Impact of Ischemic Intra-Conditioning on Power Output and Bar Velocity of the Upper Limbs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33716773
PubMed Central
PMC7947627
DOI
10.3389/fphys.2021.626915
Knihovny.cz E-zdroje
- Klíčová slova
- bench press, blood flow restriction, occlusion, resistance exercise, sport performance,
- Publikační typ
- časopisecké články MeSH
This study evaluated the effects of ischemic conditioning on power output and bar velocity in the bench press exercise. Ten healthy males (age: 25 ± 2 years; body mass: 92 ± 8 kg; bench press one repetition maximum -1RM: 145 ± 13 kg), took part in two experimental sessions (with and without ischemia), 1 week apart in random and counterbalanced order. In the ischemic condition, cuffs placed around the upper part of the arms were inflated to 80% of arterial occlusion pressure before each set, while in the control condition there was no blood flow restriction. The exercise protocol included 5 sets of three repetitions each, against a resistance equal to 60% 1RM, with 5 min recovery intervals between sets. There was a main effect of condition for mean power output (MP) and mean bar velocity (MV) (p = 0.01), with overall MP being higher in ischemia than in control by 5.6 ± 4.1% (mean ± 90% compatibility limits), a standardized effect size (ES) of 0.51. Overall MV was also higher by 5.5 ± 4.0%, ES = 0.63. Peak power output (PP) and peak bar velocity (PV) were similar in set 1 of the control and ischemia condition (1039 ± 105 vs. 1054 ± 82 W; 684 ± 74 vs. 696 ± 53 W; 1.09 ± 0.07 vs. 1.12 ± 0.09 m/s; 0.81 ± 0.05 vs. 0.82 ± 0.05 m/s, p = 0.67 to 0.99, mean ± standard deviation). However, from set 3 onward (p = 0.03 to 0.001), PP and PV were higher in ischemia compared with control, with the highest difference observed in set 5 (10.9 ± 5.9%, ES = 0.73 for PP and 8.6 ± 4.6%; ES = 0.89 for PV). These results indicate that ischemia used before each set of the bench press exercise increases power output and bar velocity and this may be used as performance-enhancing stimulus during explosive resistance training.
Faculty of Physical Education and Sport Department of Sport Games Charles University Prague Czechia
Faculty of Physical Education Gdansk University of Physical Education and Sport Gdańsk Poland
Institute of Sport Sciences The Jerzy Kukuczka Academy of Physical Education Katowice Poland
Zobrazit více v PubMed
Andreas M., Schmid A., Keilani M., Doberer D., Bartko J., Crevenna R., et al. (2011). Effect of ischemic preconditioning in skeletal muscle measured by functional magnetic resonance imaging and spectroscopy: a randomized crossover trial. J. Cardiovasc. Magn. Reason. 13:32. 10.1186/1532-429x-13-32 PubMed DOI PMC
Bailey T. G., Birk G. K., Cable N. T., Atkinson G., Green D. J., Jones H., et al. (2012). Remote ischemic preconditioning prevents reduction in brachial artery flow-mediated dilation after strenuous exercise. Am. J. Physiol. Heart Circ. Physiol. 303 H533–H538. PubMed
Bird S. P., Tarpenning K. M., Marino F. E. (2005). Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med. 35 841–851. 10.2165/00007256-200535100-00002 PubMed DOI
Bogdanis G. C., Nevill M. E., Lakomy H. K. A., Boobis L. H. (1998). Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans. Acta Physiol. Scand. 163 261–272. 10.1046/j.1365-201x.1998.00378.x PubMed DOI
Chaouachi A., Poulos N., Abed F., Turki O., Brughelli M., Chamari K., et al. (2011). Volume, intensity, and timing of muscle power potentiation are variable. Appl. Physiol. Nutr. Metab. 36 736–747. 10.1139/h11-079 PubMed DOI
