• This record comes from PubMed

Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation

. 2018 May ; 17 (3) : 714-731. [epub] 20180325

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Grant support
PT2020 FEDER
IF/01097/2013 CNS CEP Register
LD15082 Ministry of Education, Youth and Sport of the Czech Republic
KV Ministry of Education, Youth and Sport of the Czech Republic
COST
Project SunnMat/HealthyFood 262300 Foundation for Research Levy on Agricultural Products
Project No. FP7-613793 FP7 Food, Agriculture and Fisheries, Biotechnology
Fundação para a Ciência e Tecnologia (FCT) / Ministério da Ciência e do Ensino Superior
European Research Council - International

After consumption of plant-derived foods or beverages, dietary polyphenols such as quercetin are absorbed in the small intestine and metabolized by the body, or they are subject to catabolism by the gut microbiota followed by absorption of the resulting products by the colon. The resulting compounds are bioavailable, circulate in the blood as conjugates with glucuronide, methyl, or sulfate groups attached, and they are eventually excreted in the urine. In this review, the various conjugates from different intervention studies are summarized and discussed. In addition, the substantial variation between different individuals in the measured quercetin bioavailability parameters is assessed in detail by examining published human intervention studies where sources of quercetin have been consumed in the form of food, beverages, or supplements. It is apparent that most reported studies have examined quercetin and/or metabolites in urine and plasma from a relatively small number of volunteers. Despite this limitation, it is evident that there is less interindividual variation in metabolites which are derived from absorption in the small intestine compared to catabolites derived from the action of microbiota in the colon. There is also some evidence that a high absorber of intact quercetin conjugates could be a low absorber of microbiota-catalyzed phenolics, and vice versa. From the studies reported so far, the reasons or causes of the interindividual differences are not clear, but, based on the known metabolic pathways, it is predicted that dietary history, genetic polymorphisms, and variations in gut microbiota metabolism would play significant roles. In conclusion, quercetin bioavailability is subject to substantial variation between individuals, and further work is required to establish if this contributes to interindividual differences in biological responses.

See more in PubMed

Ader, P., Wessmann, A., & Wolffram, S. (2000). Bioavailability and metabolism of the flavonol quercetin in the pig. Free Radical Biology and Medicine, 28(7), 1056-1067. doi: https://doi.org/10.1016/S0891-5849(00)00195-7

Araujo, K. C. F., Costa, E. M. D. B., Pazini, F., Valadares, M. C., & de Oliveira, V. (2013). Bioconversion of quercetin and rutin and the cytotoxicity activities of the transformed products. Food and Chemical Toxicology, 51, 93-96. https://doi.org/10.1016/j.fct.2012.09.015

Arts, I. C. W., Sesink, A. L. A., Faassen-Peters, M., & Hollman, P. C. H. (2004). The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. British Journal of Nutrition, 91(6), 841-847. https://doi.org/10.1079/Bjn20041123

Azuma, K., Ippoushi, K., Ito, H., Higashio, H., & Terao, J. (2002). Combination of lipids and emulsifiers enhances the absorption of orally administered quercetin in rats. Journal of Agricultural and Food Chemistry, 50(6), 1706-1712.

Beekmann, K., Actis-Goretta, L., van Bladeren, P. J., Dionisi, F., Destaillats, F., & Rietjens, I. M. C. M. (2012). A state-of-the-art overview of the effect of metabolic conjugation on the biological activity of flavonoids. Food & Function, 3(10), 1008-1018. https://doi.org/10.1039/c2fo30065f

Boersma, M. G., van der Woude, H., Bogaards, J., Boeren, S., Vervoort, J., Cnubben, N. H. P., … Rietjens, I. M. C. M. (2002). Regioselectivity of phase 11 metabolism of luteolin and quercetin by UDP-glucuronosyl transferases. Chemical Research in Toxicology, 15(5), 662-670. https://doi.org/10.1021/tx0101705

Boots, A. W., Haenen, G. R. M. M., & Bast, A. (2008). Health effects of quercetin: From antioxidant to nutraceutical. European Journal of Pharmacology, 585(2-3), 325-337. https://doi.org/10.1016/j.ejphar.2008.03.008

Borges, G., & Crozier, A. (2012). HPLC-PDA-MS fingerprinting to assess the authenticity of pomegranate beverages. Food Chemistry, 135(3), 1863-1867. https://doi.org/10.1016/j.foodchem.2012.05.108

Boyle, S. P., Dobson, V. L., Duthie, S. J., Hinselwood, D. C., Kyle, J. A. M., & Collins, A. R. (2000). Bioavailability and efficiency of rutin as an antioxidant: A human supplementation study. European Journal of Clinical Nutrition, 54(10), 774-782. https://doi.org/10.1038/sj.ejcn.1601090

Boyle, S. P., Dobson, V. L., Duthie, S. J., Kyle, J. A. M., & Collins, A. R. (2000). Absorption and DNA protective effects of flavonoid glycosides from an onion meal. European Journal of Nutrition, 39(5), 213-223. https://doi.org/10.1007/s003940070014

Cermak, R., Breves, G., Lupke, M., & Wolffram, S. (2006). In vitro degradation of the flavonol quercetin and of quercetin glycosides in the porcine hindgut. Archives of Animal Nutrition, 60(2), 180-189. https://doi.org/10.1080/17450390500467695

Cermak, R., Landgraf, S., & Wolffram, S. (2003). The bioavailability of quercetin in pigs depends on the glycoside moiety and on dietary factors. Journal of Nutrition, 133(9), 2802-2807.

