Extracellular Amyloid Deposits in Alzheimer's and Creutzfeldt-Jakob Disease: Similar Behavior of Different Proteins?
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
VFN64165
Ministry of Health, Czech Republic (Conceptual development of research organization, General University Hospital in Prague)
TN64190
Ministry of Health, Czech Republic (Conceptual development of research organization, Thomayer Hospital in Prague)
NV19-04-00090
Grants Agency of the Ministry of Health
NV18-04-00179
Grants Agency of the Ministry of Health
Q27/LF1
Charles University - Project Progress
142120
Charles University (Project GAUK)
PubMed
33374972
PubMed Central
PMC7792617
DOI
10.3390/ijms22010007
PII: ijms22010007
Knihovny.cz E-resources
- Keywords
- Alzheimer’s disease, Creutzfeldt–Jakob disease, Gerstmann–Sträussler–Scheinker syndrome, PrP plaques, amyloid, plaque subtypes, senile plaques,
- MeSH
- Alzheimer Disease metabolism MeSH
- Amyloid metabolism MeSH
- Amyloid beta-Peptides metabolism MeSH
- Plaque, Amyloid metabolism MeSH
- Amyloidogenic Proteins metabolism MeSH
- Amyloidosis metabolism MeSH
- Creutzfeldt-Jakob Syndrome metabolism MeSH
- Humans MeSH
- Brain metabolism pathology MeSH
- Neurites metabolism pathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Amyloid MeSH
- Amyloid beta-Peptides MeSH
- Amyloidogenic Proteins MeSH
Neurodegenerative diseases are characterized by the deposition of specific protein aggregates, both intracellularly and/or extracellularly, depending on the type of disease. The extracellular occurrence of tridimensional structures formed by amyloidogenic proteins defines Alzheimer's disease, in which plaques are composed of amyloid β-protein, while in prionoses, the same term "amyloid" refers to the amyloid prion protein. In this review, we focused on providing a detailed didactic description and differentiation of diffuse, neuritic, and burnt-out plaques found in Alzheimer's disease and kuru-like, florid, multicentric, and neuritic plaques in human transmissible spongiform encephalopathies, followed by a systematic classification of the morphological similarities and differences between the extracellular amyloid deposits in these disorders. Both conditions are accompanied by the extracellular deposits that share certain signs, including neuritic degeneration, suggesting a particular role for amyloid protein toxicity.
See more in PubMed
Salardini A. An Overview of Primary Dementias as Clinicopathological Entities. Semin. Neurol. 2019;39:153–166. doi: 10.1055/s-0039-1683445. PubMed DOI
Braak H., Alafuzoff I., Arzberger T., Kretzschmar H., Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006;112:389–404. doi: 10.1007/s00401-006-0127-z. PubMed DOI PMC
Dickson D.W., Kouri N., Murray M.E., Josephs K.A. Neuropathology of frontotemporal lobar degeneration-Tau (FTLD-Tau) J. Mol. Neurosci. 2011;45:384–389. doi: 10.1007/s12031-011-9589-0. PubMed DOI PMC
MacKenzie I.R., Neumann M. Molecular neuropathology of frontotemporal dementia: Insights into disease mechanisms from postmortem studies. J. Neurochem. 2016;138:54–70. doi: 10.1111/jnc.13588. PubMed DOI
Jellinger K.A. Neuropathology of Dementia Disorders. J. Alzheimers Dis. Parkinsonism. 2014;4:135. doi: 10.4172/2161-0460.1000135. DOI
Chornenka K., Hirsch-Reinshagen V., Perez-Rosendahl M., Feldman H., Segal-Gidan F., Vinters H.V., MacKenzie I.R. Expanding the Phenotype of Frontotemporal Lobar Degeneration With FUS-Positive Pathology (FTLD-FUS) J. Neuropathol. Exp. Neurol. 2020;79:809–812. doi: 10.1093/jnen/nlaa045. PubMed DOI
Thal D.R., Fändrich M. Protein aggregation in Alzheimer’s disease: Aβ and τ and their potential roles in the pathogenesis of AD. Acta Neuropathol. 2015;129:163–165. doi: 10.1007/s00401-015-1387-2. PubMed DOI
Kovacs G.G., Budka H. Prion diseases: From protein to cell pathology. Am. J. Pathol. 2008;172:555–565. doi: 10.2353/ajpath.2008.070442. PubMed DOI PMC
Elhaddaoui A., Pigorsch E., Delacourte A., Turrell S. Competition of congo red and thioflavin S binding to amyloid sites in Alzheimer’s diseased tissue. Biospectroscopy. 1995;1:351–356. doi: 10.1002/bspy.350010506. DOI
Schultz C., Del Tredici K. Neuropathology of Alzheimer’s Disease. Alzheimers Disease Curr. Clin. Neurol. 2004:21–31. doi: 10.1007/978-1-59259-661-4_2. DOI
Hebert L.E., Weuve J., Scherr P.A., Evans D.A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 Census. Neurology. 2013;80:1778–1783. doi: 10.1212/WNL.0b013e31828726f5. PubMed DOI PMC
Montine T.J., Phelps C.H., Beach T.G., Bigio E.H., Cairns N.J., Dickson D.W., Duyckaerts C., Frosch M.P., Masliah E., Mirra S.S., et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: A practical approach. Acta Neuropathol. 2012;123:1–11. doi: 10.1007/s00401-011-0910-3. PubMed DOI PMC
Hyman B.T., Phelps C.H., Beach T.G., Bigio E.H., Cairns N.J., Carrillo M.C., Dickson D.W., Duyckaerts C., Frosch M.P., Masliah E., et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 2012;8:1–13. doi: 10.1016/j.jalz.2011.10.007. PubMed DOI PMC
Mirra S.S., Heyman A., McKeel D., Sumi S.M., Crain B.J., Brownlee L.M., Vogel F.S., Hughes J.P., Van Belle G., Berg L., et al. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology. 1991;41:479–486. doi: 10.1212/WNL.41.4.479. PubMed DOI
Ugalde C.L., Finkelstein D.I., Lawson V.A., Hill A.F. Pathogenic mechanisms of prion protein, amyloid-β and α-synuclein misfolding: The prion concept and neurotoxicity of protein oligomers. J. Neurochem. 2016;139:162–180. doi: 10.1111/jnc.13772. PubMed DOI
Lesné S., Koh M.T., Kotilinek L., Kayed R., Glabe C.G., Yang A., Gallagher M., Ashe K.H. A specific amyloid-beta protein assembly in the brain impairs memory. Nature. 2006;440:352–357. doi: 10.1038/nature04533. PubMed DOI
Blessed G., Tomlinson B.E., Roth M. The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. Br. J. Psychiatry. 1968;114:797–811. doi: 10.1192/bjp.114.512.797. PubMed DOI
Savonenko A.V., Melnikova T., Won P.C. Alzheimer disease. In: Zigmund M.J., Coyle J.T., Rowland L.P., editors. Neurobiology of Brain Disorders. 1st ed. Academic Press; Cambridge, MA, USA: 2014. pp. 321–338.
