Acute Effects of Ischemic Intra-Conditioning on 30 m Sprint Performance
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36231933
PubMed Central
PMC9566271
DOI
10.3390/ijerph191912633
PII: ijerph191912633
Knihovny.cz E-zdroje
- Klíčová slova
- performance, running, testing, training,
- MeSH
- lehká atletika * MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- odpočinek MeSH
- sportovci MeSH
- sportovní výkon * MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The present study aimed to evaluate the effects of ischemic intra-conditioning applied during rest intervals on 30 m sprint performance. Thirty-four trained male (n = 12) and female (n = 22) track and field and rugby athletes volunteered to participate in the study (age = 19.6 ± 4 years; training experience = 5.3 ± 1.9 years). In a randomized and counterbalanced order, participants performed six sets of 30 m sprints under three different testing conditions: without ischemic intra-conditioning, and with ischemic intra-conditioning at 60% or 80% arterial occlusion pressure applied bilaterally before the first trial of the sprint and during the rest periods between all sprint trials. During experimental sessions, subjects perform 6 × 30 m sprints with a 7 min rest interval between attempts. The cuffs were applied following a 1 min rest period and lasted for 5 min before being released at the 6th minute to allow for reperfusion (1 min + 5 min ischemic intra-conditioning + 1 min reperfusion). The two-way repeated measures ANOVA did not show statistically significant condition × set interaction for time of the sprint (p = 0.06; η2 = 0.05). There was also no main effect of ischemic intra-conditioning for any condition (p = 0.190; η2 = 0.05). This study indicates that ischemic intra-conditioning did not enhance the performance of 30 m sprints performed by athletes. However, ischemic intra-conditioning did not decrease performance either.
Department of Medical Sciences The Wojciech Korfanty School of Economics 40 065 Katowice Poland
Faculty of Physical Education and Sport Charles University 500 05 Prague Czech Republic
Faculty of Physical Education Gdansk University of Physical Education and Sport 80 336 Gdansk Poland
Provita Zory Medical Center 44 240 Zory Poland
The Human Performance Mechanic CUNY Lehman College Bronx New York NY 10468 USA
Zobrazit více v PubMed
Wilk M., Krzysztofik M., Jarosz J., Krol P., Leznicka K., Zajac A., Stastny P., Bogdanis G.C. Impact of Ischemic Intra-Conditioning on Power Output and Bar Velocity of the Upper Limbs. Front. Physiol. 2021;12:626915. doi: 10.3389/fphys.2021.626915. PubMed DOI PMC
Abe T., Kawamoto K., Yasuda T., Kearns C.F., Midorikawa T., Sato Y. Eight days KAATSU-resistance training improved sprint but not jump performance in collegiate male track and field athletes. Int. J. KAATSU Train. Res. 2005;1:19–23. doi: 10.3806/ijktr.1.19. DOI
Cook C.J., Kilduff L.P., Beaven C.M. Improving Strength and Power in Trained Athletes with 3 Weeks of Occlusion Training. Int. J. Sport. Physiol. Perform. 2014;9:166–172. doi: 10.1123/ijspp.2013-0018. PubMed DOI
Kaijser L., Sundberg C.J., Eiken O., Nygren A., Esbjornsson M., Sylven C., Jansson E. Muscle oxidative capacity and work performance after training under local leg ischemia. J. Appl. Physiol. 1990;69:785–787. doi: 10.1152/jappl.1990.69.2.785. PubMed DOI
Scott B.R., Loenneke J.P., Slattery K.M., Dascombe B.J. Blood flow restricted exercise for athletes: A review of available evidence. J. Sci. Med. Sport. 2016;19:360–367. doi: 10.1016/j.jsams.2015.04.014. PubMed DOI
Burgomaster K.A., Moore D.R., Schofield L.M., Phillips S.M., Sale D.G., Gibala M.J. Resistance Training with Vascular Occlusion: Metabolic Adaptations in Human Muscle. Med. Sci. Sport. Exerc. 2003;35:1203–1208. doi: 10.1249/01.MSS.0000074458.71025.71. PubMed DOI
Sundberg C.J. Exercise and training during graded leg ischaemia in healthy man with special reference to effects on skeletal muscle. Acta Physiol. Scandinavica. Suppl. 1994;615:1–50. PubMed