Cermak, R., & Wolffram, S. (2006). The potential of flavonoids to influence drug metabolism and pharmacokinetics by local gastrointestinal mechanisms. Current Drug Metabolism, 7(7), 729-744. https://doi.org/10.2174/138920006778520570

Clifford, M. N., van der Hooft, J. J., & Crozier, A. (2013). Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. American Journal of Clinical Nutrition, 98(6 Suppl), 1619S-1630S. doi: Retrieved from ajcn.113.058958[pii];10.3945/ajcn.113.058958[doi]

Correa, C. R., Chen, C. Y. O., Aldini, G., Rasmussen, H., Ronchi, C. F., Berchieri-Ronchi, C., … Yeum, K. J. (2014). Bioavailability of plant pigment phytochemicals in Angelica keiskei in older adults: A pilot absorption kinetic study. Nutrition Research and Practice, 8(5), 550-557. doi: Retrieved from ajcn.113.058958

Crespy, V., Morand, C., Besson, C., Manach, C., Demigne, C., & Remesy, C. (2002). Quercetin, but not its glycosides, is absorbed from the rat stomach. Journal of Agricultural and Food Chemistry, 50(3), 618-621. https://doi.org/10.1021/jf010919h

Crozier, A., Del Rio, D., & Clifford, M. N. (2010). Bioavailability of dietary flavonoids and phenolic compounds. Molecular Aspects of Medicine, 31(6), 446-467. https://doi.org/10.1016/j.mam.2010.09.007

Dajas, F. (2012). Life or death: Neuroprotective and anticancer effects of quercetin. Journal of Ethnopharmacology, 143(2), 383-396. https://doi.org/10.1016/j.jep.2012.07.005

Davalos, A., Castilla, P., Gomez-Cordoves, C., & Bartolome, B. (2006). Quercetin is bioavailable from a single ingestion of grape juice. International Journal of Food Sciences and Nutrition, 57(5-6), 391-398. https://doi.org/10.1080/09637480600858662

Day, A. J., Gee, J. M., DuPont, M. S., Johnson, I. T., & Williamson, G. (2003). Absorption of quercetin-3-glucoside and quercetin-4 '-glucoside in the rat small intestine: The role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochemical Pharmacology, 65(7), 1199-1206. https://doi.org/10.1016/S0006-2952(03)00039-X

Day, A. J., Mellon, F., Barron, D., Sarrazin, G., Morgan, M. R. A., & Williamson, G. (2001). Human metabolism of dietary flavonoids: Identification of plasma metabolites of quercetin. Free Radical Research, 35(6), 941-952. doi: https://doi.org/10.1080/10715760100301441

Day, A. J., Canada, F. J., Diaz, J. C., Kroon, P. A., McLauchlan, W. R., Faulds, C. B., … Williamson, G. (2000). Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letters, 468, 166-170. https://doi.org/10.1016/S0014-5793(00)01211-4

de Pascual-Teresa, S., Johnston, K. L., DuPont, M. S., O'Leary, K. A., Needs, P. W., Morgan, L. M., … Williamson, G. (2004). Quercetin metabolites downregulate cyclooxygenase-2 transcription in human lymphocytes ex vivo but not in vivo. Journal of Nutrition, 134(3), 552-557.

de Vries, J. H., Hollman, P. C., Meyboom, S., Buysman, M. N., Zock, P. L., van Staveren, W. A., & Katan, M. B. (1998). Plasma concentrations and urinary excretion of the antioxidant flavonols quercetin and kaempferol as biomarkers for dietary intake. American Journal of Clinical Nutrition, 68(1), 60-65.

de Vries, J. H., Hollman, P. C., van Amersfoort, I., Olthof, M. R., & Katan, M. B. (2001). Red wine is a poor source of bioavailable flavonols in men. Journal of Nutrition, 131(3), 745-748.

Del Rio, D., Rodriguez-Mateos, A., Spencer, J. P., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling, 18(14), 1818-1892. https://doi.org/10.1089/ars.2012.4581

Ding, H., Fu, Y., Chen, W., & Wang, Z. (2010). COMT Val158Met polymorphism and breast cancer risk: Evidence from 26 case-control studies. Breast Cancer Research and Treatment, https://doi.org/10.1007/s10549-010-0759-5

Dragoni, S., Gee, J., Bennett, R., Valoti, M., & Sgaragli, G. (2006). Red wine alcohol promotes quercetin absorption and directs its metabolism towards isorhamnetin and tamarixetin in rat intestine in vitro. British Journal of Pharmacology, 147(7), 765-771. https://doi.org/10.1038/sj.bjp.0706662

Egert, S., Wolffram, S., Schulze, B., Langguth, P., Hubbermann, E. M., Schwarz, K., … Muller, M. J. (2012). Enriched cereal bars are more effective in increasing plasma quercetin compared with quercetin from powder-filled hard capsules. British Journal of Nutrition, 107(4), 539-546. https://doi.org/10.1017/S0007114511003242

Erlund, I., Freese, R., Marnietni, J., Hakala, P., & Alfthan, G. (2006). Bioavailability of quercetin from berries and the diet. Nutrition and Cancer-an International Journal, 54(1), 13-17. doi: https://doi.org/10.1207/s15327914nc5401_3

Erlund, I., Kosonen, T., Alfthan, G., Maenpaa, J., Perttunen, K., Kenraali, J., … Aro, A. (2000). Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. European Journal Clinical Pharmacology, 56(8), 545-553.