O’Brien R.J., Wong P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 2011;34:185–204. doi: 10.1146/annurev-neuro-061010-113613. PubMed DOI PMC
Bush A.I., Multhaup G., Moir R.D., Williamson T.G., Small D.H., Rumble B., Pollwein P., Beyreuther K., Masters C.L. A novel zinc(II) binding site modulates the function of the beta A4 amyloid protein precursor of Alzheimer’s disease. J. Biol. Chem. 1993;268:16109–16112. PubMed
Multhaup G., Schlicksupp A., Hesse L., Beher D., Ruppert T., Masters C.L., Beyreuther K. The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I) Science. 1996;271:1406–1409. doi: 10.1126/science.271.5254.1406. PubMed DOI
Smith-Swintosky V.L., Pettigrew L.C., Craddock S.D., Culwell A.R., Rydel R.E., Mattson M.P. Secreted forms of beta-amyloid precursor protein protect against ischemic brain injury. J. Neurochem. 1994;63:781–784. doi: 10.1046/j.1471-4159.1994.63020781.x. PubMed DOI
Chow V.W., Mattson M.P., Wong P.C., Gleichmann M. An overview of APP processing enzymes and products. Neuro Mol. Med. 2010;12:1–12. doi: 10.1007/s12017-009-8104-z. PubMed DOI PMC
Knowles T.P.J., Vendruscolo M., Dobson C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 2014;15:384–396. doi: 10.1038/nrm3810. PubMed DOI
Plant L.D., Boyle J.P., Smith I.F., Peers C., Pearson H.A. The production of amyloid beta peptide is a critical requirement for the viability of central neurons. J. Neurosci. 2003;23:5531–5535. doi: 10.1523/JNEUROSCI.23-13-05531.2003. PubMed DOI PMC
Gravina S.A., Ho L., Eckman C.B., Long K.E., Otvos L., Younkin L.H., Suzuki N., Younkin S.G. Amyloid beta protein (A beta) in Alzheimer’s disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43) J. Biol. Chem. 1995;270:7013–7016. doi: 10.1074/jbc.270.13.7013. PubMed DOI
Miller D., Papayannopoulos I., Styles J., Bobin S., Lin Y., Biemann K., Iqbal K. Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease. Arch. Biochem. Biophys. 1993;301:41–52. doi: 10.1006/abbi.1993.1112. PubMed DOI
Roher A.E., Lowenson J.D., Clarke S., Wolkow C., Wang R.O.N.G., Cotter R.J., Reardon I.M., Zürcher-Neely H.A., Heinrikson R.L., Ball M.J. Structural alterations in the peptide backbone of β-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J. Biol. Chem. 1993;268:3072–3073. PubMed
Vonsattel J.P.G., Myers R.H., Hedley-Whyte E.T., Ropper A.H., Bird E.D., Richardson E.P. Cerebral amyloid angiopathy without and with cerebral hemorrhages: A comparative histological study. Ann. Neurol. 1991;30:637–649. doi: 10.1002/ana.410300503. PubMed DOI
Bernstein S.L., Dupuis N.F., Lazo N.D., Wyttenbach T., Condron M.M., Bitan G., Teplow D.B., Shea J.-E., Ruotolo B.T., Robinson C.V., et al. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat. Chem. 2009;1:326–331. doi: 10.1038/nchem.247. PubMed DOI PMC
Gunther E.C., Strittmatter S.M. Beta-amyloid oligomers and cellular prion protein in Alzheimer’s disease. J. Mol. Med. 2009;88:331–338. doi: 10.1007/s00109-009-0568-7. PubMed DOI PMC
Haass C., Selkoe D.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nat. Rev. Mol. Cell Biol. 2007;8:101–112. doi: 10.1038/nrm2101. PubMed DOI
Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., Rowan M.J., Selkoe D.J. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535–539. doi: 10.1038/416535a. PubMed DOI
Hardy J.A., Higgins G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science. 1992;256:184–185. doi: 10.1126/science.1566067. PubMed DOI
Zhang S., Zhang M., Cai F., Song W. Biological function of Presenilin and its role in AD pathogenesis. Transl. Neurodegener. 2013;2:15. doi: 10.1186/2047-9158-2-15. PubMed DOI PMC
Pimplikar S.W. Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int. J. Biochem. Cell Biol. 2009;41:1261–1268. doi: 10.1016/j.biocel.2008.12.015. PubMed DOI PMC
Leverenz J., Raskind M.A. Early amyloid deposition in the medial temporal lobe of young Down syndrome patients: A regional quantitative analysis. Exp. Neurol. 1998;150:296–304. doi: 10.1006/exnr.1997.6777. PubMed DOI
Lemere C.A., Blusztajn J.K., Yamaguchi H., Wisniewski T., Saido T.C., Selkoe D.J. Sequence of deposition of heterogeneous amyloid beta-peptides and APO E in Down syndrome: Implications for initial events in amyloid plaque formation. Neurobiol. Dis. 1996;3:16–32. doi: 10.1006/nbdi.1996.0003. PubMed DOI
