Extracellular DNA Correlates with Intestinal Inflammation in Chemically Induced Colitis in Mice
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33418977
PubMed Central
PMC7825321
DOI
10.3390/cells10010081
PII: cells10010081
Knihovny.cz E-zdroje
- Klíčová slova
- PAD4, cell-free DNA, deoxyribonuclease activity, neutrophil extracellular traps, ulcerative colitis,
- MeSH
- biologické markery metabolismus MeSH
- deoxyribonukleasy metabolismus MeSH
- DNA krev metabolismus MeSH
- endoskopie MeSH
- extracelulární pasti účinky léků metabolismus MeSH
- extracelulární prostor metabolismus MeSH
- kolitida krev chemicky indukované patologie MeSH
- mitochondriální DNA krev MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- ornithin analogy a deriváty farmakologie MeSH
- peptidylarginindeiminasa typu 4 metabolismus MeSH
- síran dextranu MeSH
- streptonigrin farmakologie MeSH
- střeva účinky léků patologie MeSH
- střevní sliznice účinky léků patologie MeSH
- stupeň závažnosti nemoci MeSH
- zánět krev patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- deoxyribonukleasy MeSH
- DNA MeSH
- mitochondriální DNA MeSH
- N-alpha-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide MeSH Prohlížeč
- ornithin MeSH
- peptidylarginindeiminasa typu 4 MeSH
- peptidylarginine deiminase 4, mouse MeSH Prohlížeč
- síran dextranu MeSH
- streptonigrin MeSH
Circulating extracellular DNA (ecDNA) is known to worsen the outcome of many diseases. ecDNA released from neutrophils during infection or inflammation is present in the form of neutrophil extracellular traps (NETs). It has been shown that higher ecDNA concentration occurs in a number of inflammatory diseases including inflammatory bowel disease (IBD). Enzymes such as peptidyl arginine deiminases (PADs) are crucial for NET formation. We sought to describe the dynamics of ecDNA concentrations and fragmentation, along with NETosis during a mouse model of chemically induced colitis. Plasma ecDNA concentration was highest on day seven of dextran sulfate sodium (DSS) intake and the increase was time-dependent. This increase correlated with the percentage of cells undergoing NETosis and other markers of disease activity. Relative proportion of nuclear ecDNA increased towards more severe colitis; however, absolute amount decreased. In colon explant medium, the highest concentration of ecDNA was on day three of DSS consumption. Early administration of PAD4 inhibitors did not alleviate disease activity, but lowered the ecDNA concentration. These results uncover the biological characteristics of ecDNA in IBD and support the role of ecDNA in intestinal inflammation. The therapeutic intervention aimed at NETs and/or nuclear ecDNA has yet to be fully investigated.
Comenius University Science Park Univerzita Komenského 84104 Bratislava Slovakia
Department of Physiology 3rd Faculty of Medicine Charles University 10000 Prague Czech Republic
Geneton Ltd 84104 Bratislava Slovakia
Slovak Centre of Scientific and Technical Information 81104 Bratislava Slovakia
Zobrazit více v PubMed
Ng S.C., Shi H.Y., Hamidi N., Underwood F.E., Tang W., Benchimol E.I., Panaccione R., Ghosh S., Wu J.C.Y., Chan F.K.L., et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet. 2018;390:2769–2778. doi: 10.1016/S0140-6736(17)32448-0. PubMed DOI