Erlund, I., Marniemi, J., Hakala, P., Alfthan, G., Meririnne, E., & Aro, A. (2003). Consumption of black currants, lingonberries and bilberries increases serum quercetin concentrations. European Journal of Clinical Nutrition, 57(1), 37-42. https://doi.org/10.1038/sj.ejcn.1601513

Erlund, I., Silaste, M. L., Alfthan, G., Rantala, M., Kesaniemi, Y. A., & Aro, A. (2002). Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables. European Journal of Clinical Nutrition, 56(9), 891-898. https://doi.org/10.1038/sj.ejcn.1601409

FDA. (2010). GRAS Notice for high purity quercetin. Retrieved from https://www.accessdata.fda.gov/scripts/fcn/gras_notices/grn341-1.pdf Downloaded on the 25th February 2014.

Ferry, D. R., Smith, A., Malkhandi, J., Fyfe, D. W., deTakats, P. G., Anderson, D., … Kerr, D. J. (1996). Phase I clinical trial of the flavonoid quercetin: Pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clinical Cancer Research, 2(4), 659-668.

Flatz, G., & Rotthauwe, H. W. (1977). The human lactase polymorphism: Physiology and genetics of lactose absorption and malabsorption. Progress in Medical Genetics, 2, 205-249.

Fujita, T., Brown, C., Carlson, E. J., Taylor, T., de la Cruz, M., Johns, S. J., … Giacomini, K. M. (2005). Functional analysis of polymorphisms in the organic anion transporter, SLC22A6 (OAT1). Pharmacogenetics and Genomics, 15(4), 201-209.

Galindo, P., Rodriguez-Gomez, I., Gonzalez-Manzano, S., Duenas, M., Jimenez, R., Menendez, C., … Duarte, J. (2012). Glucuronidated quercetin lowers blood pressure in spontaneously hypertensive rats via deconjugation. Plos One, 7(3). doi: ARTN e32673 Retrieved from 10.1371/journal.pone.0032673

Gibellini, L., Pinti, M., Nasi, M., Montagna, J. P., De Biasi, S., Roat, E., … Cossarizza, A. (2011). Quercetin and cancer chemoprevention. Evidence-Based Complementary and Alternative Medicine, 1-15. https://doi.org/10.1093/ecam/neq053

Glatt, H., Engelke, C. E., Pabel, U., Teubner, W., Jones, A. L., Coughtrie, M. W., … Meinl, W. (2000). Sulfotransferases: Genetics and role in toxicology. Toxicology Letters, 112-113, 341-348.

Goldberg, D. A., Yan, J., & Soleas, G. J. (2003). Absorption of three wine-related polyphenols in three different matrices by healthy subjects. Clinical Biochemistry, 36(1), 79-87. https://doi.org/10.1016/S0009-9120(02)00397-1

Gonzalez-Sarrias, A., Garcia-Villalba, R., Romo-Vaquero, M., Alasalvar, C., Orem, A., Zafrilla, P., … Espin, J. C. (2017). Clustering according to urolithin metabotype explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate: A randomized clinical trial. Molecular Nutrition & Food Research, 61(5). doi: ARTN 1600830 Retrieved from 10.1002/mnfr.201600830

Govind, P. T., Suiko, M., Sakakibara, Y., & Ming, C. L. (2001). Sulfation of flavonoids and other phenolic dietary compounds by the human cytosolic sulfotransferases. Biochemical and Biophysical Research Communications, 285(5), 1175-1179. https://doi.org/10.1006/bbrc.2001.5316

Graefe, E. U., Derendorf, H., & Veit, M. (1999). Pharmacokinetics and bioavailability of the flavonol quercetin in humans. International Journal of Clinical Pharmacology and Therapeutics, 37(5), 219-233.

Graefe, E. U., Wittig, J., Mueller, S., Riethling, A. K., Uehleke, B., Drewelow, B., … Veit, M. (2001). Pharmacokinetics and bioavailability of quercetin glycosides in humans. Journal of Clinical Pharmacology, 41(5), 492-499.