Wiseman F.K., Al-Janabi T., Hardy J., Ferguson-Smith A.C., Nizetic D., Tybulewicz V.L.J., Fisher E.M.C., Strydom A. A genetic cause of Alzheimer disease: Mechanistic insights from Down syndrome. Nat. Rev. Neurosci. 2015;16:564–574. doi: 10.1038/nrn3983. PubMed DOI PMC
Morris G.P., Clark I.A., Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer’s disease. Acta Neuropathol. Commun. 2014;2:135. doi: 10.1186/s40478-014-0135-5. PubMed DOI PMC
Morris G.P., Clark I., Vissel B. Questions concerning the role of amyloid-β in the definition, aetiology and diagnosis of Alzheimer’s disease. Acta Neuropathol. 2018;136:663–689. doi: 10.1007/s00401-018-1918-8. PubMed DOI PMC
Clark I.A., Vissel B. Amyloid beta: One of three danger-associated molecules that are secondary inducers of the proinflammatory cytokines that mediate Alzheimer’s disease. Br. J. Pharmacol. 2015;172:3714–3727. doi: 10.1111/bph.13181. PubMed DOI PMC
Clark I.A., Vissel B. Therapeutic implications of how TNF links apolipoprotein E, phosphorylated tau, α-synuclein, amyloid-β and insulin resistance in neurodegenerative diseases. Br. J. Pharmacol. 2018;175:3859–3875. doi: 10.1111/bph.14471. PubMed DOI PMC
Nelson P.T., Braak H., Markesbery W.R. Neuropathology and cognitive impairment in Alzheimer disease: A complex but coherent relationship. J. Neuropathol. Exp. Neurol. 2009;68:1–14. doi: 10.1097/NEN.0b013e3181919a48. PubMed DOI PMC
Lesné S., Kotilinek L., Ashe K.H. Plaque-bearing mice with reduced levels of oligomeric amyloid-beta assemblies have intact memory function. Neuroscience. 2008;151:745–749. doi: 10.1016/j.neuroscience.2007.10.054. PubMed DOI PMC
Serrano-Pozo A., Frosch M.P., Masliah E., Hyman B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med. 2011;1:a006189. doi: 10.1101/cshperspect.a006189. PubMed DOI PMC
Querol-Vilaseca M., Colom-Cadena M., Pegueroles J., Nuñez-Llaves R., Luque-Cabecerans J., Muñoz-Llahuna L., Andilla J., Belbin O., Spires-Jones T., Gelpi E., et al. Nanoscale structure of amyloid-β plaques in Alzheimer’s disease. Sci. Rep. 2019;9:5181. doi: 10.1038/s41598-019-41443-3. PubMed DOI PMC
Chuen-Chung C.R. Advanced Understanding of Neurodegenerative Diseases Hardcover. IntechOpen; London, UK: 2011. p. 54. DOI
Ringman J.M., Network D.I.A., Goate A., Masters C.L., Cairns N.J., Danek A., Graff-Radford N., Ghetti B., Morris J.C. Dominantly Inherited Alzheimer Network. Genetic heterogeneity in Alzheimer disease and implications for treatment strategies. Curr. Neurol. Neurosci. Rep. 2014;14:499. doi: 10.1007/s11910-014-0499-8. PubMed DOI PMC
Cabranes J.A., Anein I., Barros-Loscertales A., Campos S., Canonico V., Fernandez C., Munoz M.C., Antonello R.M., Belloch-Ugarte V., Avila C., et al. In: Alzheimer’s Disease Research Trends. 1st ed. Chan A.P., editor. Nova Science Publishers Inc.; New York, NY, USA: 2008. p. 324.
Masliah E., Terry R.D., Mallory M., Alford M., Hansen L.A. Diffuse plaques do not accentuate synapse loss in Alzheimer’s disease. Am. J. Pathol. 1990;137:1293–1297. PubMed PMC
Allen S.J. In: Neurobiology of Alzheimer’s Disease. 3rd ed. Dawbarn D., editor. Oxford University Press; Oxford, UK: 2007.
Bussière T., Bard F., Barbour R., Grajeda H., Guido T., Khan K., Schenk D., Games D., Seubert P., Buttini M. Morphological Characterization of Thioflavin-S-Positive Amyloid Plaques in Transgenic Alzheimer Mice and Effect of Passive Aβ Immunotherapy on Their Clearance. Am. J. Pathol. 2004;165:987–995. doi: 10.1016/S0002-9440(10)63360-3. PubMed DOI PMC
Probst A., Brunnschweiler H., Lautenschlager C., Ulrich J. A special type of senile plaque, possibly an initial stage. Acta Neuropathol. 1987;74:133–141. doi: 10.1007/BF00692843. PubMed DOI
Tseng B.P., Esler W.P., Clish C.B., Stimson E.R., Ghilardi J.R., Vinters H.V., Mantyh P.W., Lee J.P., Maggio J.E. Deposition of monomeric, not oligomeric, Abeta mediates growth of Alzheimer’s disease amyloid plaques in human brain preparations. Biochemistry. 1999;38:10424–10431. doi: 10.1021/bi990718v. PubMed DOI
Duckett S., De La Torre J.C. Pathology of the Aging Human Nervous System. 2nd ed. Oxford University Press; Oxford, UK: 2001. p. 161.
