Alzheimer's Disease as a Membrane Dysfunction Tauopathy? New Insights into the Amyloid Cascade Hypothesis

. 2024 Sep 07 ; 25 (17) : . [epub] 20240907

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39273636

Grantová podpora
00064165 Ministry of Health, Czech Reoublic (Conceptual development of research organization)
00064190 Ministry of Health, Czech Reoublic (Conceptual development of research organization)
NU23-04-00173 Grants Agency of the Ministry of Health

The amyloid cascade hypothesis postulates that extracellular deposits of amyloid β (Aβ) are the primary and initial cause leading to the full development of Alzheimer's disease (AD) with intracellular neurofibrillary tangles; however, the details of this mechanism have not been fully described until now. Our preliminary data, coming from our day-to-day neuropathology practice, show that the primary location of the hyperphosphorylated tau protein is in the vicinity of the cell membrane of dystrophic neurites. This observation inspired us to formulate a hypothesis that presumes an interaction between low-density lipoprotein receptor-related protein 1 (LRP1) and fibrillar aggregates of, particularly, Aβ42 anchored at the periphery of neuritic plaques, making internalization of the LRP1-Aβ42 complex infeasible and, thus, causing membrane dysfunction, leading to the tauopathy characterized by intracellular accumulation and hyperphosphorylation of the tau protein. Understanding AD as a membrane dysfunction tauopathy may draw attention to new treatment approaches not only targeting Aβ42 production but also, perhaps paradoxically, preventing the formation of LRP1-Aβ42.

Zobrazit více v PubMed

Jankovska N., Olejar T., Matej R. Extracellular Amyloid Deposits in Alzheimer’s and Creutzfeldt-Jakob Disease: Similar Behavior of Different Proteins? Int. J. Mol. Sci. 2020;22:7. doi: 10.3390/ijms22010007. PubMed DOI PMC

DeTure M.A., Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019;14:32. doi: 10.1186/s13024-019-0333-5. PubMed DOI PMC

Hyman B.T., Phelps C.H., Beach T.G., Bigio E.H., Cairns N.J., Carrillo M.C., Dickson D.W., Duyckaerts C., Frosch M.P., Masliah E., et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s Dement. 2012;8:1–13. doi: 10.1016/j.jalz.2011.10.007. PubMed DOI PMC

Hardy J.A., Higgins G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science. 1992;256:184–185. doi: 10.1126/science.1566067. PubMed DOI

Barage S.H., Sonawane K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides. 2015;52:1–18. doi: 10.1016/j.npep.2015.06.008. PubMed DOI

Jankovska N., Olejar T., Kukal J., Matej R. Different Morphology of Neuritic Plaques in the Archicortex of Alzheimer’s Disease with Comorbid Synucleinopathy: A Pilot Study. Curr. Alzheimer’s Res. 2020;17:948–958. doi: 10.2174/1875692117999201215162043. PubMed DOI

Braak H., Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–259. doi: 10.1007/BF00308809. PubMed DOI

Bennett D.A., Schneider J.A., Arvanitakis Z., Kelly J.F., Aggarwal N.T., Shah R.C., Wilson R.S. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology. 2006;66:1837–1844. doi: 10.1212/01.wnl.0000219668.47116.e6. PubMed DOI

Bennett D.A., Schneider J.A., Aggarwal N.T., Arvanitakis Z., Shah R.C., Kelly J.F., Fox J.H., Cochran E.J., Arends D., Treinkman A.D., et al. Decision rules guiding the clinical diagnosis of Alzheimer’s disease in two community-based cohort studies compared to standard practice in a clinic-based cohort study. Neuroepidemiology. 2006;27:169–176. doi: 10.1159/000096129. PubMed DOI

Jones S.L., Svitkina T.M. Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity. Neural Plast. 2016;2016:6808293. doi: 10.1155/2016/6808293. PubMed DOI PMC

Yamada R., Kuba H. Structural and Functional Plasticity at the Axon Initial Segment. Front. Cell Neurosci. 2016;10:250. doi: 10.3389/fncel.2016.00250. PubMed DOI PMC

Oakley H., Cole S.L., Logan S., Maus E., Shao P., Craft J., Guillozet-Bongaarts A., Ohno M., Disterhoft J., Van Eldik L., et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J. Neurosci. 2006;26:10129–10140. doi: 10.1523/JNEUROSCI.1202-06.2006. PubMed DOI PMC

Claeysen S., Giannoni P., Ismeurt C. Diagnosis and Management in Dementia. Academic Press; Cambridge, MA, USA: 2020. The 5xFAD Mouse Model of Alzheimer’s Disease. The Neuroscience of Dementia 1; pp. 207–221. Chapter 13. DOI

