Acute Effects of Ischemic Intra-Conditioning on 30 m Sprint Performance

. 2022 Oct 03 ; 19 (19) : . [epub] 20221003

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36231933

The present study aimed to evaluate the effects of ischemic intra-conditioning applied during rest intervals on 30 m sprint performance. Thirty-four trained male (n = 12) and female (n = 22) track and field and rugby athletes volunteered to participate in the study (age = 19.6 ± 4 years; training experience = 5.3 ± 1.9 years). In a randomized and counterbalanced order, participants performed six sets of 30 m sprints under three different testing conditions: without ischemic intra-conditioning, and with ischemic intra-conditioning at 60% or 80% arterial occlusion pressure applied bilaterally before the first trial of the sprint and during the rest periods between all sprint trials. During experimental sessions, subjects perform 6 × 30 m sprints with a 7 min rest interval between attempts. The cuffs were applied following a 1 min rest period and lasted for 5 min before being released at the 6th minute to allow for reperfusion (1 min + 5 min ischemic intra-conditioning + 1 min reperfusion). The two-way repeated measures ANOVA did not show statistically significant condition × set interaction for time of the sprint (p = 0.06; η2 = 0.05). There was also no main effect of ischemic intra-conditioning for any condition (p = 0.190; η2 = 0.05). This study indicates that ischemic intra-conditioning did not enhance the performance of 30 m sprints performed by athletes. However, ischemic intra-conditioning did not decrease performance either.

Zobrazit více v PubMed

Wilk M., Krzysztofik M., Jarosz J., Krol P., Leznicka K., Zajac A., Stastny P., Bogdanis G.C. Impact of Ischemic Intra-Conditioning on Power Output and Bar Velocity of the Upper Limbs. Front. Physiol. 2021;12:626915. doi: 10.3389/fphys.2021.626915. PubMed DOI PMC

Abe T., Kawamoto K., Yasuda T., Kearns C.F., Midorikawa T., Sato Y. Eight days KAATSU-resistance training improved sprint but not jump performance in collegiate male track and field athletes. Int. J. KAATSU Train. Res. 2005;1:19–23. doi: 10.3806/ijktr.1.19. DOI

Cook C.J., Kilduff L.P., Beaven C.M. Improving Strength and Power in Trained Athletes with 3 Weeks of Occlusion Training. Int. J. Sport. Physiol. Perform. 2014;9:166–172. doi: 10.1123/ijspp.2013-0018. PubMed DOI

Kaijser L., Sundberg C.J., Eiken O., Nygren A., Esbjornsson M., Sylven C., Jansson E. Muscle oxidative capacity and work performance after training under local leg ischemia. J. Appl. Physiol. 1990;69:785–787. doi: 10.1152/jappl.1990.69.2.785. PubMed DOI

Scott B.R., Loenneke J.P., Slattery K.M., Dascombe B.J. Blood flow restricted exercise for athletes: A review of available evidence. J. Sci. Med. Sport. 2016;19:360–367. doi: 10.1016/j.jsams.2015.04.014. PubMed DOI

Burgomaster K.A., Moore D.R., Schofield L.M., Phillips S.M., Sale D.G., Gibala M.J. Resistance Training with Vascular Occlusion: Metabolic Adaptations in Human Muscle. Med. Sci. Sport. Exerc. 2003;35:1203–1208. doi: 10.1249/01.MSS.0000074458.71025.71. PubMed DOI

Sundberg C.J. Exercise and training during graded leg ischaemia in healthy man with special reference to effects on skeletal muscle. Acta Physiol. Scandinavica. Suppl. 1994;615:1–50. PubMed

Esbjörnsson M., Jansson E., Sundberg C.J., Sylvén C., Eiken O., Nygren A., Kaijser L. Muscle fibre types and enzyme activities after training with local leg ischaemia in man. Acta Physiol. Scand. 1993;148:233–241. doi: 10.1111/j.1748-1716.1993.tb09554.x. PubMed DOI

Mitchell E.A., Martin N.R.W., Turner M.C., Taylor C.W., Ferguson R.A. The combined effect of sprint interval training and blood flow restriction on critical power, capillary growth and mitochondrial proteins in trained cyclists. J. Appl. Physiol. 2019;126:51–59. doi: 10.1152/japplphysiol.01082.2017. PubMed DOI

Chen Y.T., Hsieh Y.Y., Ho J.Y., Lin J.C. Effects of Running Exercise Combined with Blood Flow Restriction on Strength and Sprint Performance. J. Strength Cond. Res. 2021;35:3090–3096. doi: 10.1519/JSC.0000000000003313. PubMed DOI