DeTure M.A., Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol, Neurodegener. 2019;14:32. doi: 10.1186/s13024-019-0333-5. PubMed DOI PMC
Dickson T.C., Vickers J.C. The morphological phenotype of amyloid-beta deposits and associated neuritic change in Alzheimer’s disease. Neuroscience. 2001;105:99–107. doi: 10.1016/S0306-4522(01)00169-5. PubMed DOI
Itagaki S., McGeer P., Akiyama H., Zhu S., Selkoe D. Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J. Neuroimmunol. 1989;24:173–182. doi: 10.1016/0165-5728(89)90115-X. PubMed DOI
Malek-Ahmadi M., Perez S.E., Chen K., Mufson E.J. Neuritic and diffuse plaque associations with memory in non-cognitively impaired elderly. J. Alzheimers Dis. 2016;53:1641–1652. doi: 10.3233/JAD-160365. PubMed DOI PMC
Knowles R.B., Wyart C., Buldyrev S.V., Cruz L., Urbanc B., Hasselmo M.E., Stanley H.E., Hyman B.T. Plaque-induced neurite abnormalities: Implications for disruption of neural networks in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 1999;96:5274–5279. doi: 10.1073/pnas.96.9.5274. PubMed DOI PMC
Seth L.S., Louis D.N., Ellison D.W. Greenfield’s Neuropathology. 8th ed. Hodder Education Publishers; London, UK: 2008. p. 2400.
Perry A., Brat D. Practical Surgical Neuropathology: A Diagnostic Approach. 2nd ed. Elsevier Health Sciences; Philadelphia, PA, USA: 2017. p. 752.
Baumann B., Woehrer A., Ricken G., Augustin M., Mitter C., Pircher M., Kovacs G.G., Hitzenberger C.K. Visualization of neuritic plaques in Alzheimer’s disease by polarization-sensitive optical coherence microscopy. Sci. Rep. 2017;7:43477. doi: 10.1038/srep43477. PubMed DOI PMC
Perl D.P. Neuropathology of Alzheimer’s disease. Mt. Sinai J. Med. 2010;77:32–42. doi: 10.1002/msj.20157. PubMed DOI PMC
Thal D.R., Capetillo-Zarate E., Del Tredici K., Braak H. The development of amyloid beta protein deposits in the aged brain. Sci. Aging Knowl. Environ. 2006;2006:re1. doi: 10.1126/sageke.2006.6.re1. PubMed DOI
Yasuhara O., Kawamata T., Aimi Y., McGeer E.G., McGeer P.L. Two types of dystrophic neurites in senile plaques of Alzheimer disease and elderly non-demented cases. Neurosci. Lett. 1994;171:73–76. doi: 10.1016/0304-3940(94)90608-4. PubMed DOI
Valyi-Nagy T. In: Dementias in Neuropathology: A Reference Text of CNS Pathology. 3rd ed. Ellison D., Love S., Chimelli L.M.C., Harding B., Lowe J., Vinters H.V., editors. Elsevier Publishing; Philadephia, PA, USA: 2012. pp. 614–617.
Jankovska N., Olejar T., Kukal J., Matej R. Different Morphology of Neuritic Plaques in the Archicortex of Alzheimer Disease with Comorbid Synucleinopathy: A Pilot Study. Curr. Alzheimer Res. 2020 doi: 10.2174/1875692117999201215162043. Epub ahead of print. PubMed DOI
Armstrong R. The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer’s disease. Stage of PublicationFolia Neuro Pathol. 2009;47:289–299. PubMed
Yamaguchi H., Ishiguro K., Sugihara S., Nakazato Y., Kawarabayashi T., Sun X.Y. Presence of apolipoprotein E on extracellular neurofibrillary tangles and on meningeal blood vessels precedes the Alzheimer β-amyloid deposition. Acta Neuropathol. 1994;88:413–419. doi: 10.1007/BF00389492. PubMed DOI
Eikelenboom P., Zhan S.-S., Van Gool W.A., Allsop D. Inflammatory mechanisms in Alzheimer’s disease. Trends Pharmacol. Sci. 1994;15:447–450. doi: 10.1016/0165-6147(94)90057-4. PubMed DOI
Loeffler D.A., Camp D.M., Bennett D.A. Plaque complement activation and cognitive loss in Alzheimer’s disease. J. Neuro Inflamm. 2008;5:9. doi: 10.1186/1742-2094-5-9. PubMed DOI PMC
Verga L., Frangione B., Tagliavini F., Giaccone G., Migheli A., Bugiani O. Alzheimer’s and Down’s patients: Cerebral preamyloid deposits differ ultrastructurally and histochemically from the amyloid of senile plaques. Neurosci. Lett. 1989;105:294–299. doi: 10.1016/0304-3940(89)90636-8. PubMed DOI
Snow A.D., Sekiguchi R.T., Nochlin D., Kalaria R.N., Kimata K. Heparan sulfate proteoglycan in diffuse plaques of hippocampus but not of cerebellum in Alzheimer’s disease brain. Am. J. Pathol. 1994;144:337–347. PubMed PMC
Desai P.P., Ikonomovic M.D., Abrahamson E.E., Hamilton R.L., Isanski B.A., Hope C.E., Klunk W.E., DeKosky S.T., Kamboh M.I. Apolipoprotein D is a component of compact but not diffuse amyloid-beta plaques in Alzheimer’s disease temporal cortex. Neurobiol. Dis. 2005;20:574–582. doi: 10.1016/j.nbd.2005.04.012. PubMed DOI
Atwood C.S., Obrenovitch M.E., Liu T., Chan H., Perry G., Smith M.A., Martins R.N. Amyloid-beta: A chameleon walking in two worlds: A review of the trophic and toxic properties of amyloid-β. Brain Res. Rev. 2004;43:1–6. doi: 10.1016/S0165-0173(03)00174-7. PubMed DOI
Mann D.M.A., Younis N., Jones D., Stoddart R.W. The time course of pathological events in Down’s syndrome with particular reference to the involvement of microglial cells and deposits of b/A4. Neurodegeneration. 1992;1:201–215.
Bush A.I., Pettingell W.H., Multhaup G., Paradis M.D., Vonsattel J.P., Gusella J.F., Beyreuther K., Masters C.L., Tanzi R.E. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science. 1994;265:1464–1467. doi: 10.1126/science.8073293. PubMed DOI
Shalit F., Sredni B., Stern L., Kott E., Huberman M. Elevated interleukin-6 secretion levels by mononuclear cells of Alzheimer’s patients. Neurosci. Lett. 1994;174:130–132. doi: 10.1016/0304-3940(94)90003-5. PubMed DOI
Vogt B. Cingulate Neurobiology and Disease. 3rd ed. Oxford University Press; Oxford, UK: 2009.