Esbjörnsson M., Jansson E., Sundberg C.J., Sylvén C., Eiken O., Nygren A., Kaijser L. Muscle fibre types and enzyme activities after training with local leg ischaemia in man. Acta Physiol. Scand. 1993;148:233–241. doi: 10.1111/j.1748-1716.1993.tb09554.x. PubMed DOI
Mitchell E.A., Martin N.R.W., Turner M.C., Taylor C.W., Ferguson R.A. The combined effect of sprint interval training and blood flow restriction on critical power, capillary growth and mitochondrial proteins in trained cyclists. J. Appl. Physiol. 2019;126:51–59. doi: 10.1152/japplphysiol.01082.2017. PubMed DOI
Chen Y.T., Hsieh Y.Y., Ho J.Y., Lin J.C. Effects of Running Exercise Combined with Blood Flow Restriction on Strength and Sprint Performance. J. Strength Cond. Res. 2021;35:3090–3096. doi: 10.1519/JSC.0000000000003313. PubMed DOI
Trybulski R., Jarosz J., Krzysztofik M., Lachowicz M., Trybek G., Zajac A., Wilk M. Ischemia during rest intervals between sets prevents decreases in fatigue during the explosive squat exercise—a randomized, crossover study. Sci. Rep. 2022;12:5922. doi: 10.1038/s41598-022-10022-4. PubMed DOI PMC
Gepfert M., Jarosz J., Wojdala G., Krzysztofik M., Campos Y., Filip-Stachnik A., Kostrzewa M., Gawel D., Szkudlarek A., Godlewski P., et al. Acute impact of blood flow restriction on strength-endurance performance during the bench press exercise. Biol. Sport. 2021;38:653–658. doi: 10.5114/biolsport.2021.103726. PubMed DOI PMC
Behringer M., Behlau D., Montag J.C.K., McCourt M.L., Mester J. Low-Intensity Sprint Training with Blood Flow Restriction Improves 100-m Dash. J. Strength Cond. Res. 2017;31:2462–2472. doi: 10.1519/JSC.0000000000001746. PubMed DOI
Ellefsen S., Hammarström D., Strand T.A., Zacharo E., Whist J.E., Rauk I., Nygaard H., Vegge G., Hanestadhaugen M., Wernbom M., et al. Blood flow-restricted strength training displays high functional and biological ecacy in women: A within-subject comparison with high-load strength training. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015;309:R767–R779. doi: 10.1152/ajpregu.00497.2014. PubMed DOI PMC
Kacin A., Strazar K. Frequent low-load ischemic resistance exercise to failure enhances muscle oxygen delivery and endurance capacity. Scand. J. Med. Sci. Sport. 2011;21:e231–e241. doi: 10.1111/j.1600-0838.2010.01260.x. PubMed DOI
Schwiete C., Franz A., Roth C., Behringer M. Effects of Resting vs. Continuous Blood-Flow Restriction-Training on Strength, Fatigue Resistance, Muscle Thickness, and Perceived Discomfort. Front. Physiol. 2021;12:663665. doi: 10.3389/fphys.2021.663665. PubMed DOI PMC
Gepfert M., Krzysztofik M., Kostrzewa M., Jarosz J., Trybulski R., Zajac A., Wilk M. The Acute Impact of External Compression on Back Squat Performance in Competitive Athletes. Int. J. Environ. Res. Public Health. 2020;17:4674. doi: 10.3390/ijerph17134674. PubMed DOI PMC
Loenneke J.P., Fahs C.A., Rossow L.M., Sherk V.D., Thiebaud R.S., Abe T., Bemben D.A., Bemben M.G. Effects of cuff width on arterial occlusion: Implications for blood flow restricted exercise. Eur. J. Appl. Physiol. 2012;112:2903–2912. doi: 10.1007/s00421-011-2266-8. PubMed DOI PMC
Loenneke J.P., Abe T., Wilson J.M., Ugrinowitsch C., Bemben M.G. Blood Flow Restriction: How Does It Work? Front. Physiol. 2012;3:392. doi: 10.3389/fphys.2012.00392. PubMed DOI PMC
Karabulut M., Mccarron J., Abe T., Sato Y., Bemben M. The effects of different initial restrictive pressures used to reduce blood flow and thigh composition on tissue oxygenation of the quadriceps. J. Sport. Sci. 2011;29:951–958. doi: 10.1080/02640414.2011.572992. PubMed DOI
Kocman E.A., Ozatik O., Sahin A., Guney T., Kose A.A., Dag I., Alatas O., Cetin C. Effects of ischemic preconditioning protocols on skeletal muscle ischemia–reperfusion injury. J. Surg. Res. 2015;193:942–952. doi: 10.1016/j.jss.2014.09.032. PubMed DOI
Barbosa T.C., Machado A.C., Braz I.D., Fernandes I.A., Vianna L.C., Nobrega A.C.L., Silva B.M. Remote ischemic preconditioning delays fatigue development during handgrip exercise. Scand. J. Med. Sci. Sport. 2014;25:356–364. doi: 10.1111/sms.12229. PubMed DOI
