Alzheimer's Disease as a Membrane Dysfunction Tauopathy? New Insights into the Amyloid Cascade Hypothesis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
00064165
Ministry of Health, Czech Reoublic (Conceptual development of research organization)
00064190
Ministry of Health, Czech Reoublic (Conceptual development of research organization)
NU23-04-00173
Grants Agency of the Ministry of Health
PubMed
39273636
PubMed Central
PMC11396199
DOI
10.3390/ijms25179689
PII: ijms25179689
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, amyloid β, membrane dysfunction, tauopathy,
- MeSH
- Alzheimerova nemoc * metabolismus patologie etiologie MeSH
- amyloidní beta-protein * metabolismus MeSH
- buněčná membrána metabolismus MeSH
- fosforylace MeSH
- lidé MeSH
- peptidové fragmenty metabolismus MeSH
- protein 1 související s LDL-receptory * metabolismus MeSH
- proteiny tau * metabolismus MeSH
- tauopatie * metabolismus patologie etiologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- amyloidní beta-protein * MeSH
- LRP1 protein, human MeSH Prohlížeč
- peptidové fragmenty MeSH
- protein 1 související s LDL-receptory * MeSH
- proteiny tau * MeSH
The amyloid cascade hypothesis postulates that extracellular deposits of amyloid β (Aβ) are the primary and initial cause leading to the full development of Alzheimer's disease (AD) with intracellular neurofibrillary tangles; however, the details of this mechanism have not been fully described until now. Our preliminary data, coming from our day-to-day neuropathology practice, show that the primary location of the hyperphosphorylated tau protein is in the vicinity of the cell membrane of dystrophic neurites. This observation inspired us to formulate a hypothesis that presumes an interaction between low-density lipoprotein receptor-related protein 1 (LRP1) and fibrillar aggregates of, particularly, Aβ42 anchored at the periphery of neuritic plaques, making internalization of the LRP1-Aβ42 complex infeasible and, thus, causing membrane dysfunction, leading to the tauopathy characterized by intracellular accumulation and hyperphosphorylation of the tau protein. Understanding AD as a membrane dysfunction tauopathy may draw attention to new treatment approaches not only targeting Aβ42 production but also, perhaps paradoxically, preventing the formation of LRP1-Aβ42.
Zobrazit více v PubMed
Jankovska N., Olejar T., Matej R. Extracellular Amyloid Deposits in Alzheimer’s and Creutzfeldt-Jakob Disease: Similar Behavior of Different Proteins? Int. J. Mol. Sci. 2020;22:7. doi: 10.3390/ijms22010007. PubMed DOI PMC
DeTure M.A., Dickson D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019;14:32. doi: 10.1186/s13024-019-0333-5. PubMed DOI PMC
Hyman B.T., Phelps C.H., Beach T.G., Bigio E.H., Cairns N.J., Carrillo M.C., Dickson D.W., Duyckaerts C., Frosch M.P., Masliah E., et al. National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s Dement. 2012;8:1–13. doi: 10.1016/j.jalz.2011.10.007. PubMed DOI PMC
Hardy J.A., Higgins G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science. 1992;256:184–185. doi: 10.1126/science.1566067. PubMed DOI
Barage S.H., Sonawane K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides. 2015;52:1–18. doi: 10.1016/j.npep.2015.06.008. PubMed DOI
Jankovska N., Olejar T., Kukal J., Matej R. Different Morphology of Neuritic Plaques in the Archicortex of Alzheimer’s Disease with Comorbid Synucleinopathy: A Pilot Study. Curr. Alzheimer’s Res. 2020;17:948–958. doi: 10.2174/1875692117999201215162043. PubMed DOI
Braak H., Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–259. doi: 10.1007/BF00308809. PubMed DOI
Bennett D.A., Schneider J.A., Arvanitakis Z., Kelly J.F., Aggarwal N.T., Shah R.C., Wilson R.S. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology. 2006;66:1837–1844. doi: 10.1212/01.wnl.0000219668.47116.e6. PubMed DOI