Bahmanyar S., Higgins G.A., Goldgaber D. Localization of amyloid β protein messenger RNA in brains from patients with Alzheimer’s disease. Science. 1987;237:77–80. doi: 10.1126/science.3299701. PubMed DOI
Armstrong R.A. Diffuse β-amyloid (Aβ) deposits and neurons: In situ secretion or diffusion of Aβ? Alzheimer Rep. 2001;3:289–294.
Armstrong R.A. Laminar distribution of β-amyloid (Aβ) peptide deposits in the frontal lobe in familial and sporadic Alzheimer’s disease. Folia Neuropathol. 2015;53:15–23. doi: 10.5114/fn.2015.49970. PubMed DOI
Imran M., Mahmood S. An overview of human prion diseases. Virol. J. 2011;8:559. doi: 10.1186/1743-422X-8-559. PubMed DOI PMC
Asher D.M., Gregori L. Human transmissible spongiform encephalopathies: Historic view. Handb. Clin. Neurol. 2018;153:1–17. doi: 10.1016/B978-0-444-63945-5.00001-5. PubMed DOI
Voigtländer T., Klöppel S., Birner P., Jarius C., Flicker H., Verghese-Nikolakaki S., Sklaviadis T., Guentchev M., Budka H. Marked increase of neuronal prion protein immunoreactivity in Alzheimer’s disease and human prion diseases. Acta Neuropathol. 2011;101:417–423. doi: 10.1007/s004010100405. PubMed DOI
Kazlauskaite J., Young A., Gardner C.E., MacPherson J.V., Vénien-Bryan C., Pinheiro T.J.T. An unusual soluble β-turn-rich conformation of prion is involved in fibril formation and toxic to neuronal cells. Biochem. Biophys. Res. Commun. 2005;328:292–305. doi: 10.1016/j.bbrc.2004.12.172. PubMed DOI
Chiesa R. The elusive role of the prion protein and the mechanism of toxicity in prion disease. PLoS Pathog. 2015;11:e1004745. doi: 10.1371/journal.ppat.1004745. PubMed DOI PMC
Hörnlimann B., Riesner D., Kretzschmar H.A. Prions in Humans and Animals. 1st ed. De Gruyter Publishing; Boston, MA, USA: 2006. p. 292.
Klatzo I., Gajusek D.C., Zigas V. Evaluation of pathological findings in twelve cases of kuru. In: Van Boagert L., Radermecker J., Hozay J., Lowenthal A., editors. Encephalities. Elsevier; Amsterdam, The Netherlands: 1959. pp. 172–190.
Beck E., Daniel P.M., Asher D.M., Gajdusek D.C., Gibbs C.J. Experimental kuru in the chimpanzee. A neuropathological study. Jr. Brain. 1973;96:441–462. doi: 10.1093/brain/96.3.441. PubMed DOI
Kitamoto T., Tateishi J., Tashima T., Takeshita I., Barry R.A., DeArmond S.J., Prusiner S.B. Amyloid plaques in Creutzfeldt–Jakob disease stain with prion protein antibodies. Ann. Neurol. 1986;20:204–208. doi: 10.1002/ana.410200205. PubMed DOI
Kuwahara C., Takeuchi A.M., Nishimura T., Haraguchi K., Kubosaki A., Matsumoto Y., Saeki K., Matsumoto Y., Yokoyama T., Itohara S., et al. Prions prevent neuronal cell-line death. Nature. 1999;400:225–226. doi: 10.1038/22241. PubMed DOI
Wulf M.-A., Senatore A., Aguzzi A. The biological function of the cellular prion protein: An update. BMC Biol. 2017;15:34. doi: 10.1186/s12915-017-0375-5. PubMed DOI PMC
Chiesa R., Harris D.A. Fishing for prion protein function. PLoS Biol. 2009;7:e75. doi: 10.1371/journal.pbio.1000075. PubMed DOI PMC
Steele A.D., Lindquist S., Aguzzi A. The prion protein knockout mouse: A phenotype under challenge. Prion. 2007;1:83–93. doi: 10.4161/pri.1.2.4346. PubMed DOI PMC
Linden R., Martins V.R., Prado M.A.M., Cammarota M., Izquierdo I., Brentani R.R. Physiology of the prion protein. Physiol. Rev. 2008;88:673–728. doi: 10.1152/physrev.00007.2007. PubMed DOI
McLennan N.F., Brennan P.M., McNeill A., Davies I., Fotheringham A., Rennison K.A., Ritchie D., Brannan F., Head M.W., Ironside J.W., et al. Prion protein accumulation and neuro-protection in hypoxic brain damage. Am. J Pathol. 2004;165:227–235. doi: 10.1016/S0002-9440(10)63291-9. PubMed DOI PMC
Spudich A., Frigg R., Kilic E., Kilic Ü., Oesch B., Raeber A., Bassetti C.L., Hermann D.M. Aggravation of ischemic brain injury by prion protein deficiency: Role of ERK-1/-2 and STAT-1. Neurobiol. Dis. 2005;20:442–449. doi: 10.1016/j.nbd.2005.04.002. PubMed DOI