Trybulski R., Jarosz J., Krzysztofik M., Lachowicz M., Trybek G., Zajac A., Wilk M. Ischemia during rest intervals between sets prevents decreases in fatigue during the explosive squat exercise—a randomized, crossover study. Sci. Rep. 2022;12:5922. doi: 10.1038/s41598-022-10022-4. PubMed DOI PMC

Gepfert M., Jarosz J., Wojdala G., Krzysztofik M., Campos Y., Filip-Stachnik A., Kostrzewa M., Gawel D., Szkudlarek A., Godlewski P., et al. Acute impact of blood flow restriction on strength-endurance performance during the bench press exercise. Biol. Sport. 2021;38:653–658. doi: 10.5114/biolsport.2021.103726. PubMed DOI PMC

Behringer M., Behlau D., Montag J.C.K., McCourt M.L., Mester J. Low-Intensity Sprint Training with Blood Flow Restriction Improves 100-m Dash. J. Strength Cond. Res. 2017;31:2462–2472. doi: 10.1519/JSC.0000000000001746. PubMed DOI

Ellefsen S., Hammarström D., Strand T.A., Zacharo E., Whist J.E., Rauk I., Nygaard H., Vegge G., Hanestadhaugen M., Wernbom M., et al. Blood flow-restricted strength training displays high functional and biological ecacy in women: A within-subject comparison with high-load strength training. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015;309:R767–R779. doi: 10.1152/ajpregu.00497.2014. PubMed DOI PMC

Kacin A., Strazar K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand. J. Med. Sci. Sport. 2011;21:e231–e241. doi: 10.1111/j.1600-0838.2010.01260.x. PubMed DOI

Schwiete C., Franz A., Roth C., Behringer M. Effects of Resting vs. Continuous Blood-Flow Restriction-Training on Strength, Fatigue Resistance, Muscle Thickness, and Perceived Discomfort. Front. Physiol. 2021;12:663665. doi: 10.3389/fphys.2021.663665. PubMed DOI PMC

Gepfert M., Krzysztofik M., Kostrzewa M., Jarosz J., Trybulski R., Zajac A., Wilk M. The Acute Impact of External Compression on Back Squat Performance in Competitive Athletes. Int. J. Environ. Res. Public Health. 2020;17:4674. doi: 10.3390/ijerph17134674. PubMed DOI PMC

Loenneke J.P., Fahs C.A., Rossow L.M., Sherk V.D., Thiebaud R.S., Abe T., Bemben D.A., Bemben M.G. Effects of cuff width on arterial occlusion: Implications for blood flow restricted exercise. Eur. J. Appl. Physiol. 2012;112:2903–2912. doi: 10.1007/s00421-011-2266-8. PubMed DOI PMC

Loenneke J.P., Abe T., Wilson J.M., Ugrinowitsch C., Bemben M.G. Blood Flow Restriction: How Does It Work? Front. Physiol. 2012;3:392. doi: 10.3389/fphys.2012.00392. PubMed DOI PMC

Karabulut M., Mccarron J., Abe T., Sato Y., Bemben M. The effects of different initial restrictive pressures used to reduce blood flow and thigh composition on tissue oxygenation of the quadriceps. J. Sport. Sci. 2011;29:951–958. doi: 10.1080/02640414.2011.572992. PubMed DOI

Kocman E.A., Ozatik O., Sahin A., Guney T., Kose A.A., Dag I., Alatas O., Cetin C. Effects of ischemic preconditioning protocols on skeletal muscle ischemia–reperfusion injury. J. Surg. Res. 2015;193:942–952. doi: 10.1016/j.jss.2014.09.032. PubMed DOI

Barbosa T.C., Machado A.C., Braz I.D., Fernandes I.A., Vianna L.C., Nobrega A.C.L., Silva B.M. Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scand. J. Med. Sci. Sport. 2014;25:356–364. doi: 10.1111/sms.12229. PubMed DOI

de Groot P.C., Thijssen D.H., Sanchez M., Ellenkamp R., Hopman M.T. Ischemic preconditioning improves maximal performance in humans. Eur. J. Appl. Physiol. 2010;108:141–146. doi: 10.1007/s00421-009-1195-2. PubMed DOI PMC

Kimura M., Ueda K., Goto C., Jitsuiki D., Nishioka K., Umemura T., Noma K., Yoshizumi M., Chayama K., Higashi Y. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: Role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 2007;27:1403–1410. doi: 10.1161/ATVBAHA.107.143578. PubMed DOI