Bennett D.A., Schneider J.A., Aggarwal N.T., Arvanitakis Z., Shah R.C., Kelly J.F., Fox J.H., Cochran E.J., Arends D., Treinkman A.D., et al. Decision rules guiding the clinical diagnosis of Alzheimer’s disease in two community-based cohort studies compared to standard practice in a clinic-based cohort study. Neuroepidemiology. 2006;27:169–176. doi: 10.1159/000096129. PubMed DOI
Jones S.L., Svitkina T.M. Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity. Neural Plast. 2016;2016:6808293. doi: 10.1155/2016/6808293. PubMed DOI PMC
Yamada R., Kuba H. Structural and Functional Plasticity at the Axon Initial Segment. Front. Cell Neurosci. 2016;10:250. doi: 10.3389/fncel.2016.00250. PubMed DOI PMC
Oakley H., Cole S.L., Logan S., Maus E., Shao P., Craft J., Guillozet-Bongaarts A., Ohno M., Disterhoft J., Van Eldik L., et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: Potential factors in amyloid plaque formation. J. Neurosci. 2006;26:10129–10140. doi: 10.1523/JNEUROSCI.1202-06.2006. PubMed DOI PMC
Claeysen S., Giannoni P., Ismeurt C. Diagnosis and Management in Dementia. Academic Press; Cambridge, MA, USA: 2020. The 5xFAD Mouse Model of Alzheimer’s Disease. The Neuroscience of Dementia 1; pp. 207–221. Chapter 13. DOI
Youmans K.L., Tai L.M., Kanekiyo T., Stine W.B., Jr., Michon S.-C., Nwabuisi-Heath E., Manelli A.M., Fu Y., Riordan S., Roher A.E., et al. Intraneuronal Aβ detection in 5xFAD mice by a new Aβ-specific antibody. Mol. Neurodegener. 2012;7:8. doi: 10.1186/1750-1326-7-8. PubMed DOI PMC
Maarouf C.L., Kokjohn T.A., Whiteside C.M., Macias M.P., Kalback W.M., Sabbagh M.N., Beach T.G., Vassar R., Roher A.E. Molecular Differences and Similarities Between Alzheimer’s Disease and the 5XFAD Transgenic Mouse Model of Amyloidosis. Biochem. Insights. 2013;6:BCI-S13025. doi: 10.4137/BCI.S13025. PubMed DOI PMC
Shin J., Park S., Lee H., Kim Y. Thioflavin-positive tau aggregates complicating quantification of amyloid plaques in the brain of 5XFAD transgenic mouse model. Sci. Rep. 2021;11:1617. doi: 10.1038/s41598-021-81304-6. PubMed DOI PMC
Tohda C., Urano T., Umezaki M., Nemere I., Kuboyama T. Diosgenin is an exogenous activator of 1,25D3-MARRS/Pdia3/ERp57 and improves Alzheimer’s disease pathologies in 5XFAD mice. Sci. Rep. 2012;2:535. doi: 10.1038/srep00535. PubMed DOI PMC
Oddo S., Caccamo A., Shepherd J.D., Murphy M.P., Golde T.E., Kayed R., Metherate R., Mattson M.P., Akbari Y., LaFerla F.M. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: Intracellular Abeta and synaptic dysfunction. Neuron. 2003;39:409–421. doi: 10.1016/S0896-6273(03)00434-3. PubMed DOI
Billings L.M., Oddo S., Green K.N., McGaugh J.L., LaFerla F.M. Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron. 2005;45:675–688. doi: 10.1016/j.neuron.2005.01.040. PubMed DOI
Kanekiyo T., Cirrito J.R., Liu C.C., Shinohara M., Li J., Schuler D.R., Shinohara M., Holtzman D.M., Bu G. Neuronal clearance of amyloid-β by endocytic receptor LRP1. J. Neurosci. 2013;33:19276–19283. doi: 10.1523/JNEUROSCI.3487-13.2013. PubMed DOI PMC
Citron M., Diehl T.S., Gordon G., Biere A.L., Seubert P., Selkoe D.J. Evidence that the 42- and 40-amino acid forms of amyloid beta protein are generated from the beta-amyloid precursor protein by different protease activities. Proc. Natl. Acad. Sci. USA. 1996;93:13170–13175. doi: 10.1073/pnas.93.23.13170. PubMed DOI PMC
Bayer T.A. N-Truncated Aβ Starting at Position Four-Biochemical Features, Preclinical Models, and Potential as Drug Target in Alzheimer’s Disease. Front. Aging Neurosci. 2021;13:710579. doi: 10.3389/fnagi.2021.710579. PubMed DOI PMC
Wirths O., Zampar S., Weggen S. N-Terminally Truncated Aβ Peptide Variants in Alzheimer’s Disease. In: Wisniewski T., editor. Alzheimer’s Disease [Internet] Codon Publications; Brisbane, Australia: 2019. Chapter 7. PubMed DOI
Duyckaerts C., Dickson D.W. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. 2nd ed. Wiley-Blackwell; Hoboken, NJ, USA: 2011. pp. 62–68.