Grinder-Pedersen, L., Rasmussen, S. E., Bugel, S., Jorgensen, L. V., Dragsted, L. O., Gundersen, V., & Sandstrom, B. (2003). Effect of diets based on foods from conventional versus organic production on intake and excretion of flavonoids and markers of antioxidative defense in humans. Journal of Agricultural and Food Chemistry, 51(19), 5671-5676. https://doi.org/10.1021/jf030217n

Guo, Y., Mah, E., Davis, C. G., Jalili, T., Ferruzzi, M. G., Chun, O. K., & Bruno, R. S. (2013). Dietary fat increases quercetin bioavailability in overweight adults. Molecular Nutrition & Food Research, 57(5), 896-905. https://doi.org/10.1002/mnfr.201200619

Harwood, M., Danielewska-Nikiel, B., Borzelleca, J. F., Flamm, G. W., Williams, G. M., & Lines, T. C. (2007). A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chemical Toxicology, 45(11), 2179-2205. https://doi.org/10.1016/j.fct.2007.05.015

Hollman, P. C., Bijsman, M. N., van Gameren, Y., Cnossen, E. P., de Vries, J. H., & Katan, M. B. (1999). The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radical Research, 31(6), 569-573.

Hollman, P. C., & Katan, M. B. (1999). Health effects and bioavailability of dietary flavonols. Free Radical Research (31 Suppl), S75-S80.

Hollman, P. C., van Trijp, J. M., Buysman, M. N., van der Gaag, M. S., Mengelers, M. J., de Vries, J. H., & Katan, M. B. (1997). Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Letters, 418(1-2), 152-156.

Hollman, P. C., van Trijp, J. M., Mengelers, M. J., de Vries, J. H., & Katan, M. B. (1997). Bioavailability of the dietary antioxidant flavonol quercetin in man. Cancer Letters, 114(1-2), 139-140.

Hollman, P. C. H., Devries, J. H. M., Vanleeuwen, S. D., Mengelers, M. J. B., & Katan, M. B. (1995). Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. American Journal of Clinical Nutrition, 62(6), 1276-1282.

Hollman, P. C. H., vanderGaag, M., Mengelers, M. J. B., vanTrijp, J. M. P., deVries, J. H., & Katan, M. B. (1996). Absorption and disposition kinetics of the dietary antioxidant quercetin in man. Free Radical Biology and Medicine, 21(5), 703-707. doi: https://doi.org/10.1016/0891-5849(96)00129-3

Hong, Y., & Mitchell, A. E. (2004). Metabolic profiling of flavonol metabolites in human urine by liquid chromatography and tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 52(22), 6794-6801. https://doi.org/10.1021/jf040274w

Hubbard, G. P., Wolffram, S., Lovegrove, J. A., & Gibbins, J. M. (2004). Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. Journal of Thrombosis and Haemostasis, 2(12), 2138-2145. https://doi.org/10.1111/j.1538-7836.2004.01067.x

Ito, H., Gonthier, M. P., Manach, C., Morand, C., Mennen, L., Remesy, C., & Scalbert, A. (2005). Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. British Journal of Nutrition, 94(4), 500-509.

Jaganath, I. B., Mullen, W., Edwards, C. A., & Crozier, A. (2006). The relative contribution of the small and large intestine to the absorption and metabolism of rutin in man. Free Radical Research, 40(10), 1035-1046. https://doi.org/10.1080/10715760600771400

Jin, D., Hakamata, H., Takahashi, K., Kotani, A., & Kusu, F. (2004). Determination of quercetin in human plasma after ingestion of commercial canned green tea by semi-micro HPLC with electrochemical detection. Biomedical Chromatography, 18(9), 662-666. https://doi.org/10.1002/bmc.370

Jin, F., Nieman, D. C., Shanely, R. A., Knab, A. M., Austin, M. D., & Sha, W. (2010). The variable plasma quercetin response to 12-week quercetin supplementation in humans. European Journal of Clinical Nutrition, 64(7), 692-697. https://doi.org/10.1038/ejcn.2010.91

Kaddurah-Daouk, R., & Weinshilboum, R. M., & Pharmacometabolomics Research Network. (2014). Pharmacometabolomics: Implications for clinical pharmacology and systems pharmacology. Clinical Pharmacology and Therapeutics, 95(2), 154-167. https://doi.org/10.1038/clpt.2013.217

Kahle, K., Kempf, M., Schreier, P., Scheppach, W., Schrenk, D., Kautenburger, T., … Richling, E. (2011). Intestinal transit and systemic metabolism of apple polyphenols. European Journal of Nutrition, 50(7), 507-522. https://doi.org/10.1007/s00394-010-0157-0

Kawabata, K., Mukai, R., & Ishisaka, A. (2015). Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food & Function, 6(5), 1399-1417. https://doi.org/10.1039/C4FO01178C

Kawai, Y. (2014). β-Glucuronidase activity and mitochondrial dysfunction: The sites where flavonoid glucuronides act as anti-inflammatory agents. Journal of Clinical Biochemistry and Nutrition, 54(3), 145-150. https://doi.org/10.3164/jcbn.14-9</bib>

Kawai, Y., Nishikawa, T., Shiba, Y., Saito, S., Murota, K., Shibata, N., … Terao, J. (2008). Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries - Implication in the anti-atherosclerotic mechanism of dietary flavonoids. Journal of Biological Chemistry, 283(14), 9424-9434. https://doi.org/10.1074/jbc.M706571200