Youmans K.L., Tai L.M., Kanekiyo T., Stine W.B., Jr., Michon S.-C., Nwabuisi-Heath E., Manelli A.M., Fu Y., Riordan S., Roher A.E., et al. Intraneuronal Aβ detection in 5xFAD mice by a new Aβ-specific antibody. Mol. Neurodegener. 2012;7:8. doi: 10.1186/1750-1326-7-8. PubMed DOI PMC

Maarouf C.L., Kokjohn T.A., Whiteside C.M., Macias M.P., Kalback W.M., Sabbagh M.N., Beach T.G., Vassar R., Roher A.E. Molecular Differences and Similarities Between Alzheimer’s Disease and the 5XFAD Transgenic Mouse Model of Amyloidosis. Biochem. Insights. 2013;6:BCI-S13025. doi: 10.4137/BCI.S13025. PubMed DOI PMC

Shin J., Park S., Lee H., Kim Y. Thioflavin-positive tau aggregates complicating quantification of amyloid plaques in the brain of 5XFAD transgenic mouse model. Sci. Rep. 2021;11:1617. doi: 10.1038/s41598-021-81304-6. PubMed DOI PMC

Tohda C., Urano T., Umezaki M., Nemere I., Kuboyama T. Diosgenin is an exogenous activator of 1,25D3-MARRS/Pdia3/ERp57 and improves Alzheimer’s disease pathologies in 5XFAD mice. Sci. Rep. 2012;2:535. doi: 10.1038/srep00535. PubMed DOI PMC

Oddo S., Caccamo A., Shepherd J.D., Murphy M.P., Golde T.E., Kayed R., Metherate R., Mattson M.P., Akbari Y., LaFerla F.M. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron. 2003;39:409–421. doi: 10.1016/S0896-6273(03)00434-3. PubMed DOI

Billings L.M., Oddo S., Green K.N., McGaugh J.L., LaFerla F.M. Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron. 2005;45:675–688. doi: 10.1016/j.neuron.2005.01.040. PubMed DOI

Kanekiyo T., Cirrito J.R., Liu C.C., Shinohara M., Li J., Schuler D.R., Shinohara M., Holtzman D.M., Bu G. Neuronal clearance of amyloid-β by endocytic receptor LRP1. J. Neurosci. 2013;33:19276–19283. doi: 10.1523/JNEUROSCI.3487-13.2013. PubMed DOI PMC

Citron M., Diehl T.S., Gordon G., Biere A.L., Seubert P., Selkoe D.J. Evidence that the 42- and 40-amino acid forms of amyloid beta protein are generated from the beta-amyloid precursor protein by different protease activities. Proc. Natl. Acad. Sci. USA. 1996;93:13170–13175. doi: 10.1073/pnas.93.23.13170. PubMed DOI PMC

Bayer T.A. N-Truncated Aβ Starting at Position Four-Biochemical Features, Preclinical Models, and Potential as Drug Target in Alzheimer’s Disease. Front. Aging Neurosci. 2021;13:710579. doi: 10.3389/fnagi.2021.710579. PubMed DOI PMC

Wirths O., Zampar S., Weggen S. N-Terminally Truncated Aβ Peptide Variants in Alzheimer’s Disease. In: Wisniewski T., editor. Alzheimer’s Disease [Internet] Codon Publications; Brisbane, Australia: 2019. Chapter 7. PubMed DOI

Duyckaerts C., Dickson D.W. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. 2nd ed. Wiley-Blackwell; Hoboken, NJ, USA: 2011. pp. 62–68.

Bernstein S.L., Dupuis N.F., Lazo N.D., Wyttenbach T., Condron M.M., Bitan G., Teplow D.B., Shea J.-E., Ruotolo T., Robinson C.V., et al. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat. Chem. 2009;1:326–331. doi: 10.1038/nchem.247. PubMed DOI PMC

Gunther E.C., Strittmatter S.M. Beta-amyloid oligomers and cellular prion protein in Alzheimer’s disease. J. Mol. Med. 2009;88:331–338. doi: 10.1007/s00109-009-0568-7. PubMed DOI PMC

Yokota O., Terada S., Ishizu H., Ujike H., Ishihara T., Nakashima H., Yasuda M., Kitamura Y., Uéda K., Checler F., et al. NACP/alpha-synuclein, NAC, and beta-amyloid pathology of familial Alzheimer’s disease with the E184D presenilin-1 mutation: A clinicopathological study of two autopsy cases. Acta Neuropathol. 2002;104:637–648. doi: 10.1007/s00401-002-0596-7. PubMed DOI

Haass C., Selkoe D.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nat. Rev. Mol. Cell Biol. 2007;8:101–112. doi: 10.1038/nrm2101. PubMed DOI

Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., Rowan M.J., Selkoe D.J. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535–539. doi: 10.1038/416535a. PubMed DOI

Candelise N., Scaricamazza S., Salvatori I., Ferri A., Valle C., Manganelli V., Garofalo T., Sorice M., Misasi R. Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications. Int. J. Mol. Sci. 2021;22:6016. doi: 10.3390/ijms22116016. PubMed DOI PMC

Sallaberry C.A., Voss B.J., Majewski J., Biernat J., Mandelkow E., Chi E.Y., Vander Zanden C.M. Tau and Membranes: Interactions That Promote Folding and Condensation. Front. Cell Dev. Biol. 2021;9:725241. doi: 10.3389/fcell.2021.725241. PubMed DOI PMC

Narita M., Holtzman D.M., Schwartz A.L., Bu G. Alpha2-macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor-related protein. J. Neurochem. 1997;69:1904–1911. doi: 10.1046/j.1471-4159.1997.69051904.x. PubMed DOI

Shinohara M., Tachibana M., Kanekiyo T., Bu G. Role of LRP1 in the pathogenesis of Alzheimer’s disease: Evidence from clinical and preclinical studies. J. Lipid Res. 2017;58:1267–1281. doi: 10.1194/jlr.R075796. PubMed DOI PMC

Rebeck G.W., Reiter J.S., Strickland D.K., Hyman B.T. Apolipoprotein E in sporadic Alzheimer’s disease: Allelic variation and receptor interactions. Neuron. 1993;11:575–580. doi: 10.1016/0896-6273(93)90070-8. PubMed DOI

Arélin K., Kinoshita A., Whelan C.M., Irizarry M.C., Rebeck G.W., Strickland D.K., Hyman B.T. LRP and senile plaques in Alzheimer’s disease: Colocalization with apolipoprotein E and with activated astrocytes. Brain Res. Mol. Brain Res. 2002;15:38–46. doi: 10.1016/S0169-328X(02)00203-6. PubMed DOI

Akram A., Schmeidler J., Katsel P., Hof P.R., Haroutunian V. Association of ApoE and LRP mRNA levels with dementia and AD neuropathology. Neurobiol. Aging. 2012;33:628.e1–628.e14. doi: 10.1016/j.neurobiolaging.2011.04.010. PubMed DOI PMC

Kang D.E., Pietrzik C.U., Baum L., Chevallier N., Merriam D.E., Kounnas M.Z., Wagner S.L., Troncoso J.C., Kawas C.H., Katzman R., et al. Modulation of amyloid beta-protein clearance and Alzheimer’s disease susceptibility by the LDL receptor-related protein pathway. J. Clin. Investig. 2000;106:1159–1166. doi: 10.1172/JCI11013. PubMed DOI PMC

Silva M.C., Haggarty S.J. Tauopathies: Deciphering Disease Mechanisms to Develop Effective Therapies. Int. J. Mol. Sci. 2020;21:8948. doi: 10.3390/ijms21238948. PubMed DOI PMC

Hori T., Eguchi K., Wang H.Y., Miyasaka T., Guillaud L., Taoufiq Z., Mahapatra S., Yamada H., Takei K., Takahashi T. Microtubule assembly by tau impairs endocytosis and neurotransmission via dynamin sequestration in Alzheimer’s disease synapse model. eLife. 2022;11:e73542. doi: 10.7554/eLife.73542. PubMed DOI PMC

Guo T., Noble W., Hanger D.P. Roles of tau protein in health and disease. Acta Neuropathol. 2017;133:665–704. doi: 10.1007/s00401-017-1707-9. PubMed DOI PMC

Jankovska N., Matej R., Olejar T. Extracellular Prion Protein Aggregates in Nine Gerstmann-Sträussler-Scheinker Syndrome Subjects with Mutation P102L: A Micromorphological Study and Comparison with Literature Data. Int. J. Mol Sci. 2021;22:13303. doi: 10.3390/ijms222413303. PubMed DOI PMC

Risacher S.L., Farlow M.R., Bateman D.R., Epperson F., Tallman E.F., Richardson R., Murrell J.R., Unverzagt F.W., Apostolova L.G., Bonnin J.M., et al. Detection of tau in Gerstmann-Sträussler-Scheinker disease (PRNP F198S) by [18F]Flortaucipir PET. Acta Neuropathol. Commun. 2018;6:114. doi: 10.1186/s40478-018-0608-z. PubMed DOI PMC

Mabrouk R., Gotkiewicz M., Rauramaa T., Tanila H. DAPI (4’.;6-diamidino-2-phenylindole) Stains Compact Amyloid Plaques. J. Alzheimer’s Dis. 2022;88:949–955. doi: 10.3233/JAD-220072. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...