Clark B. C., Manini T. M. (2017). Can KAATSU exercise cause rhabdomyolysis? Clin. J. Sport Med. 27 e1–e2. 10.1097/JSM.0000000000000309 PubMed DOI
Cromwell H. C., Panksepp J. (2011). Rethinking the cognitive revolution from a neural perspective: how overuse/misuse of the term ‘cognition’ and the neglect of affective controls in behavioral neuroscience could be delaying progress in understanding the brain mind. Neurosci. Biobehav. Rev. 35 2026–2035. 10.1016/j.neubiorev.2011.02.008 PubMed DOI
Dawson B., Goodman C., Lawrence S., Preen D., Polglaze T., Fitzsimons M., et al. (2007). Muscle phosphocreatine repletion following single and repeated short sprint efforts. Scand. J. Med. Sci. Sports 7 206–213. 10.1111/j.1600-0838.1997.tb00141.x PubMed DOI
de Souza H. L. R., Arriel R. A., Hohl R., da Mota G. R., Marocolo M. (2019). Is ischemic preconditioning intervention occlusion-dependent to enhance resistance exercise performance?. J. Strength Cond. Res. 10.1519/JSC.0000000000003224 Online ahead of print PubMed DOI
Dunnick D. D., Brown L. E., Coburn J. W., Lynn S. K., Barillas S. R. (2015). Bench press upper-body muscle activation between stable and unstable loads. J. Strength Cond. Res. 29 3279–3283. 10.1519/JSC.0000000000001198 PubMed DOI
Ellefsen S., Hammarström D., Strand T. A., Zacharoff E., Whist J. E., Rauk I., et al. (2015). Blood flow restricted strength training displays high functional and biological efficacy in women: a within-subject comparison with high-load strength training. Am. J. Physiol. Regul. Integr. Comp. Physiol. 309 767–779. 10.1152/ajpregu.00497.2014 PubMed DOI PMC
Gepfert M., Krzysztofik M., Kostrzewa M., Jarosz J., Trybulski R., Zajac A., et al. (2020). The acute impact of external compression on back squat performance in competitive athletes. Int. J. Environ. Res. 17:4674. 10.3390/ijerph17134674 PubMed DOI PMC
Golas A., Wilk M., Stastny P., Maszczyk A., Pajerska K., Zajac A. (2017). Optimizing half squat postactivation potential load in squat jump training for eliciting relative maximal power in ski jumpers. J. Strength Cond. Res. 31 3010–3017. 10.1519/JSC.0000000000001917 PubMed DOI
Gossen E. R., Sale D. G. (2000). Effect of postactivation potentiation on dynamic knee extension performance. Eur. J. Appl. Physiol. 83 524–530. 10.1007/s004210000304 PubMed DOI
Hopkins W. G., Marshall S. W., Batterham A. M., Hanin J. (2009). Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 41 3–13. 10.1249/MSS.0b013e31818cb278 PubMed DOI
Incognito A. V., Burr J. F., Millar P. J. (2016). The effects of ischemic preconditioning on human exercise performance. Sports Med. 46 531–544. 10.1007/s40279-015-0433-5 PubMed DOI
Kacin A., Strazar K. (2011). Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand. J. Med. Sci. Sports. 21 231–241. 10.1111/j.1600-0838.2010.01260.x PubMed DOI
Kimura M., Ueda K., Goto C., Jitsuiki D., Nishioka K., Umemura T., et al. (2007). Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 27 1403–1410. 10.1161/ATVBAHA.107.143578 PubMed DOI
Krzysztofik M., Wilk M. (2020). The effects of plyometric conditioning on post-activation bench press performance. J. Hum. Kinet. 74 99–108. 10.2478/hukin-2020-0017 PubMed DOI PMC
Krzysztofik M., Wilk M., Goals A., Lockie R. G., Maszczyk A., Zajac A. (2020a). Does eccentric-only and concentric-only activation increase power output? Med. Sci. Sports Exerc. 52 484–489. 10.1249/MSS.0000000000002131 PubMed DOI