Kerb, R., Hoffmeyer, S., & Brinkmann, U. (2001). ABC drug transporters: Hereditary polymorphisms and pharmacological impact in MDR1, MRP1 and MRP2. Pharmacogenomics, 2(1), 51-64. https://doi.org/10.1517/14622416.2.1.51

Kerimi, A., & Williamson, G. (2017). Differential impact of flavonoids on redox modulation, bioenergetics, and cell signaling in normal and tumor cells: A comprehensive review. Antioxidants & Redox Signaling. doi: https://doi.org/10.1089/ars.2017.7086

Koli, R., Erlund, I., Jula, A., Marniemi, J., Mattila, P., & Alfthan, G. (2010). Bioavailability of various polyphenols from a diet containing moderate amounts of berries. Journal of Agricultural and Food Chemistry, 58(7), 3927-3932. https://doi.org/10.1021/jf9024823

Krogholm, K. S., Bredsdorff, L., Knuthsen, P., Haraldsdottir, J., & Rasmussen, S. E. (2010). Relative bioavailability of the flavonoids quercetin, hesperetin and naringenin given simultaneously through diet. European Journal of Clinical Nutrition, 64(4), 432-435. https://doi.org/10.1038/ejcn.2010.6

Lee, J., Ebeler, S. E., Zweigenbaum, J. A., & Mitchell, A. E. (2012). UHPLC-(ESI)QTOF MS/MS profiling of quercetin metabolites in human plasma postconsumption of applesauce enriched with apple peel and onion. Journal of Agricultural and Food Chemistry, 60(34), 8510-8520. https://doi.org/10.1021/jf302637t

Lesser, S., Cermak, R., & Wolffram, S. (2004). Bioavailability of quercetin in pigs is influenced by the dietary fat content. Journal of Nutrition, 134(6), 1508-1511.

Lodi, F., Jimenez, R., Moreno, L., Kroon, P. A., Needs, P. W., Hughes, D. A., … Perez-Vizcaino, F. (2009). Glucuronidated and sulfated metabolites of the flavonoid quercetin prevent endothelial dysfunction but lack direct vasorelaxant effects in rat aorta. Atherosclerosis, 204(1), 34-39. https://doi.org/10.1016/j.atherosclerosis.2008.08.007

Loke, W. M., Jenner, A. M., Proudfoot, J. M., McKinley, A. J., Hodgson, J. M., Halliwel, B., & Croft, K. D. (2009). A metabolite profiling approach to identify biomarkers of flavonoid intake in humans. Journal of Nutrition, 139(12), 2309-2314. https://doi.org/10.3945/jn.109.113613

Lu, L. L., Qian, D. W., Yang, J., Jiang, S., Guo, J. M., Shang, E. X., & Duan, J. A. (2013). Identification of isoquercitrin metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS. Biomedical Chromatography, 27(4), 509-514. doi: https://doi.org/10.1002/Bmc.2820

Matsukawa, N., Matsumoto, M., Shinoki, A., Hagio, M., Inoue, R., & Hara, H. (2009). Nondigestible saccharides suppress the bacterial degradation of quercetin aglycone in the large intestine and enhance the bioavailability of quercetin glucoside in rats. Journal of Agricultural and Food Chemistry, 57(20), 9462-9468. https://doi.org/10.1021/jf9024079

Mauri, P. L., Iemoli, L., Gardana, C., Riso, P., Simonetti, P., Porrini, M., & Pietta, P. G. (1999). Liquid chromatography electrospray ionization mass spectrometric characterization of flavonol glycosides in tomato extracts and human plasma. Rapid Communications in Mass Spectrometry, 13(10), 924-931. doi: https://doi.org/10.1002/(Sici)1097-0231(19990530)13:10<924::Aid-Rcm588>3.3.Co;2-7

McAnulty, S. R., McAnulty, L. S., Nieman, D. C., Quindry, J. C., Hosick, P. A., Hudson, M. H., … Dibarnardi, A. (2008). Chronic quercetin ingestion and exercise-induced oxidative damage and inflammation. Applied Physiology Nutrition and Metabolism-Physiologie Appliquee Nutrition Et Metabolisme, 33(2), 254-262. https://doi.org/10.1139/H07-177

Menendez, C., Duenas, M., Galindo, P., Gonzalez-Manzano, S., Jimenez, R., Moreno, L., … Perez-Vizcaino, F. (2011). Vascular deconjugation of quercetin glucuronide: The flavonoid paradox revealed? Molecular Nutrition & Food Research, 55(12), 1780-1790. https://doi.org/10.1002/mnfr.201100378

Menezes, R., Rodriguez-Mateos, A., Kaltsatou, A., Gonzalez-Sarrias, A., Greyling, A., Giannaki, C., … Pinto, P. (2017). Impact of flavonols on cardiometabolic biomarkers: A meta-analysis of randomized controlled human trials to explore the role of inter-individual variability. Nutrients, 9(2). https://doi.org/10.3390/nu9020117

Meng, X. F., Maliakal, P., Lu, H., Lee, M. J., & Yang, C. S. (2004). Urinary and plasma levels of resveratrol and quercetin in humans, mice, and rats after ingestion of pure compounds and grape juice. Journal of Agricultural and Food Chemistry, 52(4), 935-942. https://doi.org/10.1021/jf030582e

Moon, J. H., Nakata, R., Oshima, S., Inakuma, T., & Terao, J. (2000). Accumulation of quercetin conjugates in blood plasma after the short-term ingestion of onion by women. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 279(2), R461-R467.