Freixes M., Puig B., Blanco R., Ferrer I. Clusterin solubility and aggregation in Creutzfeldt–Jakob disease. Acta Neuropathol. 2004;108:295–301. doi: 10.1007/s00401-004-0891-6. PubMed DOI
Lammie A. Cerebral amyloid angiopathy in Alzheimer’s disease and related disorders. In: Verbeel M.M., De Waal R.M.W., Vinters H.W., editors. Brain. Kluwer Academic Publishers; Amsterdam, The Netherlands: 2001. p. 384. DOI
Laurén J., Gimbel D.A., Nygaard H.B., Gilbert J.W., Strittmatter S.M. Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature. 2009;457:1128–1132. doi: 10.1038/nature07761. PubMed DOI PMC
Resenberger U.K., Harmeier A., Woerner A.C., Goodman J.L., Müller V., Krishnan R., Vabulas R.M., A Kretzschmar H., Lindquist S., Hartl F.U., et al. The cellular prion protein mediates neurotoxic signalling of β-sheet-rich conformers independent of prion replication. EMBO J. 2011;30:2057–2070. doi: 10.1038/emboj.2011.86. PubMed DOI PMC
Vincent B., Sunyach C., Orzechowski H.-D., George-Hyslop P.S., Checler F. p53-Dependent transcriptional control of cellular prion by presenilins. J. Neurosci. 2009;29:6752–6760. doi: 10.1523/JNEUROSCI.0789-09.2009. PubMed DOI PMC
Han B.H., DeMattos R.B., Dugan L.L., Kim-Han J.S., Brendza R.P., Fryer J.D., Kierson M., Cirrito J., Quick K., Harmony J.A.K., et al. Clusterin contributes to caspase-3-independent brain injury following neonatal hypoxia-ischemia. Nat Med. 2001;7:338–343. doi: 10.1038/85487. PubMed DOI
Jones S.E., Jomary C. Clusterin. Int. J. Biochem. Cell Biol. 2002;34:427–431. doi: 10.1016/S1357-2725(01)00155-8. PubMed DOI
McLaughlin L., Zhu G., Mistry M., Ley-Ebert C., Stuart W.D., Florio C.J., Groen P.A., Witt S.A., Kimball T.R., Witte D.P., et al. Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis. J. Clin. Investig. 2000;106:1105–1113. doi: 10.1172/JCI9037. PubMed DOI PMC
Michel D., Chatelain G., North S., Brun G. Stress-induced transcription of the clusterin/apoJ gene. Biochem. J. 1997;328:45–50. doi: 10.1042/bj3280045. PubMed DOI PMC
Yang C.R., Leskov K., Elberlein H., Criswell T., Pink J.J., Kinsella T.J., Boothman D.A. Nuclear clusterin/XIP8, and x-ray-induced Ku70-binding protein that signals cell death. Proc. Natl. Acad. Sci. USA. 2001;97:5907–5912. doi: 10.1073/pnas.97.11.5907. PubMed DOI PMC
Schwochau G.B., Nath K.A., Rosenberg M.E. Clusterin protects against oxidative stress in vitro through aggregative and nonaggregative properties. Kidney Int. 1998;53:1647–1653. doi: 10.1046/j.1523-1755.1998.00902.x. PubMed DOI
Rosenberg M.E., Silkensen J. Clusterin: Physiologic and pathophysiologic considerations. Int. J. Biochem. Cell Biol. 1995;27:633–645. doi: 10.1016/1357-2725(95)00027-M. PubMed DOI
Ishii T., Haga S., Yagishita S., Tateishi J. The presence of complements in amyloid plaques of Creutzfeldt–Jakob disease and Gerstmann–Straussler–Scheinker disease. Appl. Pathol. 1984;2:370–379. PubMed
Graner E., Mercadante A.F., Zanata S.M., Forlenza O.V., Cabral A.L., Veiga S.S., A Juliano M., Roesler R., Walz R., Minetti A., et al. Cellular prion protein binds laminin and mediates neuritogenesis. Mol. Brain Res. 2000;76:85–92. doi: 10.1016/S0169-328X(99)00334-4. PubMed DOI
Gajdusek D., Zigas V. Kuru; clinical, pathological and epidemiological study of an acute progressive degenerative disease of the central nervous system among natives of the Eastern Highlands of New Guinea. Am. J. Med. 1959;26:442–469. doi: 10.1016/0002-9343(59)90251-7. PubMed DOI
Gajdusek D., Zigas V. Studies on kuru. 1. The ethnologic setting of kuru. Am. J. Trop. Med. Hyg. 1961;10:80–91. doi: 10.4269/ajtmh.1961.10.80. PubMed DOI
Liberski P.P., Gajos A., Sikorska B., Lindenbaum S. Kuru, the First Human Prion Disease. Viruses. 2019;11:232. doi: 10.3390/v11030232. PubMed DOI PMC
Beck E., Daniel P.M. Prion diseases from a neuropathologist’s perspective. In: Prusiner S.B., Collinge J., Powell J., Anderton B., editors. Prion Diseases of Humans and Animals. Ellis Horwood; New York, NY, USA: 1993. pp. 63–65.
