Root-associated entomopathogenic fungi manipulate host plants to attract herbivorous insects
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33380734
PubMed Central
PMC7773740
DOI
10.1038/s41598-020-80123-5
PII: 10.1038/s41598-020-80123-5
Knihovny.cz E-zdroje
- MeSH
- biologická kontrola škůdců MeSH
- biologické modely MeSH
- Brassica metabolismus mikrobiologie parazitologie MeSH
- býložravci fyziologie MeSH
- Diptera fyziologie MeSH
- interakce mikroorganismu a hostitele fyziologie MeSH
- kladení vajíček MeSH
- kořeny rostlin mikrobiologie MeSH
- listy rostlin metabolismus MeSH
- Metarhizium patogenita MeSH
- symbióza MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Root-associated entomopathogenic fungi (R-AEF) indirectly influence herbivorous insect performance. However, host plant-R-AEF interactions and R-AEF as biological control agents have been studied independently and without much attention to the potential synergy between these functional traits. In this study, we evaluated behavioral responses of cabbage root flies [Delia radicum L. (Diptera: Anthomyiidae)] to a host plant (white cabbage cabbage Brassica oleracea var. capitata f. alba cv. Castello L.) with and without the R-AEF Metarhizium brunneum (Petch). We performed experiments on leaf reflectance, phytohormonal composition and host plant location behavior (behavioral processes that contribute to locating and selecting an adequate host plant in the environment). Compared to control host plants, R-AEF inoculation caused, on one hand, a decrease in reflectance of host plant leaves in the near-infrared portion of the radiometric spectrum and, on the other, an increase in the production of jasmonic, (+)-7-iso-jasmonoyl-L-isoleucine and salicylic acid in certain parts of the host plant. Under both greenhouse and field settings, landing and oviposition by cabbage root fly females were positively affected by R-AEF inoculation of host plants. The fungal-induced change in leaf reflectance may have altered visual cues used by the cabbage root flies in their host plant selection. This is the first study providing evidence for the hypothesis that R-AEF manipulate the suitability of their host plant to attract herbivorous insects.
Corporación Colombiana de Investigación Agropecuaria La Libertad 900005 Villavicencio Colombia
Department of Entomology and Nematology University of California Davis CA 95616 USA
Zobrazit více v PubMed
Krings M, et al. Fungal endophytes in a 400-million-yr-old land plant: Infection pathways, spatial distribution, and host responses. New Phytol. 2007;174:648–657. doi: 10.1111/j.1469-8137.2007.02008.x. PubMed DOI
Gross M. The success story of plants and fungi. Curr. Biol. 2019;29:183–185. doi: 10.1016/j.cub.2019.02.058. DOI
Salamon S, Mikołajczak K, Błaszczyk L, Ratajczak K, Sulewska H. Changes in root-associated fungal communities in Triticum aestivum ssp. spelta L. and Triticum aestivum ssp. vulgare L. under drought stress and in various soil processing. PLoS ONE. 2020;15(10):e0240037. doi: 10.1371/journal.pone.0240037. PubMed DOI PMC
Rodriguez RJ, White JF, Arnold AE, Redman RS. Fungal endophytes: Diversity and functional roles—Tansley review. New Phytol. 2009;182:314–330. doi: 10.1111/j.1469-8137.2009.02773.x. PubMed DOI
Meyling NV, Eilenberg J. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biol. Control. 2007;43:145–155. doi: 10.1016/j.biocontrol.2007.07.007. DOI
de Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biol. Control. 2007;43:237–256. doi: 10.1016/j.biocontrol.2007.08.001. DOI
Elliot SL, et al. Can plants use entomopathogens as bodyguards? Ecol. Lett. 2000;3:228–235. doi: 10.1046/j.1461-0248.2000.00137.x. DOI
Cory JS, Ericsson JD. Fungal entomopathogens in a tritrophic context. In: Roy HE, Vega FE, Chandler D, Goettel MS, Pell J, Wajnberg E, editors. The Ecology of Fungal Entomopathogens. New York: Springer; 2009. pp. 75–88.
Cory JS, Hoover K. Plant-mediated effects in insect-pathogen interactions. Trends Ecol. Evol. 2006;21:278–286. doi: 10.1016/j.tree.2006.02.005. PubMed DOI
Heil M. Host manipulation by parasites: Cases, patterns, and remaining doubts. Front. Ecol. Evol. 2016;4:80. doi: 10.3389/fevo.2016.00080. DOI
Mescher MC. Manipulation of plant phenotypes by insects and insect-borne pathogens. In: Hughes DP, Brodeur J, Thomas F, editors. Host Manipulation by Parasites. Oxford: Univerity Press; 2012. pp. 73–92.