Krzysztofik M., Wilk M., Lockie R. G., Golas A., Zajac A., Bogdanis G. C. (2020b). Postactivation performance enhancement of concentric bench press throw after eccentric-only conditioning exercise. J. Strength Cond. Res. 10.1519/JSC.0000000000003802 Online ahead of print PubMed DOI
Laurentino G. C., Ugrinowitsch C., Roschel H., Aoki M. S., Soares A. G., Neves M., Jr., et al. (2012). Strength training with blood flow restriction diminishes myostatin gene expression. Med. Sci. Sports Exerc. 44 406–412. 10.1249/mss.0b013e318233b4bc PubMed DOI
Lawson C., Downey J. (1993). Preconditioning: state of the art myocardial protection. Cardiovasc. Res. 27 542–550. 10.1093/cvr/27.4.542 PubMed DOI
Li X. D., Cheng Y. T., Yang Y. J., Meng X. M., Zhao J. L., Zhang H. T., et al. (2012). PKA-mediated eNOS phosphorylation in the protection of ischemic preconditioning against no-reflow. Microvasc Res 84 44–54. 10.1016/j.mvr.2012.04.002 PubMed DOI
Liu G. S., Thornton J., Van Winkle D. M., Stanley A. W., Olsson R. A., Downey J. M. (1991). Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84 350–356. 10.1161/01.cir.84.1.350 PubMed DOI
Loenneke J. P., Fahs C. A., Rossow L. M., Sherk V. D., Thiebaud R. S., Abe T., et al. (2012). Effects of cuff width on arterial occlusion: implications for blood flow restricted exercise. Eur. J. Appl. Physiol. 112 2903–2912. 10.1007/s00421-011-2266-8 PubMed DOI PMC
Luebbers P. E., Fry A. C., Kriley L. M., Butler M. S. (2014). The effects of a 7-week practical blood flow restriction program on well-trained collegiate athletes. J. Strength Cond. Res. 28 2270–2280. 10.1519/JSC.0000000000000385 PubMed DOI
Manimmanakorn A., Hamlin M. J., Ross J. J., Taylor R., Manimmanakorn N. (2013). Effects of low-load resistance training combined with blood flow restriction or hypoxia on muscle function and performance in netball athletes. J. Sci. Med. Sport. 16 337–342. 10.1016/j.jsams.2012.08.009 PubMed DOI
Manini T. M., Vincent K. R., Leeuwenburgh C. L., Lees H. A., Kavazis A. N., Borst S. E., et al. (2011). Myogenic and proteolytic mRNA expression following blood flow restricted exercise. Acta Physiol. 201 255–263. 10.1111/j.1748-1716.2010.02172.x PubMed DOI PMC
Marocolo I. C., Da Mota G. R., Londe A. M., Patterson S. D., Barbosa Neto O., Marocolo M. (2017). Acute ischemic preconditioning does not influence high-intensity intermittent exercise performance. Peer J. 5:e4118. 10.7717/peerj.4118 PubMed DOI PMC
Marocolo M., Billaut F., da Mota G. R. (2018). Ischemic preconditioning and exercise performance: an ergogenic aid for whom? Front. Physiol. 9:1874. 10.3389/fphys.2018.01874 PubMed DOI PMC
Marocolo M., Da Mota G. R., Pelegrini V., Appell Coriolano H. J. (2015). Are the beneficial effects of ischemic preconditioning on performance partly a placebo effect? Int. J. Sports Med. 36 822–825. 10.1055/s-0035-1549857 PubMed DOI
Marocolo M., da Mota G. R., Simim M. A., Appell Coriolano H. J. (2016). Myths and facts about the effects of ischemic preconditioning on performance. Int. J. Sports Med. 37 87–96. 10.1055/s-0035-1564253 PubMed DOI
Maszczyk A., Wilk M., Krzysztofik M., Gepfert M., Zając A., Petr M., et al. (2020). The effects of resistance training experience on movement characteristics in the bench press exercise. Biol. Sport 37 79–83. 10.5114/biolsport.2019.83008 PubMed DOI PMC
Pang C. Y., Yang R. Z., Zhong A., Xu N., Boyd B., Forrest C. R. (1995). Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovasc Res. 29 782–788. 10.1016/0008-6363(96)88613-5 PubMed DOI
