Effect of Radiation Crosslinking and Surface Modification of Cellulose Fibers on Properties and Characterization of Biopolymer Composites

. 2020 Dec 16 ; 12 (12) : . [epub] 20201216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33339313

Recently, polymers have become the fastest growing and most widely used material in a huge number of applications in almost all areas of industry. In addition to standard polymer composites with synthetic matrices, biopolymer composites based on PLA and PHB matrices filled with fibers of plant origin are now increasingly being used in selected advanced industrial applications. The article deals with the evaluation of the influence and effect of the type of surface modification of cellulose fibers using physical methods (low-temperature plasma and ozone application) and chemical methods (acetylation) on the final properties of biopolymer composites. In addition to the surface modification of natural fibers, an additional modification of biocomposite structural systems by radiation crosslinking using gamma radiation was also used. The components of the biopolymer composite were a matrix of PLA and PHBV and the filler was natural cellulose fibers in a constant percentage volume of 20%. Test specimens were made from compounds of prepared biopolymer structures, on which selected tests had been performed to evaluate the properties and mechanical characterization of biopolymer composites. Electron microscopy was used to evaluate the failure and characterization of fracture surfaces of biocomposites.

Zobrazit více v PubMed

Kalia S., Dufresne A., Cherian B.M., Kaith B.S., Avérous L., Njuguna J., Nassiopoulos E., Leiza J.R. Cellulose-Based Bio- and Nanocomposites. Int. J. Polym. Sci. 2011;2011:1–35. doi: 10.1155/2011/837875. DOI

Ganapini W. Bioplastics: A Case Study of Bioeconomy in Italy. Edizioni Ambiente; Milano, Italy: 2014.

Watkins E., Schweitzer J.-P. Moving Towards a Circular Economy for Plastics in the EU by 2030. Think 2030. Institute for European Environmental Policy (IEEP); Brussels, Belgium: 2018.

La Mantia F.P., Morreale M. Green composites: A brief review. Compos. Part A Appl. Sci. Manuf. 2011;42:579–588. doi: 10.1016/j.compositesa.2011.01.017. DOI

Marsh G. Next step for automotive materials. Mater. Today. 2003;4:36–43. doi: 10.1016/S1369-7021(03)00429-2. DOI

Oliveux G., Dandy L.O., Leeke G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties. Prog. Mater. Sci. 2015;72:61–99. doi: 10.1016/j.pmatsci.2015.01.004. DOI

Rybicka J., Tiwari A., Leeke G.A. Technology readiness level assessment of composites recycling technologies. J. Clean. Prod. 2016;112:1001–1012. doi: 10.1016/j.jclepro.2015.08.104. DOI

Mohanty A.K., Misra M., Hinrichsen G.I. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000;276:1–24. doi: 10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W. DOI

Netravali A.N., Chabba S. Composites get greener. Mater. Today. 2003;4:22–29. doi: 10.1016/S1369-7021(03)00427-9. DOI

Jimenez A., Peltzer M., Ruseckaite R. Poly (Lactic Acid) Science and Technology: Processing, Properties, Additives and Applications. Royal Society of Chemistry; London, UK: 2014.

Pei A., Zhou Q., Berglund L.A. Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—Crystallization and mechanical property effects. Compos. Sci. Technol. 2010;70:815–821. doi: 10.1016/j.compscitech.2010.01.018. DOI

Nanda M.R., Manjusri M., Mohanty A.K. The effects of process engineering on the performance of PLA and PHBV blends. Macromol. Mater. Eng. 2011;296:719–728. doi: 10.1002/mame.201000417. DOI

Boufarguine M., Guinault A., Miquelard-Garnier G., Sollogoub C. PLA/PHBV films with improved mechanical and gas barrier properties. Macromol. Mater. Eng. 2013;298:1065–1073. doi: 10.1002/mame.201200285. DOI

Khanna S., Srivastava A.K. Recent advances in microbial polyhydroxyalkanoates. Process Biochem. 2005;40:607–619. doi: 10.1016/j.procbio.2004.01.053. DOI

Mwaikambo L.Y. Review of the history and application of plant fibre. Afr. J. Sci. Technol. 2006;7:120–133.

Mochane M.J., Mokhena T.C., Sadiku E.R., Ray S.S., Mofokeng T.G. Green Polymer Composites Based on Polylactic Acid (PLA) and Fibers. Green Biopolymers and their Nanocomposites. Springer; Singapore: 2019. pp. 29–54.

Mwaikambo L.Y., Ansell M.P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J. Appl. Polym. Sci. 2002;84:2222–2234. doi: 10.1002/app.10460. DOI

Kalia S., Kaith B.S., Kaur I. Cellulose Fibers: Bio-and Nano-Polymer Composites: Green Chemistry and Technology. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2011. DOI

Mehta G., Drzal L.T., Mohanty A.K., Misra M. Effect of fiber surface treatment on the properties of biocomposites from nonwoven industrial hemp fiber mats and unsaturated polyester resin. J. Appl. Polym. Sci. 2006;99:1055–1068. doi: 10.1002/app.22620. DOI

Tserki V., Panayiotou C., Zafeiropoulos N.E. A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos. Part A Appl. Sci. Manuf. 2005;36:1110–1118. doi: 10.1016/j.compositesa.2005.01.004. DOI

Mishra S., Naik J.B., Patil Y.P. The compatibilising effect of maleic anhydride on swelling and mechanical properties of plant-fiber-reinforced novolac composites. Compos. Sci. Technol. 2000;60:1729–1735. doi: 10.1016/S0266-3538(00)00056-7. DOI

Ferreira D.P., Cruz J., Fangueiro R. Green Composites for Automotive Applications. Woodhead Publishing; Cambridge, UK: 2019. Surface modification of natural fibers in polymer composites; pp. 3–41.