Moon, Y. J., Wang, L., DiCenzo, R., & Morris, M. E. (2008). Quercetin pharmacokinetics in humans. Biopharmaceutics & Drug Disposition, 29(4), 205-217. https://doi.org/10.1002/bdd.605

Mullen, W., Boitier, A., Stewart, A. J., & Crozier, A. (2004). Flavonoid metabolites in human plasma and urine after the consumption of red onions: Analysis by liquid chromatography with photodiode array and full scan tandem mass spectrometric detection. Journal of Chromatography A, 1058(1-2), 163-168. https://doi.org/10.1016/j.chroma.2004.08117

Mullen, W., Edwards, C. A., & Crozier, A. (2006). Absorption, excretion and metabolite profiling of methyl-, glucuronyl-, glucosyl- and sulpho-conjugates of quercetin in human plasma and urine after ingestion of onions. British Journal of Nutrition, 96(1), 107-116. https://doi.org/10.1079/Bjn20061809

Murota, K., Matsuda, N., Kashino, Y., Fujikura, Y., Nakamura, T., Kato, Y., … Terao, J. (2010). a-Oligoglucosylation of a sugar moiety enhances the bioavailability of quercetin glucosides in humans. Archives of Biochemistry and Biophysics, 501(1), 91-97. https://doi.org/10.1016/j.abb.2010.06.036

Nakamura, T., Murota, K., Kumamoto, S., Misumi, K., Bando, N., Ikushiro, S., … Terao, J. (2014). Plasma metabolites of dietary flavonoids after combination meal consumption with onion and tofu in humans. Molecular Nutrition & Food Research, 58(2), 310-317. https://doi.org/10.1002/mnfr.201300234

Okamoto, T. (2005). Safety of quercetin for clinical application (Review). International Journal Molecular Medicine, 16(2), 275-278.

Olthof, M. R., Hollman, P. C. H., Buijsman, M. N. C. P., van Amelsvoort, J. M. M., & Katan, M. B. (2003). Chlorogenic acid, quercetin-3-rutinoside and black tea phenols are extensively metabolized in humans. Journal of Nutrition, 133(6), 1806-1814.

Paulke, A., Eckert, G. P., Schubert-Zsilavecz, M., & Wurglics, M. (2012). Isoquercitrin provides better bioavailability than quercetin: Comparison of quercetin metabolites in body tissue and brain sections after six days administration of isoquercitrin and quercetin. Pharmazie, 67(12), 991-996. https://doi.org/10.1691/ph.2012.2050

Perez-Jimenez, J., Fezeu, L., Touvier, M., Arnault, N., Manach, C., Hercberg, S., … Scalbert, A. (2011). Dietary intake of 337 polyphenols in French adults. American Journal of Clinical Nutrition, 93(6), 1220-1228. https://doi.org/10.3945/ajcn.110.007096

Perez-Jimenez, J., Neveu, V., Vos, F., & Scalbert, A. (2010). Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. European Journal of Clinical Nutrition, 64(Suppl 3), S112-S120. https://doi.org/10.1038/ejcn.2010.221

Pérez-Jiménez, J., Hubert, J., Hooper, L., Cassidy, A., Manach, C., Williamson, G., & Scalbert, A. (2010). Urinary metabolites as biomarkers of polyphenol intake in humans: A systematic review. American Journal of Clinical Nutrition, 92(4), 801-809. https://doi.org/10.3945/ajcn.2010.29924

Perez, A., Gonzalez-Manzano, S., Jimenez, R., Perez-Abud, R., Haro, J. M., Osuna, A., … Perez-Vizcaino, F. (2014). The flavonoid quercetin induces acute vasodilator effects in healthy volunteers: Correlation with beta-glucuronidase activity. Pharmacological Research, 89, 11-18. https://doi.org/10.1016/j.phrs.2014.07.005

Petersen, B., Egert, S., Bosy-Westphal, A., Muller, M. J., Wolffram, S., Hubbermann, E. M., … Schwarz, K. (2016). Bioavailability of quercetin in humans and the influence of food matrix comparing quercetin capsules and different apple sources. Food Research International, 88, 159-165. https://doi.org/10.1016/j.foodres.2016.02.013

Pimpao, R. C., Ventura, M. R., Ferreira, R. B., Williamson, G., & Santos, C. N. (2015). Phenolic sulfates as new and highly abundant metabolites in human plasma after ingestion of a mixed berry fruit puree. British Journal of Nutrition, 113, 454-463. doi: Retrieved from S0007114514003511 [pii];10.1017/S0007114514003511 [doi]

Prot, J. M., Maciel, L., Bricks, T., Merlier, F., Cotton, J., Paullier, P., … Leclerc, E. (2014). First pass intestinal and liver metabolism of paracetamol in a microfluidic platform coupled with a mathematical modeling as a means of evaluating ADME processes in humans. Biotechnology and Bioengineering, 111(10), 2027-2040. https://doi.org/10.1002/bit.25232