Paradis-Deschênes P., Joanisse D. R., Billaut F. (2016). Ischemic preconditioning increases muscle perfusion, oxygen uptake, and forcein strength-trained athletes. Appl. Physiol. Nutr. Metab. 41 938–944. 10.1139/apnm-2015-0561 PubMed DOI
Pearson S. J., Hussain S. R. (2015). A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 45 187–200. 10.1007/s40279-014-0264-9 PubMed DOI
Proske U., Morgan D. L. (2001). Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J. Physio. 537 333–345. 10.1111/j.1469-7793.2001.00333.x PubMed DOI PMC
Rawska M., Gepfert M., Mostowik A., Krzysztofik M., Wojdala G., Lulinska A., et al. (2019). Does blood flow restriction influence the maximal number of repetitions performed during the bench press? A pilot study. Balt. J. Health Phys. Act. 11 9–17. 10.29359/BJHPA.11.4.02 DOI
Rossow L. M., Fahs C. A., Loenneke J. P., Thiebaud R. S., Sherk V. D., Abe T., et al. (2012). Cardiovascular and perceptual responses to blood-flow-restricted resistance exercise with differing restrictive cuffs. Clin. Physiol. Funct. Imaging 32 331–337. 10.1111/j.1475-097X.2012.01131.x PubMed DOI
Schroeder C. A., Lee H. T., Shah P. M., Babu S. C., Thompson C. I., Belloni F. L. (1996). Preconditioning with ischemia or adenosine protects skeletal muscle from ischemic tissue reperfusion injury. J. Surg. Res. 63 29–34. 10.1006/jsre.1996.0217 PubMed DOI
Seitz L. B., Haff G. G. (2016). Factors modulating post-activation potentiation of jump, sprint, throw, and upper-body ballistic performances: a systematic review with meta-analysis. Sports Med. 46 231–240. 10.1007/s40279-015-0415-7 PubMed DOI
Shimizu R., Hotta K., Yamamoto S., Matsumoto T., Kamiya K., Kato M., et al. (2016). Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur. J. Appl. Physiol. 116 749–757. 10.1007/s00421-016-3328-8 PubMed DOI
Singh L., Randhawa P. K., Singh N., Jaggi A. S. (2017). Redox signaling in remote ischemic preconditioning-induced cardioprotection: evidences and mechanisms. Eur. J. Pharmacol. 809 151–155. 10.1016/j.ejphar.2017.05.033 PubMed DOI
Stastny P., Golas A., Blazek D., Maszczyk A., Wilk M., Pietraszewski P., et al. (2017). A systematic review of surface electromyography analyses of the bench press movement task. PLoS One 12:e0171632. 10.1371/journal.pone.0171632 PubMed DOI PMC
Takano H., Morita T., Iida H., Asada K., Kato M., Uno K., et al. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur. Appl. Physiol. 95 65–73. 10.1007/s00421-005-1389-1 PubMed DOI
Takarada Y., Takazawa H., Sato Y., Takebayashi S., Tanaka Y., Ishii N. (2000). Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J. Appl. Physiol. 88 2097–2106. 10.1152/jappl.2000.88.6.2097 PubMed DOI
Tanaka D., Suga T., Tanaka T., Kido K., Honjo T., Fujita S., et al. (2018). Ischemic preconditioning enhances muscle endurance during sustained isometric exercise. Int. J. Sports Med. 37 614–618. 10.1055/s-0035-1565141 PubMed DOI
Taylor A. G., Goehler L. E., Galper D. I., Innes K. E., Bourguignon C. (2010). Top-down and bottom-up mechanisms in mind-body medicine: development of an integrative framework for psychophysiological research. EXPLORE 6 29–41. 10.1016/j.explore.2009.10.004 PubMed DOI PMC
Teixeira E. L., Barroso R., Silva-Batista C., Laurentino G. C., Loenneke J. P., Roschel H., et al. (2018). Blood flow restriction increases metabolic stress but decreases muscle activation during high load resistance exercise. Mus. Nerve. 57 107–111. 10.1002/mus.25616 PubMed DOI