Pieczyńska J., Prescha A., Zabłocka-Słowińska K., Neubauer K., Smereka A., Grajeta H., Biernat J., Paradowski L. Occurrence of dietary risk factors in inflammatory bowel disease: Influence on the nutritional status of patients in clinical remission. Adv. Clin. Exp. Med. 2019;28:587–592. doi: 10.17219/acem/78590. PubMed DOI
Gagliardi A., Totino V., Cacciotti F., Iebba V., Neroni B., Bonfiglio G., Trancassini M., Passariello C., Pantanella F., Schippa S. Rebuilding the gut microbiota ecosystem. Int. J. Environ. Res. Public Health. 2018;15:1679. PubMed PMC
De Meij T.G.J., De Groot E.F.J., Peeters C.F.W., De Boer N.K.H., Kneepkens C.M.F., Eck A., Benninga M.A., Savelkoul P.H.M., Van Bodegraven A.A., Budding A.E. Variability of core microbiota in newly diagnosed treatment-naïve paediatric inflammatory bowel disease patients. PLoS ONE. 2018;13:e0197649. doi: 10.1371/journal.pone.0197649. PubMed DOI PMC
Song C., Yang J., Ye W., Zhang Y., Tang C., Li X., Zhou X., Xie Y. Urban–rural environmental exposure during childhood and subsequent risk of inflammatory bowel disease: A meta-analysis. Expert Rev. Gastroenterol. Hepatol. 2019;13:591–602. doi: 10.1080/17474124.2018.1511425. PubMed DOI
O’Driscoll L. Extracellular nucleic acids and their potential as diagnostic, prognostic and predictive biomarkers. Anticancer Res. 2007;27:1257–1265. PubMed
Zhong X.Y., Burk M.R., Troeger C., Kang A., Holzgreve W., Hahn S. Fluctuation of maternal and fetal free extracellular circulatory DNA in maternal plasma. Obstet. Gynecol. 2000;96:991–996. PubMed
Lui Y.Y.N., Woo K.-S., Wang A.Y.M., Yeung C.-K., Li P.K.T., Chau E., Ruygrok P., Lo Y.M.D. Origin of plasma cell-free DNA after solid organ transplantation. Clin. Chem. 2003;49:495–496. doi: 10.1373/49.3.495. PubMed DOI
Nishimoto S., Fukuda D., Sata M. Emerging roles of Toll-like receptor 9 in cardiometabolic disorders. Inflamm. Regen. 2020;40:1–13. doi: 10.1186/s41232-020-00118-7. PubMed DOI PMC
Krieg A.M. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 2002;20:709–760. doi: 10.1146/annurev.immunol.20.100301.064842. PubMed DOI
Sharma S., Fitzgerald K.A. Innate immune sensing of DNA. PLoS Pathog. 2011;7:e1001310. doi: 10.1371/journal.ppat.1001310. PubMed DOI PMC
Avriel A., Wiessman M.P., Almog Y., Perl Y., Novack V., Galante O., Klein M., Pencina M.J., Douvdevani A. Admission cell free DNA levels predict 28-day mortality in patients with severe sepsis in intensive care. PLoS ONE. 2014;9:e100514. doi: 10.1371/journal.pone.0100514. PubMed DOI PMC
Clementi A., Virzi G.M., Brocca A., Pastori S., de Cal M., Marcante S., Granata A., Ronco C. The Role of Cell-Free Plasma DNA in Critically Ill Patients with Sepsis. Blood Purif. 2016;41:34–40. doi: 10.1159/000440975. PubMed DOI
Schneck E., Samara O., Koch C., Hecker A., Padberg W., Lichtenstern C., Weigand M.A., Uhle F. Plasma DNA and RNA differentially impact coagulation during abdominal sepsis-an explorative study. J. Surg. Res. 2017;210:231–243. doi: 10.1016/j.jss.2016.11.044. PubMed DOI
Ahmed A.I., Soliman R.A., Samir S. Cell Free DNA and Procalcitonin as Early Markers of Complications in ICU Patients with Multiple Trauma and Major Surgery. Clin. Lab. 2016;62:2395–2404. doi: 10.7754/Clin.Lab.2016.160615. PubMed DOI
Nishimoto S., Fukuda D., Higashikuni Y., Tanaka K., Hirata Y., Murata C., Kim-Kaneyama J.R., Sato F., Bando M., Yagi S., et al. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance. Sci. Adv. 2016;2:e1501332. doi: 10.1126/sciadv.1501332. PubMed DOI PMC