Lawson C., Downey J. Preconditioning: State of the art myocardial protection. Cardiovasc. Res. 1993;27:542–550. doi: 10.1093/cvr/27.4.542. PubMed DOI

Li X.D., Cheng Y.T., Yang Y.J., Meng X.M., Zhao J.L., Zhang H.T., You S.J., Wu Y.L. PKA-mediated eNOS phosphorylation in the protection of ischemic preconditioning against no-reflow. Microvasc. Res. 2012;84:44–54. doi: 10.1016/j.mvr.2012.04.002. PubMed DOI

Paganelli W., Pendergast D.R., Koness J., Cerretelli P. The effect of decreased muscle energy stores on the VO2 kinetics at the onset of exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1989;59:321–326. doi: 10.1007/BF02389805. PubMed DOI

Pang C.Y., Yang R.Z., Zhong A., Xu N., Boyd B., Forrest C.R. Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovasc. Res. 1995;29:782–788. doi: 10.1016/S0008-6363(96)88613-5. PubMed DOI

Paradis-Deschênes P., Joanisse D.R., Billaut F. Ischemic preconditioning increases muscle perfusion, oxygen uptake, and forcein strength-trained athletes. Appl. Physiol. Nutr. Metab. 2016;41:938–944. doi: 10.1139/apnm-2015-0561. PubMed DOI

Torma F., Gombos Z., Fridvalszki M., Langmar G., Tarcza Z., Merkely B., Naito H., Ichinoseki-Sekine N., Takeda M., Murlasitsf Z., et al. Blood flow restriction in human skeletal muscle during rest periods after high-load resistance training down-regulates miR 206 and induces Pax7. J. Sport Health Sci. 2021;10:470–477. doi: 10.1016/j.jshs.2019.08.004. PubMed DOI PMC

Winbanks C.E., Beyer C., Hagg A., Qian H., Sepulveda P.V., Gregorevic P. miR-206 Represses Hypertrophy of Myogenic Cells but Not Muscle Fibers via Inhibition of HDAC4. PLoS ONE. 2013;8:e73589. doi: 10.1371/journal.pone.0073589. PubMed DOI PMC

Taylor C.W., Ingham S.A., Ferguson R.A. Acute and chronic effect of sprint interval training combined with postexercise blood-flow restriction in trained individuals. Exp. Physiol. 2016;101:143–154. doi: 10.1113/EP085293. PubMed DOI

Rolnick N., Kimbrell K., Cerqueira M.S., Weatherford B., Brandner C. Perceived Barriers to Blood Flow Restriction Training. Front. Rehabil. Sci. :2021. doi: 10.3389/fresc.2021.697082. PubMed DOI PMC

Brandner C.R., Warmington S.A. Delayed Onset Muscle Soreness and Perceived Exertion after Blood Flow Restriction Exercise. J. Strength Cond. Res. 2017;31:3101–3108. doi: 10.1519/JSC.0000000000001779. PubMed DOI

Cook S.B., Brown K.A., DeRuisseau K., Kanaley J.A., Ploutz-Snyder L.L. Skeletal muscle adaptations following blood flow-restricted training during 30 days of muscular unloading. J. Appl. Physiol. 2010;109:341–349. doi: 10.1152/japplphysiol.01288.2009. PubMed DOI

Clark B.C., Manini T.M. Can KAATSU exercise cause rhabdomyolysis? Clin. J. Sport Med. 2017;27:e1–e2. doi: 10.1097/JSM.0000000000000309. PubMed DOI

Wernbom M., Paulsen G., Bjørnsen T., Cumming K., Raastad T. Risk of Muscle Damage with Blood Flow–Restricted Exercise Should Not Be Overlooked. Clin. J. Sport Med. 2021;31:223–224. doi: 10.1097/JSM.0000000000000755. PubMed DOI

Neto G.R., Novaes J.S., Salerno V.P., Gonçalves M.M., Batista G.R., Cirilo-Sousa M.S. Does a resistance exercise session with continuous or intermittent blood flow restriction promote muscle damage and increase oxidative stress? J. Sport. Sci. 2017;36:104–110. doi: 10.1080/02640414.2017.1283430. PubMed DOI

Pearson S.J., Hussain S.R. A Review on the Mechanisms of Blood-Flow Restriction Resistance Training-Induced Muscle Hypertrophy. Sport. Med. 2014;45:187–200. doi: 10.1007/s40279-014-0264-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...