Ramesova, S., Sokolova, R., Degano, I., Bulickova, J., Zabka, J., & Gal, M. (2012). On the stability of the bioactive flavonoids quercetin and luteolin under oxygen-free conditions. Analytical and Bioanalytical Chemistry, 402(2), 975-982. https://doi.org/10.1007/s00216-011-5504-3

Reinboth, M., Wolffram, S., Abraham, G., Ungemach, F. R., & Cermak, R. (2010). Oral bioavailability of quercetin from different quercetin glycosides in dogs. British Journal of Nutrition, 104(2), 198-203. https://doi.org/10.1017/S000711451000053x

Rescigno, A., Thakur, A. K., & Marzo, A. (1994). On definition and use of the term bioavailability. Arzneimittel-Forschung/Drug Research, 44-2(10), 1167-1169.

Rossi, A. M., Maggini, V., Fredianelli, E., Di Bello, D., Pietrabissa, A., Mosca, F., … Pacifici, G. M. (2004). Phenotype-genotype relationships of SULT1A1 in human liver and variations in the IC50 of the SULT1A1 inhibitor quercetin. International Journal of Clinical Pharmacology and Therapeutics, 42(10), 561-567.

Russo, M., Spagnuolo, C., Tedesco, I., Bilotto, S., & Russo, G. L. (2012). The flavonoid quercetin in disease prevention and therapy: Facts and fancies. Biochemical Pharmacology, 83(1), 6-15. https://doi.org/10.1016/j.bcp.2011.08.010

Schlemmer, U. (1995). Bioavailability of nutrients conceptual aspects of definition and problems of determination. British Journal of Nutrition, 73(1), 150-151.

Schneider, H., Schwiertz, A., Collins, M. D., & Blaut, M. (1999). Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Archives of Microbiology, 171(2), 81-91.

Schulz, H. U., Schurer, M., Bassler, D., & Weiser, D. (2005). Investigation of pharmacokinetic data of hypericin, pseudohypericin, hyperforin and the flavonoids quercetin and isorhamnetin revealed from single and multiple oral dose studies with a hypericum extract containing tablet in healthy male volunteers. Arzneimittel-Forschung-Drug Research, 55(10), 561-568. https://doi.org/10.1055/s-0031-1296905

Serra, A., Macia, A., Romero, M. P., Reguant, J., Ortega, N., & Motilva, M. J. (2012). Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chemistry, 130(2), 383-393. https://doi.org/10.1016/j.foodchem.2011.07.055

Sesink, A. L. A., O'Leary, K. A., & Hollman, P. C. H. (2001). Quercetin gluouronides but not glucosides are present in human plasma after consumption of quercetin-3-glucoside or quercetin-4 '-glucoside. Journal of Nutrition, 131(7), 1938-1941.

Shimoi, K., Saka, N., Nozawa, R., Sato, M., Amano, I., Nakayama, T., & Kinae, N. (2001). Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammation. Drug Metabolism and Disposition, 29(12), 1521-1524.

Smith, A. J., Kavuru, P., Wojtas, L., Zaworotko, M. J., & Shytle, R. D. (2011). Cocrystals of quercetin with improved solubility and oral bioavailability. Molecular Pharmaceutics, 8(5), 1867-1876. https://doi.org/10.1021/mp200209j

Sokolova, R., Degano, I., Ramesova, S., Bulickova, J., Hromadova, M., Gal, M., … Valasek, M. (2011). The oxidation mechanism of the antioxidant quercetin in nonaqueous media. Electrochimica Acta, 56(21), 7421-7427. https://doi.org/10.1016/j.electacta.2011.04.121

Sokolova, R., Ramesova, S., Degano, I., Hromadova, M., Gal, M., & Zabka, J. (2012). The oxidation of natural flavonoid quercetin. Chemical Communications, 48(28), 3433-3435. https://doi.org/10.1039/c2cc18018a

Spencer, J. P. E., Chowrimootoo, G., Choudhury, R., Debnam, E. S., Srai, S. K., & Rice-Evans, C. (1999). The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Letters, 458(2), 224-230. doi: https://doi.org/10.1016/S0014-5793(99)01160-6

Stalmach, A., Mullen, W., Barron, D., Uchida, K., Yokota, T., Cavin, C., … Crozier, A. (2009). Metabolite profiling of hydroxycinnamate derivatives in plasma and urine after the ingestion of coffee by humans: Identification of biomarkers of coffee consumption. Drug Metabolism and Disposition, 37(8), 1749-1758. https://doi.org/10.1124/dmd.109.028019

Sugatani, J. (2013). Function, genetic polymorphism, and transcriptional regulation of human UDP-glucuronosyltransferase (UGT) 1A1. Drug Metabolism and Pharmacokinetics, 28(2), 83-92.