Koike Y., Uchida K., Tanaka K., Ide S., Otake K., Okita Y., Inoue M., Araki T., Mizoguchi A., Kusunoki M. Dynamic pathology for circulating free DNA in a dextran sodium sulfate colitis mouse model. Pediatr. Surg. Int. 2014;30:1199–1206. doi: 10.1007/s00383-014-3607-6. PubMed DOI
Maronek M., Gromova B., Liptak R., Klimova D., Cechova B., Gardlik R. Extracellular DNA is Increased in Dextran Sulphate Sodium-Induced Colitis in Mice. Folia Biol. (Praha) 2018;64:167–172. PubMed
Sipos F., Műzes G., Fűri I., Spisák S., Wichmann B., Germann T.M., Constantinovits M., Krenács T., Tulassay Z., Molnár B. Intravenous administration of a single-dose free-circulating DNA of colitic origin improves severe murine DSS-colitis. Pathol. Oncol. Res. 2014;20:867–877. PubMed
Műzes G., Kiss A.L., Tulassay Z., Sipos F. Cell-free DNA-induced alteration of autophagy response and TLR9-signaling: Their relation to amelioration of DSS-colitis. Comp. Immunol. Microbiol. Infect. Dis. 2017;52:48–57. doi: 10.1016/j.cimid.2017.06.005. PubMed DOI
Constantinovits M., Sipos F., Kiss A.L., Műzes G. Preconditioning with cell-free DNA prevents DSS-colitis by promoting cell protective autophagy. J. Investig. Med. 2020;68:992–1001. doi: 10.1136/jim-2020-001296. PubMed DOI
Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil Extracellular Traps Kill Bacteria. Science. 2004;303:1532–1535. doi: 10.1126/science.1092385. PubMed DOI
Vaibhav K., Braun M., Alverson K., Khodadadi H., Kutiyanawalla A., Ward A., Banerjee C., Sparks T., Malik A., Rashid M.H., et al. Neutrophil extracellular traps exacerbate neurological deficits after traumatic brain injury. Sci. Adv. 2020;6:eaax8847. doi: 10.1126/sciadv.aax8847. PubMed DOI PMC
Meijenfeldt F.A., von Jenne C.N. Netting Liver Disease: Neutrophil Extracellular Traps in the Initiation and Exacerbation of Liver Pathology. Semin. Thromb. Hemost. 2020;46:724–734. doi: 10.1055/s-0040-1715474. PubMed DOI
Carmona-Rivera C., Carlucci P.M., Goel R.R., James E., Brooks S.R., Rims C., Hoffmann V., Fox D.A., Buckner J.H., Kaplan M.J. Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis. JCI Insight. 2020;5:e139388. PubMed PMC
Lin E.Y.H., Lai H.J., Cheng Y.K., Leong K.Q., Cheng L.C., Chou Y.C., Peng Y.C., Hsu Y.H., Chiang H. Sen Neutrophil extracellular traps impair intestinal barrier function during experimental colitis. Biomedicines. 2020;8:275. doi: 10.3390/biomedicines8080275. PubMed DOI PMC
Huang H., Zhang H., Onuma A.E., Tsung A. Advances in Experimental Medicine and Biology. Volume 1263. Springer; Cham, Switzerland: 2020. Neutrophil Elastase and Neutrophil Extracellular Traps in the Tumor Microenvironment; pp. 13–23. PubMed PMC
Yang L., Liu L., Zhang R., Hong J., Wang Y., Wang J., Zuo J., Zhang J., Chen J., Hao H. IL-8 mediates a positive loop connecting increased neutrophil extracellular traps (NETs) and colorectal cancer liver metastasis. J. Cancer. 2020;11:4384–4396. doi: 10.7150/jca.44215. PubMed DOI PMC
Laukova L., Konecna B., Babickova J., Wagnerova A., Meliskova V., Vlkova B., Celec P. Exogenous deoxyribonuclease has a protective effect in a mouse model of sepsis. Biomed. Pharmacother. 2017;93:8–16. PubMed
Vokálová L., Lauková L., Čonka J., Melišková V., Borbélyová V., Bábíčková J., Tóthová L., Hodosy J., Vlková B., Celec P. Deoxyribonuclease partially ameliorates thioacetamide-induced hepatorenal injury. Am. J. Physiol. Liver Physiol. 2017;312:G457–G463. doi: 10.1152/ajpgi.00446.2016. PubMed DOI
Mondal S., Thompson P.R. Protein Arginine Deiminases (PADs): Biochemistry and Chemical Biology of Protein Citrullination. Acc. Chem. Res. 2019;52:818–832. PubMed PMC