Wernbom M., Järrebring R., Andreasson M. A., Augustsson J. (2009). Acute effects of blood flow restriction on muscle activity and endurance during fatiguing dynamic knee extensions at low load. J. Strength Cond. Res. 23 2389–2395. 10.1519/jsc.0b013e3181bc1c2a PubMed DOI
Wernbom M., Paulsen G., Bjørnsen T., Cumming K., Raastad T. (2019). Risk of muscle damage with blood flow–restricted exercise should not be overlooked. Clin. J. Sport Med. 2019 1–2. 10.1097/JSM.0000000000000755 PubMed DOI
Wernbom M., Schoenfeld B., Paulsen G., Bjørnsen T., Cumming K., Aagaard P., et al. (2020). Can blood flow restricted exercise cause muscle damage? Commentary on blood flow restriction exercise: considerations of methodology, application, and safety. Front. Physiol. 11:243. 10.3389/fphys.2020.00243 PubMed DOI PMC
Wilk M., Gepfert M., Krzysztofik M., Golas A., Mostowik A., Maszczyk A., et al. (2019a). The influence of grip width on training volume during the bench press with different movement tempos. J. Hum. Kinet. 68 49–57. 10.2478/hukin-2019-0055 PubMed DOI PMC
Wilk M., Goals A., Krzysztofik M., Nawrocka M., Zajac A. (2019b). The effects of eccentric cadence on power and velocity of the bar during the concentric phase of the bench press movement. J. Sports Sci. Med. 18 191–197. PubMed PMC
Wilk M., Gepfert M., Krzysztofik M., Mostowik A., Filip A., Hajduk G., et al. (2020a). Impact of duration of eccentric movement in the one-repetition maximum test result in the bench press among women. J. Sports Sci. Med. 19 317–322. PubMed PMC
Wilk M., Gepfert M., Krzysztofik M., Stastny P., Zajac A., Bogdanis G. C. (2020b). Acute effects of continuous and intermittent blood flow restriction on movement velocity during bench press exercise against different loads. Front. Physiol. 11:569915. 10.3389/fphys.2020.569915 PubMed DOI PMC
Wilk M., Golas A., Zmijewski P., Krzysztofik M., Filip A., Coso J. D., et al. (2020c). The effects of the movement tempo on the one-repetition maximum bench press results. J. Hum. Kinet. 72 151–159. 10.2478/hukin-2020-0001 PubMed DOI PMC
Wilk M., Krzysztofik M., Drozd M., Zajac A. (2020d). Changes of power output and velocity during successive sets of the bench press with different duration of eccentric movement. Int. J. Sports Physiol. Perform. 15 162–167. 10.1123/ijspp.2019-0164 PubMed DOI
Wilk M., Krzysztofik M., Filip A., Lockie R. G., Zajac A. (2020e). The acute effects of external compression with blood flow restriction on maximal strength and strength-endurance performance of the upper limbs. Front. Physiol. 11:567. 10.3389/fphys.2020.00567 PubMed DOI PMC
Wilk M., Krzysztofik M., Filip A., Szkudlarek A., Lockie R. G., Zajac A. (2020f). Does post-activation performance enhancement occur during the bench press exercise under blood flow restriction? Int. J. Environ. Res. Public. Health. 17:3752. 10.3390/ijerph17113752 PubMed DOI PMC
Wilk M., Krzysztofik M., Filip A., Zajac A., Bogdanis G. C., Lockie R. G. (2020g). Short-term blood flow restriction increases power output and bar velocity during the bench press. J. Strength Cond. Res. 10.1519/JSC.0000000000003649 Online ahead of print PubMed DOI
Wilk M., Krzysztofik M., Gepfert M., Poprzecki S., Golas A., Maszczyk A. (2018). Technical and training related aspects of resistance training using blood flow restriction in competitive sport - a review. J. Hum. Kinet. 65 249–260. 10.2478/hukin-2018-010100 PubMed DOI PMC