMed DOI PMC
Wernbom M., Järrebring R., Andreasson M. A., Augustsson J. (2009). Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J. Strength Cond. Res. 23 2389–2395. 10.1519/JSC.0b013e3181bc1c2a PubMed DOI
Wernbom M., Paulsen G., Bjørnsen T., Cumming K., Raastad T. (2019). Risk of muscle damage with blood flow–restricted exercise should not be overlooked. Clin. J. Sport Med. 10.1097/JSM.0000000000000755 Online ahead of print. PubMed DOI
Wernbom M., Schoenfeld B. J., Paulsen G., Bjørnsen T., Cumming K. T., Aagaard P., et al. (2020). Commentary: can blood flow restricted exercise cause muscle damage? commentary on blood flow restriction exercise: considerations of methodology, application, and safety. Front. Physiol. 11:243. 10.3389/fphys.2020.00243 PubMed DOI PMC
Wilk M., Gepfert M., Krzysztofik M., Stastny P., Zajac A., Bogdanis G. C. (2020a). Acute effects of continuous and intermittent blood flow restriction on movement velocity during bench press exercise against different loads. Front. Physiol. 11:569915. 10.3389/fphys.2020.569915 PubMed DOI PMC
Wilk M., Golas A., Zmijewski P., Krzysztofik M., Filip A., Coso J. D., et al. (2020b). The effects of the movement tempo on the one-repetition maximum bench press results. J. Hum. Kinet. 72 151–159. 10.2478/hukin-2020-0001 PubMed DOI PMC
Wilk M., Krzysztofik M., Bialas M. (2020c). The influence of compressive gear on maximal load lifted in competitive powerlifting. Biol. Sport 37 437–441. 10.5114/biolsport.2021.100145 PubMed DOI PMC
Wilk M., Krzysztofik M., Filip A., Szkudlarek A., Lockie R. G., Zajac A. (2020d). Does post-activation performance enhancement occur during the bench press exercise under blood flow restriction? Int. J. Environ. Res. Public. Health 17:3752. 10.3390/ijerph17113752 PubMed DOI PMC
Wilk M., Krzysztofik M., Filip A., Zajac A., Bogdanis G. C., Lockie R. G. (2020e). Short-Term blood flow restriction increases power output and bar velocity during the bench press. J. Strength Cond. Res. 10.1519/JSC.0000000000003649 Online ahead of print. PubMed DOI
Wilk M., Krzysztofik M., Gepfert M., Poprzecki S., Gołaś A., Maszczyk A. (2018). Technical and training related aspects of resistance training using blood flow restriction in competitive sport - a review. J. Hum. Kinet. 65 249–260. 10.2478/hukin-2018-0101 PubMed DOI PMC