Mutua V., Gershwin L.J. A Review of Neutrophil Extracellular Traps (NETs) in Disease: Potential Anti-NETs Therapeutics. Clin. Rev. Allergy Immunol. 2020;1:1–18. doi: 10.1007/s12016-020-08804-7. PubMed DOI PMC
Malik A.N., Czajka A., Cunningham P. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences. Mitochondrion. 2016;29:59–64. doi: 10.1016/j.mito.2016.05.003. PubMed DOI
Zhang T., Mei Y., Dong W., Wang J., Huang F., Wu J. Evaluation of protein arginine deiminase-4 inhibitor in TNBS- induced colitis in mice. Int. Immunopharmacol. 2020;84:106583. PubMed
Kim J.J., Shajib M.S., Manocha M.M., Khan W.I. Investigating intestinal inflammation in DSS-induced model of IBD. J. Vis. Exp. 2012:1–6. doi: 10.3791/3678. PubMed DOI PMC
Dinallo V., Marafini I., Di Fusco D., Laudisi F., Franzè E., Di Grazia A., Figliuzzi M.M., Caprioli F., Stolfi C., Monteleone I., et al. Neutrophil Extracellular Traps Sustain Inflammatory Signals in Ulcerative Colitis. J. Crohns. Colitis. 2019;13:772–784. doi: 10.1093/ecco-jcc/jjy215. PubMed DOI
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Malíčková K., Duricová D., Bortlík M., Hrušková Z., Svobodová B., Machková N., Komárek V., Fučíková T., Janatková I., Zima T., et al. Impaired deoxyribonuclease I activity in patients with inflammatory bowel diseases. Autoimmune Dis. 2011;2011:945861. doi: 10.4061/2011/945861. PubMed DOI PMC
Babraham A. Bioinformatics. [(accessed on 31 October 2020)]; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Yuzhalin A.E. Citrullination in cancer. Cancer Res. 2019;79:1274–1284. doi: 10.1158/0008-5472.CAN-18-2797. PubMed DOI
Xu H., Luo X., Qian J., Pang X., Song J., Qian G., Chen J., Chen S. FastUniq: A Fast De Novo Duplicates Removal Tool for Paired Short Reads. PLoS ONE. 2012;7:e52249. doi: 10.1371/journal.pone.0052249. PubMed DOI PMC
Li P., Wang D., Yao H., Doret P., Hao G., Shen Q., Qiu H., Zhang X., Wang Y., Chen G., et al. Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression. Oncogene. 2010;29:3153–3162. doi: 10.1038/onc.2010.51. PubMed DOI PMC
Langmead B., Salzberg S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. PubMed PMC
Babickova J., Conka J., Janovicova L., Boris M., Konecna B., Gardlik R. Extracellular DNA as a Prognostic and Therapeutic Target in Mouse Colitis under DNase I Treatment. Folia Biol. (Praha) 2018;64:10–15. PubMed
Wood D.E., Lu J., Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257. doi: 10.1186/s13059-019-1891-0. PubMed DOI PMC
Kubiritova Z., Radvanszky J., Gardlik R. Cell-Free Nucleic Acids and their Emerging Role in the Pathogenesis and Clinical Management of Inflammatory Bowel Disease. Int. J. Mol. Sci. 2019;20:3662. PubMed PMC
Chumanevich A.A., Causey C.P., Knuckley B.A., Jones J.E., Poudyal D., Chumanevich A.P., Davis T., Matesic L.E., Thompson P.R., Hofseth L.J. Suppression of colitis in mice by Cl-amidine: A novel peptidylarginine deiminase inhibitor. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;300:G929–G938. doi: 10.1152/ajpgi.00435.2010. PubMed DOI PMC
Dreyton C., Jones J., Knuckley B., Subramanian V., Anderson E., Brown S., Fernandez-Vega V., Eberhart C., Spicer T., Zuhl A., et al. Probe Reports from the NIH Molecular Libraries Program [Internet] National Center for Biotechnology Information; Bethesda, MD, USA: 2013. Optimization and characterization of a pan protein arginine deiminase (PAD) inhibitor. PubMed