Tribolo, S., Lodib, F., Connor, C., Suri, S., Wilson, V. G., Taylor, M. A., … Hughes, D. A. (2008). Comparative effects of quercetin and its predominant human metabolites on adhesion molecule expression in activated human vascular endothelial cells. Atherosclerosis, 197(1), 50-56. https://doi.org/10.1016/j.atherosclerosis.2007.07.040

Vacek, J., Papouskova, B., Kosina, P., Vrba, J., Kren, V., & Ulrichova, J. (2012). Biotransformation of flavonols and taxifolin in hepatocyte in vitro systems as determined by liquid chromatography with various stationary phases and electrospray ionization-quadrupole time-of-flight mass spectrometry. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 899, 109-115. https://doi.org/10.1016/j.jchromb.2012.05.009

Valentová, K., Vrba, J., Bancířová, M., Ulrichová, J., & Křen, V. (2014). Isoquercitrin: Pharmacology, toxicology, and metabolism. Food and Chemical Toxicology, 68, 267-282. https://doi.org/10.1016/j.fct.2014.03.018

Walle, T. (2004). Absorption and metabolism of flavonoids. Free Radical Biology and Medicine, 36(7), 829-837. https://doi.org/10.1016/j.freeradbiomed.2004.01.002

Walle, T., Otake, Y., Walle, U. K., & Wilson, F. A. (2000). Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. Journal of Nutrition, 130(11), 2658-2661.

Walle, T., Walle, U. K., & Halushka, P. V. (2001). Carbon dioxide is the major metabolite of quercetin in humans. Journal of Nutrition, 131(10), 2648-2652.

Wang, Y. F., Singh, A. P., Nelson, H. N., Kaiser, A. J., Reker, N. C., Hooks, T. L., … Vorsa, N. (2016). Urinary clearance of cranberry flavonol glycosides in humans. Journal of Agricultural and Food Chemistry, 64(42), 7931-7939. https://doi.org/10.1021/acs.jafc.6b03611

Wiczkowski, W., Romaszko, J., Bucinski, A., Szawara-Nowak, D., Honke, J., Zielinski, H., & Piskula, M. K. (2008). Quercetin from shallots (Allium cepa L. var. aggregatum) is more bioavailable than its glucosides. Journal of Nutrition, 138(5), 885-888.

Williamson, G., Barron, D., Shimoi, K., & Terao, J. (2005). In vitro biological properties of flavonoid conjugates found in vivo. Free Radical Research, 39(5), 457-469. https://doi.org/10.1080/10715760500053610

Wilms, L. C., Hollman, P. C. H., Boots, A. W., & Kleinjans, J. C. S. (2005). Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 582(1-2), 155-162. https://doi.org/10.1016/j.mrgentox.2005.01.006

Wojcicki, J., Gawronska-Szklarz, B., Bieganowski, W., Patalan, M., Smulski, H. K., Samochowiec, L., & Zakrzewski, J. (1995). Comparative pharmacokinetics and bioavailability of flavonoid glycosides of Ginkgo biloba after a single oral administration of three formulations to healthy volunteers. Materia Medica Polona (Polish Journal of Medicine and Pharmacy), 27(4), 141-146.

Young, J. F., Nielsen, S. E., Haraldsdottir, J., Daneshvar, B., Lauridsen, S. T., Knuthsen, P., … Dragsted, L. O. (1999). Effect of fruit juice intake on urinary quercetin excretion and biomarkers of antioxidative status. American Journal of Clinical Nutrition, 69(1), 87-94.

Yousri, N. A., Kastenmuller, G., Gieger, C., Shin, S. Y., Erte, I., Menni, C., … Suhre, K. (2014). Long term conservation of human metabolic phenotypes and link to heritability. Metabolomics, 10(5), 1005-1017. https://doi.org/10.1007/s11306-014-0629-y

Newest 20 citations...

See more in
Medvik | PubMed

New Bacterial Aryl Sulfotransferases: Effective Tools for Sulfation of Polyphenols

. 2024 Oct 09 ; 72 (40) : 22208-22216. [epub] 20241001

Flavonoids as Aglycones in Retaining Glycosidase-Catalyzed Reactions: Prospects for Green Chemistry

. 2023 Oct 18 ; 71 (41) : 14890-14910. [epub] 20231006

Sulfation of Phenolic Acids: Chemoenzymatic vs. Chemical Synthesis

. 2022 Dec 02 ; 23 (23) : . [epub] 20221202

Biotransformation of Silymarin Flavonolignans by Human Fecal Microbiota

. 2020 Jan 09 ; 10 (1) : . [epub] 20200109

Dietary Polyphenols Targeting Arterial Stiffness: Interplay of Contributing Mechanisms and Gut Microbiome-Related Metabolism

. 2019 Mar 08 ; 11 (3) : . [epub] 20190308

Bioproduction of Quercetin and Rutinose Catalyzed by Rutinosidase: Novel Concept of "Solid State Biocatalysis"

. 2019 Mar 05 ; 20 (5) : . [epub] 20190305

Sulfated Metabolites of Flavonolignans and 2,3-Dehydroflavonolignans: Preparation and Properties

. 2018 Aug 09 ; 19 (8) : . [epub] 20180809

"Sweet Flavonoids": Glycosidase-Catalyzed Modifications

. 2018 Jul 21 ; 19 (7) : . [epub] 20180721

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...