Bernstein S.L., Dupuis N.F., Lazo N.D., Wyttenbach T., Condron M.M., Bitan G., Teplow D.B., Shea J.-E., Ruotolo T., Robinson C.V., et al. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat. Chem. 2009;1:326–331. doi: 10.1038/nchem.247. PubMed DOI PMC
Gunther E.C., Strittmatter S.M. Beta-amyloid oligomers and cellular prion protein in Alzheimer’s disease. J. Mol. Med. 2009;88:331–338. doi: 10.1007/s00109-009-0568-7. PubMed DOI PMC
Yokota O., Terada S., Ishizu H., Ujike H., Ishihara T., Nakashima H., Yasuda M., Kitamura Y., Uéda K., Checler F., et al. NACP/alpha-synuclein, NAC, and beta-amyloid pathology of familial Alzheimer’s disease with the E184D presenilin-1 mutation: A clinicopathological study of two autopsy cases. Acta Neuropathol. 2002;104:637–648. doi: 10.1007/s00401-002-0596-7. PubMed DOI
Haass C., Selkoe D.J. Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nat. Rev. Mol. Cell Biol. 2007;8:101–112. doi: 10.1038/nrm2101. PubMed DOI
Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., Rowan M.J., Selkoe D.J. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 2002;416:535–539. doi: 10.1038/416535a. PubMed DOI
Candelise N., Scaricamazza S., Salvatori I., Ferri A., Valle C., Manganelli V., Garofalo T., Sorice M., Misasi R. Protein Aggregation Landscape in Neurodegenerative Diseases: Clinical Relevance and Future Applications. Int. J. Mol. Sci. 2021;22:6016. doi: 10.3390/ijms22116016. PubMed DOI PMC
Sallaberry C.A., Voss B.J., Majewski J., Biernat J., Mandelkow E., Chi E.Y., Vander Zanden C.M. Tau and Membranes: Interactions That Promote Folding and Condensation. Front. Cell Dev. Biol. 2021;9:725241. doi: 10.3389/fcell.2021.725241. PubMed DOI PMC
Narita M., Holtzman D.M., Schwartz A.L., Bu G. Alpha2-macroglobulin complexes with and mediates the endocytosis of beta-amyloid peptide via cell surface low-density lipoprotein receptor-related protein. J. Neurochem. 1997;69:1904–1911. doi: 10.1046/j.1471-4159.1997.69051904.x. PubMed DOI
Shinohara M., Tachibana M., Kanekiyo T., Bu G. Role of LRP1 in the pathogenesis of Alzheimer’s disease: Evidence from clinical and preclinical studies. J. Lipid Res. 2017;58:1267–1281. doi: 10.1194/jlr.R075796. PubMed DOI PMC
Rebeck G.W., Reiter J.S., Strickland D.K., Hyman B.T. Apolipoprotein E in sporadic Alzheimer’s disease: Allelic variation and receptor interactions. Neuron. 1993;11:575–580. doi: 10.1016/0896-6273(93)90070-8. PubMed DOI
Arélin K., Kinoshita A., Whelan C.M., Irizarry M.C., Rebeck G.W., Strickland D.K., Hyman B.T. LRP and senile plaques in Alzheimer’s disease: Colocalization with apolipoprotein E and with activated astrocytes. Brain Res. Mol. Brain Res. 2002;15:38–46. doi: 10.1016/S0169-328X(02)00203-6. PubMed DOI
Akram A., Schmeidler J., Katsel P., Hof P.R., Haroutunian V. Association of ApoE and LRP mRNA levels with dementia and AD neuropathology. Neurobiol. Aging. 2012;33:628.e1–628.e14. doi: 10.1016/j.neurobiolaging.2011.04.010. PubMed DOI PMC
Kang D.E., Pietrzik C.U., Baum L., Chevallier N., Merriam D.E., Kounnas M.Z., Wagner S.L., Troncoso J.C., Kawas C.H., Katzman R., et al. Modulation of amyloid beta-protein clearance and Alzheimer’s disease susceptibility by the LDL receptor-related protein pathway. J. Clin. Investig. 2000;106:1159–1166. doi: 10.1172/JCI11013. PubMed DOI PMC
Silva M.C., Haggarty S.J. Tauopathies: Deciphering Disease Mechanisms to Develop Effective Therapies. Int. J. Mol. Sci. 2020;21:8948. doi: 10.3390/ijms21238948. PubMed DOI PMC
Hori T., Eguchi K., Wang H.Y., Miyasaka T., Guillaud L., Taoufiq Z., Mahapatra S., Yamada H., Takei K., Takahashi T. Microtubule assembly by tau impairs endocytosis and neurotransmission via dynamin sequestration in Alzheimer’s disease synapse model. eLife. 2022;11:e73542. doi: 10.7554/eLife.73542. PubMed DOI PMC
Guo T., Noble W., Hanger D.P. Roles of tau protein in health and disease. Acta Neuropathol. 2017;133:665–704. doi: 10.1007/s00401-017-1707-9. PubMed DOI PMC
Jankovska N., Matej R., Olejar T. Extracellular Prion Protein Aggregates in Nine Gerstmann-Sträussler-Scheinker Syndrome Subjects with Mutation P102L: A Micromorphological Study and Comparison with Literature Data. Int. J. Mol Sci. 2021;22:13303. doi: 10.3390/ijms222413303. PubMed DOI PMC
Risacher S.L., Farlow M.R., Bateman D.R., Epperson F., Tallman E.F., Richardson R., Murrell J.R., Unverzagt F.W., Apostolova L.G., Bonnin J.M., et al. Detection of tau in Gerstmann-Sträussler-Scheinker disease (PRNP F198S) by [18F]Flortaucipir PET. Acta Neuropathol. Commun. 2018;6:114. doi: 10.1186/s40478-018-0608-z. PubMed DOI PMC
Mabrouk R., Gotkiewicz M., Rauramaa T., Tanila H. DAPI (4’.;6-diamidino-2-phenylindole) Stains Compact Amyloid Plaques. J. Alzheimer’s Dis. 2022;88:949–955. doi: 10.3233/JAD-220072. PubMed DOI