de Groot P.C., Thijssen D.H., Sanchez M., Ellenkamp R., Hopman M.T. Ischemic preconditioning improves maximal performance in humans. Eur. J. Appl. Physiol. 2010;108:141–146. doi: 10.1007/s00421-009-1195-2. PubMed DOI PMC
Kimura M., Ueda K., Goto C., Jitsuiki D., Nishioka K., Umemura T., Noma K., Yoshizumi M., Chayama K., Higashi Y. Repetition of ischemic preconditioning augments endothelium-dependent vasodilation in humans: Role of endothelium-derived nitric oxide and endothelial progenitor cells. Arterioscler. Thromb. Vasc. Biol. 2007;27:1403–1410. doi: 10.1161/ATVBAHA.107.143578. PubMed DOI
Lawson C., Downey J. Preconditioning: State of the art myocardial protection. Cardiovasc. Res. 1993;27:542–550. doi: 10.1093/cvr/27.4.542. PubMed DOI
Li X.D., Cheng Y.T., Yang Y.J., Meng X.M., Zhao J.L., Zhang H.T., You S.J., Wu Y.L. PKA-mediated eNOS phosphorylation in the protection of ischemic preconditioning against no-reflow. Microvasc. Res. 2012;84:44–54. doi: 10.1016/j.mvr.2012.04.002. PubMed DOI
Paganelli W., Pendergast D.R., Koness J., Cerretelli P. The effect of decreased muscle energy stores on the VO2 kinetics at the onset of exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1989;59:321–326. doi: 10.1007/BF02389805. PubMed DOI
Pang C.Y., Yang R.Z., Zhong A., Xu N., Boyd B., Forrest C.R. Acute ischaemic preconditioning protects against skeletal muscle infarction in the pig. Cardiovasc. Res. 1995;29:782–788. doi: 10.1016/S0008-6363(96)88613-5. PubMed DOI
Paradis-Deschênes P., Joanisse D.R., Billaut F. Ischemic preconditioning increases muscle perfusion, oxygen uptake, and forcein strength-trained athletes. Appl. Physiol. Nutr. Metab. 2016;41:938–944. doi: 10.1139/apnm-2015-0561. PubMed DOI
Torma F., Gombos Z., Fridvalszki M., Langmar G., Tarcza Z., Merkely B., Naito H., Ichinoseki-Sekine N., Takeda M., Murlasitsf Z., et al. Blood flow restriction in human skeletal muscle during rest periods after high-load resistance training down-regulates miR 206 and induces Pax7. J. Sport Health Sci. 2021;10:470–477. doi: 10.1016/j.jshs.2019.08.004. PubMed DOI PMC
Winbanks C.E., Beyer C., Hagg A., Qian H., Sepulveda P.V., Gregorevic P. miR-206 Represses Hypertrophy of Myogenic Cells but Not Muscle Fibers via Inhibition of HDAC4. PLoS ONE. 2013;8:e73589. doi: 10.1371/journal.pone.0073589. PubMed DOI PMC
Taylor C.W., Ingham S.A., Ferguson R.A. Acute and chronic effect of sprint interval training combined with postexercise blood-flow restriction in trained individuals. Exp. Physiol. 2016;101:143–154. doi: 10.1113/EP085293. PubMed DOI
Rolnick N., Kimbrell K., Cerqueira M.S., Weatherford B., Brandner C. Perceived Barriers to Blood Flow Restriction Training. Front. Rehabil. Sci. :2021. doi: 10.3389/fresc.2021.697082. PubMed DOI PMC
Brandner C.R., Warmington S.A. Delayed Onset Muscle Soreness and Perceived Exertion after Blood Flow Restriction Exercise. J. Strength Cond. Res. 2017;31:3101–3108. doi: 10.1519/JSC.0000000000001779. PubMed DOI
Cook S.B., Brown K.A., DeRuisseau K., Kanaley J.A., Ploutz-Snyder L.L. Skeletal muscle adaptations following blood flow-restricted training during 30 days of muscular unloading. J. Appl. Physiol. 2010;109:341–349. doi: 10.1152/japplphysiol.01288.2009. PubMed DOI
Clark B.C., Manini T.M. Can KAATSU exercise cause rhabdomyolysis? Clin. J. Sport Med. 2017;27:e1–e2. doi: 10.1097/JSM.0000000000000309. PubMed DOI
Wernbom M., Paulsen G., Bjørnsen T., Cumming K., Raastad T. Risk of Muscle Damage with Blood Flow–Restricted Exercise Should Not Be Overlooked. Clin. J. Sport Med. 2021;31:223–224. doi: 10.1097/JSM.0000000000000755. PubMed DOI
Neto G.R., Novaes J.S., Salerno V.P., Gonçalves M.M., Batista G.R., Cirilo-Sousa M.S. Does a resistance exercise session with continuous or intermittent blood flow restriction promote muscle damage and increase oxidative stress? J. Sport. Sci. 2017;36:104–110. doi: 10.1080/02640414.2017.1283430. PubMed DOI
Pearson S.J., Hussain S.R. A Review on the Mechanisms of Blood-Flow Restriction Resistance Training-Induced Muscle Hypertrophy. Sport. Med. 2014;45:187–200. doi: 10.1007/s40279-014-0264-9. PubMed DOI