Hainfellner J.A., Liberski P.P., Guiroy D.C., Cervenáková L., Brown P., Gajdusek D.C., Budka H. Pathology and immunocytochemistry of a kuru brain. Brain Pathol. 1997;7:547–553. doi: 10.1111/j.1750-3639.1997.tb01072.x. PubMed DOI PMC
Piccardo P., Šafář J., Ceroni M., Gajdusek D.C., Gibbs C.J., Jr. Immunohistochemical localization of prion protein in spongiform encephalopathies and normal brain tissue. Neurology. 1990;40:518–522. doi: 10.1212/WNL.40.3_Part_1.518. PubMed DOI
Vacca V.M., Jr. CJD: Understanding Creutzfeldt–Jakob disease. Nursing. 2016;46:36–42. doi: 10.1097/01.NURSE.0000480598.84274.0f. PubMed DOI
Gençer A.G., Pelin Z., Kucukali C.I., Topçuoğlu Ö.B., Yilmaz N. Creutzfeldt–Jakob disease. Psychogeriatrics. 2011;11:119–124. doi: 10.1111/j.1479-8301.2011.00361.x. PubMed DOI
Sikorska B., Knight R., Ironside J.W., Liberski P.P. Creutzfeldt–Jakob disease. Adv. Exp. Med. Biol. 2012;724:76–90. doi: 10.1007/978-1-4614-0653-2_6. PubMed DOI
Budka H., Aguzzi A., Brown P., Brucher J.-M., Bugiani O., Gullotta F., Haltia M., Hauw J.-J., Ironside J.W., Jellinger K., et al. Neuropathological diagnostic criteria for Creutzfeldt–Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases) Brain Pathol. 1995;5:459–466. doi: 10.1111/j.1750-3639.1995.tb00625.x. PubMed DOI
Bell J.E., Ironside J.W. Neuropathology of spongiform encephalopathies in humans. Br. Med. Bull. 1993;49:738–777. doi: 10.1093/oxfordjournals.bmb.a072645. PubMed DOI
Collinge J. Variant Creutzfeldt–Jakob disease. Lancet. 1999;354:317–323. doi: 10.1016/S0140-6736(99)05128-4. PubMed DOI
Hill A.F., Joiner S., Wadsworth J.D.F., Sidle K.C.L., Bell J.E., Budka H., Ironside J.W., Collinge J. Molecular classification of sporadic Creutzfeldt–Jakob disease. Brain. 2003;126:1333–1346. doi: 10.1093/brain/awg125. PubMed DOI
Brown P., Cathala F., Raubertas R.F., Gajdusek D.C., Castaigne P. The epidemiology of Creutzfeldt–Jakob disease: Conclusion of a 15-year investigation in France and review of the world literature. Neurology. 1987;37:895–904. doi: 10.1212/WNL.37.6.895. PubMed DOI
Gao L.-P., Shi Q., Xiao K., Wang J., Zhou W., Chen C., Dong X. The genetic Creutzfeldt–Jakob disease with E200K mutation: Analysis of clinical, genetic and laboratory features of 30 Chinese patients. Sci. Rep. 2019;9:1836. doi: 10.1038/s41598-019-38520-y. PubMed DOI PMC
Will R.G. Acquired prion disease: Iatrogenic CJD, variant CJD, kuru. Br. Med Bull. 2003;66:255–265. doi: 10.1093/bmb/66.1.255. PubMed DOI
Lantos P. From slow virus to prion: A review of transmissible spongiform encephalopathies. Histopathology. 1992;20:1–11. doi: 10.1111/j.1365-2559.1992.tb00909.x. PubMed DOI
Duyckaerts C., Dickson D.W. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. 2nd ed. Wiley-Blackwell; Hoboken, NJ, USA: 2011. pp. 68–71.
Vickers J.C., Mitew S., Woodhouse A., Fernandez-Martos C.M., Kirkcaldie M.T., Canty A.J., McCormack G.H., King A.E. Defining the Earliest Pathological Changes of Alzheimer’s Disease. Curr. Alzheimer Res. 2016;13:281–287. doi: 10.2174/1567205013666151218150322. PubMed DOI PMC
D’Amore J.D., Kajdasz S.T., McLellan M.E., Bacskai B.J., Stern E.A., Hyman B.T. In vivo multiphoton imaging of a transgenic mouse model of Alzheimer disease reveals marked thioflavine-S-associated alterations in neurite trajectories. J. Neuropathol. Exp. Neurol. 2003;62:137–145. doi: 10.1093/jnen/62.2.137. PubMed DOI
Parchi P., Giese A., Capellari S., Brown P., Schulz-Schaeffer W., Windl O., Zerr I., Budka H., Kopp N., Piccardo P., et al. Classification of sporadic Creutzfeldt–Jakob disease based on molecular and phenotypic analysis of 300 subjects. Ann. Neurol. 1999;46:224–233. doi: 10.1002/1531-8249(199908)46:2<224::AID-ANA12>3.0.CO;2-W. PubMed DOI
Rossi M., Saverioni D., Di Bari M.A., Baiardi S., Lemstra A.W., Pirisinu L., Capellari S., Rozemuller A., Nonno R., Parchi P. Atypical Creutzfeldt–Jakob disease with PrP-amyloid plaques in white matter: Molecular characterization and transmission to bank voles show the M1 strain signature. Acta Neuropathol. Commun. 2017;5:87. doi: 10.1186/s40478-017-0496-7. PubMed DOI PMC
Tatzelt J. Prion Proteins. Springer; Berlin\Heidelberg, Germany: 2011. p. 29.
The Neuropathology of CJD. [(accessed on 13 November 2020)]; Available online: https://www.cjd.ed.ac.uk/sites/default/files/neuropath.pdf.
Nair A.K., Sabbagh M.N. Geriatric Neurology. 1st ed. Wiley-Blackwell; Hoboken, NJ, USA: 2014. p. 277.
Brown D. Neurodegeneration and Prion Disease. Springer; New York, NY, USA: 2005. p. 33.
