Aflatoxin Detoxification Using Microorganisms and Enzymes

. 2021 Jan 09 ; 13 (1) : . [epub] 20210109

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33435382

Grantová podpora
VT2019-2021 UHK - International CEP - Centrální evidence projektů
grants No. 31972746; grants No. 31772809; grants No. 31872538 National Natural Science Foundation of China - International
grants No. 2016T90477 China Postdoctoral Science Foundation - International

Mycotoxin contamination causes significant economic loss to food and feed industries and seriously threatens human health. Aflatoxins (AFs) are one of the most harmful mycotoxins, which are produced by Aspergillus flavus, Aspergillus parasiticus, and other fungi that are commonly found in the production and preservation of grain and feed. AFs can cause harm to animal and human health due to their toxic (carcinogenic, teratogenic, and mutagenic) effects. How to remove AF has become a major problem: biological methods cause no contamination, have high specificity, and work at high temperature, affording environmental protection. In the present research, microorganisms with detoxification effects researched in recent years are reviewed, the detoxification mechanism of microbes on AFs, the safety of degrading enzymes and reaction products formed in the degradation process, and the application of microorganisms as detoxification strategies for AFs were investigated. One of the main aims of the work is to provide a reliable reference strategy for biological detoxification of AFs.

Zobrazit více v PubMed

Jiang K., Huang Q., Fan K., Wu L., Nie D., Guo W., Wu Y., Han Z. Reduced graphene oxide and gold nanoparticle composite-based solid-phase extraction coupled with ultra-high-performance liquid chromatography-tandem mass spectrometry for the determination of 9 mycotoxins in milk. Food Chem. 2018;264:218–225. doi: 10.1016/j.foodchem.2018.05.041. PubMed DOI

Bandyopadhyay R., Ortega-Beltran A., Akande A., Mutegi C., Atehnkeng J., Kaptoge L., Senghor A.L., Adhikari B.N., Cotty P.J. Biological control of aflatoxins in Africa: Current status and potential challenges in the face of climate changes. World Mycotoxin J. 2016;9:771–789. doi: 10.3920/WMJ2016.2130. DOI

Yang J., Wang T., Lin G., Li M., Zhu R., Yiannikouris A., Zhang Y., Mai K. The assessment of diet contaminated with aflatoxin B1 in juvenile turbot (Scophthalmus maximus) and the evaluation of the efficacy of mitigation of a yeast cell wall extract. Toxins. 2020;12:597. doi: 10.3390/toxins12090597. PubMed DOI PMC

Alshannaq A., Yu J.H. Occurrence, toxicity, and analysis of major mycotoxins in food. Public Health. 2017;14:632. doi: 10.3390/ijerph14060632. PubMed DOI PMC

Williams J.H., Phillips T.D., Jolly P.E., Stiles J.K., Jolly C.M., Aggarwal D. Human aflatoxicosis in developing countries: A review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004;80:1106–1122. doi: 10.1093/ajcn/80.5.1106. PubMed DOI

Yamada Y. Codex alimentarius commission and food safety. Shokuhinseigaku Zasshi J. Food Hyg. Soc. Jpn. 2002;43:249–253. PubMed

Cupid B.C., Lightfoot T.J., Russell D. The formation of AFBl-macromolecular adducts in rats and humans at dietary levels of exposure. Food Chem. Toxicol. 2004;42:559–560. doi: 10.1016/j.fct.2003.10.015. PubMed DOI

Zhang L., Zhan D., Chen Y. Aflatoxin B1 enhances pyroptosis of hepatocytes and activation of Kupffer cells to promote liver inflammatory injury via dephosphorylation of cyclooxygenase-2: An in vitro, ex vivo and in vivo study. Arch. Toxicol. 2019;93:3305–3320. doi: 10.1007/s00204-019-02572-w. PubMed DOI

Hathout A.S., Aly S.E. Biological detoxification of mycotoxins: A review. Ann. Microbiol. 2014;64:905–919. doi: 10.1007/s13213-014-0899-7. DOI

Śliżewska K., Cukrowska B., Smulikowska S., Cielecka-Kuszyk J. The effect of probiotic supplementation on performance and the histopathological changes in liver and kidneys in broiler chickens fed diets with aflatoxin B1. Toxins. 2019;11:112. doi: 10.3390/toxins11020112. PubMed DOI PMC

Wu F. Global impacts of aflatoxin in maize: Trade and human health. World Mycotoxin J. 2015;8:137–142. doi: 10.3920/WMJ2014.1737. DOI

Huang B., Chen Q., Wang L., Gao X., Zhu W., Mu P., Deng Y. Aflatoxin B1 Induces Neurotoxicity through Reactive Oxygen Species Generation, DNA Damage, Apoptosis, and S-Phase Cell Cycle Arrest. Int. J. Mol. Sci. 2020;21:6517. doi: 10.3390/ijms21186517. PubMed DOI PMC