Mauck KE, De Moraes CM, Mescher MC. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc. Natl. Acad. Sci. 2010;107:3600–3605. doi: 10.1073/pnas.0907191107. PubMed DOI PMC
Razinger J, et al. Direct plantlet inoculation with soil or insect-associated fungi may control cabbage root fly maggots. J. Invertebr. Pathol. 2014;120:59–66. doi: 10.1016/j.jip.2014.05.006. PubMed DOI
Meadow R, Vandenberg JD, Shelton AM. Exchange of inoculum of Beauveria bassiana (Bals.) Vuill. (Hyphomycetes) between adult flies of the cabbage maggot Delia radicum L. (Diptera: Anthomyiidae) Biocontrol Sci. Technol. 2000;10:479–485. doi: 10.1080/09583150050115061. DOI
González-Mas N, Cuenca-Medina M, Gutiérrez-Sánchez F, Quesada-Moraga E. Bottom-up effects of endophytic Beauveria bassiana on multitrophic interactions between the cotton aphid, Aphis gossypii, and its natural enemies in melon. J. Pest Sci. 2019;92:1271–1281. doi: 10.1007/s10340-019-01098-5. DOI
Vidal S, Jaber LR. Entomopathogenic fungi as endophytes: Plant-endophyte-herbivore interactions and prospects for use in biological control. Curr. Sci. 2015;109:46–54. doi: 10.2307/24905690. DOI
Keyser CA, Thorup-Kristensen K, Meyling NV. Metarhizium seed treatment mediates fungal dispersal via roots and induces infections in insects. Fungal Ecol. 2014;11:122–131. doi: 10.1016/j.funeco.2014.05.005. DOI
Vega FE, et al. Fungal entomopathogens: New insights on their ecology. Fungal Ecol. 2009;2:149–159. doi: 10.1016/j.funeco.2009.05.001. DOI
Dawson TP, Curran PJ. Technical note a new technique for interpolating the reflectance red edge position. Int. J. Remote Sens. 1998 doi: 10.1080/014311698214910. DOI
Ghiyamat A, Shafri HZM. A review on hyperspectral remote sensing for homogeneous and heterogeneous forest biodiversity assessment. Int. J. Remote Sens. 2010;31:1837–1856. doi: 10.1080/01431160902926681. DOI
Abdulridha J, Ehsani R, De Castro A. Detection and differentiation between laurel wilt disease, Phytophthora disease, and salinity damage using a hyperspectral sensing technique. Agriculture. 2016;6:56. doi: 10.3390/agriculture6040056. DOI
Muhammed HH. Hyperspectral crop reflectance data for characterising and estimating fungal disease severity in wheat. Biosyst. Eng. 2005;91:9–20. doi: 10.1016/j.biosystemseng.2005.02.007. DOI
Pinter PJ, et al. Remote sensing for crop management. Photogramm. Eng. Remote Sens. 2003;69:647–664. doi: 10.14358/pers.69.6.647. DOI
Moran MS, Inoue Y, Barnes EM. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997;61:319–346. doi: 10.1016/S0034-4257(97)00045-X. DOI
Bamisile BS, Dash CK, Akutse KS, Keppanan R, Wang L. Fungal endophytes: Beyond herbivore management. Front. Microbiol. 2018;9:544. doi: 10.3389/fmicb.2018.00544. PubMed DOI PMC
Raad, M. Plant-mediated interactions between the entomopathogenic fungus Beauveria bassiana, insect herbivores and a plant pathogen. Doctoral dissertation, Lincoln University (2016).
Rivas-Franco F, et al. Effects of a maize root pest and fungal pathogen on entomopathogenic fungal rhizosphere colonization, endophytism and induction of plant hormones. Biol. Control. 2020;150:104347. doi: 10.1016/j.biocontrol.2020.104347. DOI
War AR, et al. Mechanisms of plant defense against insect herbivores. Plant Signal Behav. 2012;7:1306–1320. doi: 10.4161/psb.21663. PubMed DOI PMC
Smith JL, De Moraes CM, Mescher MC. Jasmonate-and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manage. Sci. 2009;65:497–503. doi: 10.1002/ps.1714. PubMed DOI
De Moraes C, Mescher M, Tumlinson J. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature. 2001;410:577–580. doi: 10.1038/35069058. PubMed DOI
Knudsen GK, Tasin M, Aak A, Thöming G. A wind tunnel for odor mediated insect behavioural assays. J. Vis. Exp. 2018;141:e58385. doi: 10.3791/58385. PubMed DOI
Aak A, Knudsen GK, Soleng A. Wind tunnel behavioural response and field trapping of the blowfly Calliphora vicina. Med. Vet. Entomol. 2010;24:250–257. doi: 10.1111/j.1365-2915.2010.00872.x. PubMed DOI
Reeves JL. Vision should not be overlooked as an important sensory modality for finding host plants: Appendix A. Environ. Entomol. 2011;40:855–863. doi: 10.1603/en10212. PubMed DOI