Sobel R.A. Greenfield’s Neuropathology, Ninth Edition; 2-Volume Set. J. Neuropathol. Exp. Neurol. 2015;74:1185. doi: 10.1093/jnen/74.12.1185. DOI
Kobayashi A., Arima K., Ogawa M., Murata M., Fukuda T., Kitamoto T. Plaque-type deposition of prion protein in the damaged white matter of sporadic Creutzfeldt–Jakob disease MM1 patients. Acta Neuropathol. 2008;116:561–566. doi: 10.1007/s00401-008-0425-8. PubMed DOI
Liberski P.P. Gerstmann–Sträussler–Scheinker Disease. In: Ahmad S.I., editor. Neurodegenerative Diseases. Advances in Experimental Medicine and Biology. Springer; New York, NY, USA: 2012. [(accessed on 20 October 2020)]. Available online: PubMed DOI
Gambetti P., Kong Q., Zou W., Parchi P., Chen S.G. Sporadic and familial CJD: Classification and characterisation. Br. Med. Bull. 2003;66:213–239. doi: 10.1093/bmb/66.1.213. PubMed DOI
Ghetti B., Tagliavini F., Takao M., Bugiani O., Piccardo P. Hereditary prion protein amyloidoses. Clin. Lab. Med. 2003;23:65–85. doi: 10.1016/S0272-2712(02)00064-1. PubMed DOI
Galatioto S., Ruggeri D., Gullotta F. Gerstmann–Sträussler–Scheinker syndrome in a Sicilian patient. Neuropathological aspects. Pathologica. 1995;87:659–665. PubMed
Campbell T.A., Palmer M.S., Will R.G., Gibb W., Luthert P.J., Collinge J. A prion disease with a novel 96-base pair insertional mutation in the prion protein gene. Neurology. 1996;46:761–766. doi: 10.1212/WNL.46.3.761. PubMed DOI
Cochran E.J., Bennett D.A., Cervenakova L., Kenney K., Bernard B., Foster N.L., Benson D.F., Goldfarb L.G., Brown P. Familial Creutzfeldt–Jakob disease with a five-repeat octapeptide insert mutation. Neurology. 1996;47:727–733. doi: 10.1212/WNL.47.3.727. PubMed DOI
Capellari S., Vital C., Parchi P., Petersen R.B., Ferrer X., Jarnier D., Pegoraro E., Gambetti P., Julien J. Familial prion disease with a novel 144-bp insertion in the prion protein gene in a Basque family. Neurology. 1997;49:133–141. doi: 10.1212/WNL.49.1.133. PubMed DOI
Collinge J., Brown J., Hardy J., Mullan M., Rossor M.N., Baker H., Crow T.J., Lofthouse R., Poulter M., Ridley R., et al. Inherited prion disease with 144 base pair gene insertion. 2. Clinical and pathological features. Brain. 1992;115:687–710. doi: 10.1093/brain/115.3.687. PubMed DOI
Brown P., Goldfarb L.G., McCombie W.R., Nieto A., Squillacote D., Sheremata W., Little B.W., Godec M.S., Gibbs C.J., Gajdusek D.C. Atypical Creutzfeldt-Jakob disease in an American family with an insert mutation in the PRNP amyloid precursor gene. Neurology. 1992;42:422. doi: 10.1212/WNL.42.2.422. PubMed DOI
Goldfarb L.G., Brown P., McCombie W.R., Goldgaber D., Swergold G.D., Wills P.R., Cervenakova L., Baron H., Gibbs C.J., Gajdusek D.C. Transmissible familial Creutzfeldt–Jakob disease associated with five, seven, and eight extra octapeptide coding repeats in the PRNP gene. Proc. Natl. Acad. Sci. USA. 1991;88:10926–10930. doi: 10.1073/pnas.88.23.10926. PubMed DOI PMC
Krasemann S., Zerr I., Weber T., Poser S., Kretzschmar H., Hunsmann G., Bodemer W. Prion disease associated with a novel nine octapeptide repeat insertion in the PRNP gene. Brain Res. 1995;34:173–176. doi: 10.1016/0169-328X(95)00175-R. PubMed DOI
Vital C., Gray F., Vital A., Parchi P., Capellari S., Petersen R.B., Ferrer X., Jarnier D., Julien J., Gambetti P. Prion encephalopathy with insertion of octapeptide repeats: The number of repeats determines the type of cerebellar deposits. Neuropathol. Appl. Neurobiol. 1998;24:125–130. doi: 10.1046/j.1365-2990.1998.00098.x. PubMed DOI
Webb T.E.F., Poulter M., Beck J., Uphill J., Adamson G., Campbell T., Linehan J., Powell C., Brandner S., Pal S., et al. Phenotypic heterogeneity and genetic modification of P102L inherited prion disease in an international series. Brain. 2008;131:2632–2646. doi: 10.1093/brain/awn202. PubMed DOI PMC
Liberski P.P. Amyloid plaques in transmissible spongiform encephalopathies (prion diseases) Folia Neuropathol. 2004;42(Suppl. B):109–119. PubMed
Liberski P.P., Bratosiewicz J., Waliś A., Kordek R., Jeffrey M., Brown P. A special report I. Prion protein (PrP)--amyloid plaques in the transmissible spongiform encephalopathies, or prion diseases revisited. Folia Neuropathol. 2001;39:217–235. PubMed
Liberski P.P., Sikorska B., Lindenbaum S., Goldfarb L.G., McLean C., Hainfellner J.A., Brown P. Kuru: Genes, cannibals and neuropathology. J. Neuropathol. Exp. Neurol. 2012;71:92–103. doi: 10.1097/NEN.0b013e3182444efd. PubMed DOI PMC
Will R., Ironside J., Zeidler M., Estibeiro K., Cousens S., Smith P., Alperovitch A., Poser S., Pocchiari M., Hofman A. A new variant of Creutzfeldt–Jakob disease in the UK. Lancet. 1996;347:921–925. doi: 10.1016/S0140-6736(96)91412-9. PubMed DOI
Ironside J.W., E Bell J. Florid plaques and new variant Creutzfeldt–Jakob disease. Lancet. 1997;350:1475. doi: 10.1016/S0140-6736(05)64239-0. PubMed DOI
Ironside J.W., Head M.W., McCardle L., Knight R. Neuropathology of variant Creutzfeldt–Jakob disease. Acta Neurobiol. Exp. 2002;62:175–182. doi: 10.1016/S1631-0691(02)01381-1. PubMed DOI
World Federation of Scientists Visualization of a Battlefield: The Pathology of Human Transmissible Spongiform Encephalopathies by Budka H. [(accessed on 14 November 2020)]; Available online: http://www.federationofscientists.org/PMPanels/TSE/Visuals.php.
Ghetti B., Dlouhy S.R., Giaccone G., Bugiani O., Frangione B., Farlow M.R., Tagliavini F. Gerstmann–Sträussler–Scheinker disease and the Indiana kindred. Brain Pathol. 1995;5:61–75. doi: 10.1111/j.1750-3639.1995.tb00578.x. PubMed DOI
Ferrer I., Carmona M., Blanco R., Recio M., Segundo R. Gerstmann–Straüssler–Scheinker PRNP P102L-129V mutation. Transl. Neurosci. 2011;2:23–32. doi: 10.2478/s13380-011-0001-x. DOI
Thal D.R., Rüb U., Orantes M., Braak H. Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–1800. doi: 10.1212/WNL.58.12.1791. PubMed DOI