Kalia S., Thakur K., Celli A., Kiechel M.A., Schauer C.L. Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: A review. J. Environ. Chem. Eng. 2013;1:97–112. doi: 10.1016/j.jece.2013.04.009. DOI

Sun D. Surface modification of natural fibers using plasma treatment. In: Kalia S., editor. Biodegradable Green Composites. Wiley; Hoboken, NJ, USA: 2016. pp. 18–39. DOI

Thakur V.K., Singha A.S. Surface Modification of Biopolymers. Wiley; Hoboken, NJ, USA: 2015. DOI

Oliveira D.M., Benini K.C.C.C., Monticeli F.M., Schukraft J.P., Bomfim A.S.C., Cioffi M.O.H., Voorwald H.J.C. Permeability of untreated and atmospheric plasma treated coconut fiber mats. Mater. Res. Express. 2019;6:095323. doi: 10.1088/2053-1591/ab3020. DOI

Borůvka M., Ngaowthong C., Bĕhálek L., Habr J., Lenfeld P. Effect of dielectric barrier discharge plasma surface treatment on the properties of pineapple leaf fiber reinforced poly (lactic acid) biocomposites. Mater. Sci. Forum. 2016;862:156–165. doi: 10.4028/www.scientific.net/MSF.862.156. DOI

Běhálek L., Borůvka M., Brdlík P., Habr J., Lenfeld P., Kroisová D., Veselka F., Novák J. Thermal properties and non-isothermal crystallization kinetics of biocomposites based on poly (lactic acid), rice husks and cellulose fibres. J. Therm. Anal. Calorim. 2020;142:629–649. doi: 10.1007/s10973-020-09894-3. DOI

Maqsood H.S., Bashir U., Wiener J., Puchalski M., Sztajnowski S., Militky J. Ozone treatment of jute fibers. Cellulose. 2017;24:1543–1553. doi: 10.1007/s10570-016-1164-y. DOI

Reig F.B., Gimeno-Adelantado J.V., Moreno Moya M.C.M. FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta. 2002;58:811–821. doi: 10.1016/S0039-9140(02)00372-7. PubMed DOI

Zembouai I., Kaci M., Bruzaud S., Pillin I. Electron beam radiation effects on properties and ecotoxicity of PHBV/PLA blends in presence of organo-modified montmorillonite. Polym. Degrad. Stab. 2016;132:117–126. doi: 10.1016/j.polymdegradstab.2016.03.019. DOI

Tiptipakorn S., Hemvichain K., Pirombua A. Study of the effect of electron beam on thermal and mechanical properties of poly (lactic acid)/poly (butylene succinate) blends. IOP Conf. Ser. Mater. Sci. Eng. 2019;526:012012. doi: 10.1088/1757-899X/526/1/012012. DOI

Luo S., Netravali A.N. Effect of 60Co γ-radiation on the properties of poly (hydroxybutyrate-co-hydroxyvalerate) J. Appl. Polym. Sci. 1999;73:1059–1067. doi: 10.1002/(SICI)1097-4628(19990808)73:6<1059::AID-APP25>3.0.CO;2-Q. DOI

Oliveira L.M., Araujo E.S., Guedes S.M. Gamma irradiation effects on poly (hydroxybutyrate) Polym. Degrad. Stab. 2006;91:2157–2162. doi: 10.1016/j.polymdegradstab.2006.01.008. DOI

Oliveira L.M., Araujo P.L.B., Araujo E.S. The effect of gamma radiation on mechanical properties of biodegradable polymers poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) Mater. Res. 2013;16:195–203. doi: 10.1590/S1516-14392012005000173. DOI

Malinowski R., Rytlewski P., Żenkiewicz M. Effects of electron radiation on properties of PLA. Arch. Mater. Sci. 2011;49:25–32.

Meihua L., Wanxi Z., Yuan Y., Wei W., Chunbai Z., Pengyang D., Shirley S. Effects of radiation-induced crosslinking on thermal and mechanical properties of poly (lactic acid) composites reinforced by basalt fiber. Asia-Pac. Symp. Radiat. Chem. 2013;24(Suppl. 1):6.

Dadbin S., Naimian F., Akhavan A. Poly (lactic acid)/layered silicate nanocomposite films: Morphology, mechanical properties, and effects of γ-radiation. J. Appl. Polym. Sci. 2011;122:142–149. doi: 10.1002/app.33985. DOI

Dadbin S., Naimian F., Akhavan A., Hasanpoor S. Poly(Lactic Acid)/Layered Silicate Nanocomposite Films: Effect of Irradiation. International Atomic Energy Agency (IAEA); Vienna, Austria: 2010. Report of the 2nd RCM on Nanoscale radiation engineering of advanced materials for potential biomedical applications.

Iggui K., Kaci M., Mahlous M., Moigne N.L., Bergeret A. The Effects of Gamma Irradiation on Molecular Weight, Morphology and Physical Properties of PHBV/Cloisite 30B Bionanocomposites. J. Renew. Mater. 2019;7:807–820. doi: 10.32604/jrm.2019.06778. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...