Aluja M, Prokopy RJ. Host odor and visual stimulus interaction during intratree host finding behavior of Rhagoletis pomonella flies. J. Chem. Ecol. 1993;19:2671–2696. doi: 10.1007/BF00980700. PubMed DOI
Finch S, Collier RH. Host-plant selection by insects—A theory based on “appropriate/inappropriate landings” by pest insects of cruciferous plants. Entomol. Exp. Appl. 2000;96:91–102. doi: 10.1046/j.1570-7458.2000.00684.x. DOI
Harris MO, Miller JR. Host-acceptance behaviour in an herbivorous fly Delia antiqua. J. Insect Physiol. 1988;34:179–190. doi: 10.1016/0022-1910(88)90048-0. DOI
Prokopy RJ, Owens ED. Visual detection of plants by herbivorous insects. Annu. Rev. Entomol. 1983;28:337–364. doi: 10.1146/annurev.en.28.010183.002005. DOI
Myrand V, Buffet JP, Guertin C. Susceptibility of cabbage maggot larvae (Diptera: Anthomyiidae) to hypocreales entomopathogenic fungi. J. Econ. Entomol. 2015;108:34–44. doi: 10.1093/jee/tou019. PubMed DOI
Nilsson U, Rännbäck LM, Anderson P, Eriksson A, Rämert B. Comparison of nectar use and preference in the parasitoid Trybliographa rapae (Hymenoptera: Figitidae) and its host, the cabbage root fly, Delia radicum (Diptera: Anthomyiidae) Biocontrol Sci. Technol. 2011;21:1117–1132. doi: 10.1080/09583157.2011.6055182. DOI
Humber RA. Identification of entomopathogenic fungi. In: Lacey LA, editor. Manual of Techniques in Invertebrate Pathology. London: Academic Press; 2012. pp. 151–187.
Cachapa JC, Meyling NV, Burow M, Hauser TP. Induction and priming of plant defense by root-associated insect-pathogenic fungi. J. Chem. Ecol. 2020 doi: 10.1007/s10886-020-01234-x. PubMed DOI
Rännbäck LM, Cotes B, Anderson P, Rämert B, Meyling NV. Mortality risk from entomopathogenic fungi affects oviposition behavior in the parasitoid wasp Trybliographa rapae. J. Invertebr. Pathol. 2015;124:78–86. doi: 10.1016/j.jip.2014.11.003. PubMed DOI
Nansen C, Elliott N. Remote sensing and reflectance profiling in entomology. Annu. Rev. Entomol. 2016;61:139–158. doi: 10.1146/annurev-ento-010715-023834. PubMed DOI
Zhang X, Nansen C, Aryamanesh N, Yan G, Boussaid F. Importance of spatial and spectral data reduction in detection of internal defects in food products. Appl. Spectrosc. 2015;69:473–480. doi: 10.1366/14-07672. PubMed DOI
Nansen C, Coelho A, Vieira JM, Parra JRP. Reflectance-based identification of parasitized host eggs and adult Trichogramma specimens. J. Exp. Biol. 2014;217:1187–1192. doi: 10.1242/jeb.095661. PubMed DOI
Zhao C, Qi B, Youn E, Yin G, Nansen C. Use of neighborhood unhomogeneity to detect the edge of hyperspectral spatial stray light region. Optik. 2014;25:3009–3012. doi: 10.1016/j.ijleo.2013.12.029. DOI
Nansen C, Geremias LD, Xue Y, Huang F, Parra JR. Agricultural case studies of classification accuracy, spectral resolution, and model over-fitting. Appl. Spectrosc. 2013;67:1332–1338. doi: 10.1366/12-06933. PubMed DOI
Defernez M, Kemsley EK. The use and misuse of chemometrics for treating classification problems. Trend Anal. Chem. 1997;16:216–221. doi: 10.1016/S0165-9936(97)00015-0. DOI
Kemsley EK. Discriminant analysis of high-dimensional data: A comparison of principal components analysis and partial least squares data reduction methods. Chemometr. Intell. Lab. 1996;33:47–61. doi: 10.1016/0169-7439(95)00090-9. DOI
Floková K, et al. UHPLC-MS/MS based target profiling of stress-induced phytohormones. Phytochemistry. 2014;105:147–157. doi: 10.1016/j.phytochem.2014.05.015. PubMed DOI
Lepage MP, Boivin G, Brodeur J, Bourgeois G. Oviposition pattern of early and late-emerging genotypes of Delia radicum (Diptera: Anthomyiidae) at different temperatures. Environ. Entomol. 2014;43:178–186. doi: 10.1603/en13146. PubMed DOI
Hawkes C. The diurnal periodicity and cycle of behaviour of the adult cabbage root fly (Erioischia brassicae) Annal. Appl. Biol. 1972;70:109–118. doi: 10.1111/j.1744-7348.1972.tb04695.x. DOI
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2017). Accessed 6 May 2019.
RStudio Team . RStudio: Integrated Development for R. Boston: RStudio, Inc.; 2016.
Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Venables WN, Ripley BD. Modern applied statistics with S. World. 2002 doi: 10.2307/2685660. DOI
Fox J, Weisberg S. An R Companion to Applied Regression. Thousand Oaks: Sage Publications; 2019.