Akinrinmade F.J., Akinrinde A.S. Changes in serum cytokine levels, hepatic and intestinal morphology in afatoxin B1-induced injury: Modulatory roles of melatonin and favonoid-rich fractions from Chromolena odorata. Mycotoxin Res. 2016;32:53–60. doi: 10.1007/s12550-016-0239-9. PubMed DOI

Rastogi R., Sricastaba A.K., Rastogi A.K. Long term effect of aflatoxin B1 on lipid peroxidation in rat liver and kidney: Effect of picroliv and silymarin. Phytother Res. 2001;15:307–310. doi: 10.1002/ptr.722. PubMed DOI

Benkerroum N. Aflatoxins: Producing-Molds, Structure, Health Issues and Incidence in Southeast Asian and Sub-Saharan African Countries. Int. J. Environ. Res. Public Health. 2020;17:1215. doi: 10.3390/ijerph17041215. PubMed DOI PMC

Riba A., Bouras N., Mokrane S., Mathieu F., Lebrihi A., Sabaou N. Aspegillus section flavi and aflatoxins in Algerian wheat and derived products. Food Chem. Toxicol. 2010;48:2772–2777. doi: 10.1016/j.fct.2010.07.005. PubMed DOI

Plaz Torres M.C., Bodini G., Furnari M., Marabotto E., Zentilin P., Giannini E.G. Nuts and Non-Alcoholic Fatty Liver Disease: Are Nuts Safe for Patients with Fatty Liver Disease? Nutrients. 2020;12:3363. doi: 10.3390/nu12113363. PubMed DOI PMC

Zuo R.Y., Chang J., Yin Q.Q., Wang P., Yang Y.R., Wang X., Wang G.Q., Zheng Q.H. Effect of the combined probiotics with aflatoxin B1-degrading enzyme on aflatoxin detoxification, broiler production performance and hepatic enzyme gene expression. Food Chem. Toxicol. 2013;59:470–475. doi: 10.1016/j.fct.2013.06.044. PubMed DOI

Fang L.Q., Chen H., Ying Y., Jin-Ming L. Micro–plate chemiluminescence enzyme immunoassay for aflatoxin B1 in agricultural products. Talanta. 2011;84:216–222. doi: 10.1016/j.talanta.2011.01.021. PubMed DOI

Cherkani-Hassani A., Ghanname I., Zinedine A., Sefrioui H., Qmichou Z., Mouane N. Aflatoxin M1 prevalence in breast milk in Morocco: Associated factors and health risk assessment of newborns "CONTAMILK study". Toxicon. 2020;187:203–208. doi: 10.1016/j.toxicon.2020.09.008. PubMed DOI

Fandohan P., Gnonlonfin B., Hell K., Marasas W.F., Wingfield M.J. Natural occurrence of Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin, West Africa. Int. J. Food Microbiol. 2005;99:173–183. doi: 10.1016/j.ijfoodmicro.2004.08.012. PubMed DOI

Namulawa V.T., Mutiga S., Musimbi F., Akello S., Ngángá F., Kago L., Kyallo M., Harvey J., Ghimire S. Assessment of fungal contamination in fish feed from the Lake Victoria Basin, Uganda. Toxins. 2020;12:233. doi: 10.3390/toxins12040233. PubMed DOI PMC

Omara T., Nassazi W., Omute T., Awath A., Laker F., Kalukusu R., Musau B., Nakabuye B.V., Kagoya S., Otim G., et al. Aflatoxins in Uganda: An Encyclopedic Review of the Etiology, Epidemiology, Detection, Quantification, Exposure Assessment, Reduction, and Control. Int. J. Microbiol. 2020;2020:1–18. doi: 10.1155/2020/4723612. PubMed DOI PMC

Tsafack Takadong J.J., Mouafo H.T., Manet L., Baomog A.M.B., Adjele J.J.B., Medjo E.K., Medoua G.N. Assessment of the Presence of Total Aflatoxins and Aflatoxin B1 in Fish Farmed in Two Cameroonian Localities. Int. J. Food Sci. 2020;2020:1–6. doi: 10.1155/2020/2506812. PubMed DOI PMC

Dada T.A., Ekwomadu T.I., Mwanza M. Multi mycotoxin determination in dried beef using liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS) Toxins. 2020;12:357. doi: 10.3390/toxins12060357. PubMed DOI PMC

Carvajal-Moreno M., Vargas-Ortiz M., Hernández-Camarillo E., Ruiz-Velasco S., Rojo-Callejas F. Presence of unreported carcinogens, Aflatoxins and their hydroxylated metabolites, in industrialized Oaxaca cheese from Mexico City. Food Chem. Toxicol. 2019;124:128–138. doi: 10.1016/j.fct.2018.11.046. PubMed DOI

Norlia M., Jinap S., Nor-Khaizura M.A.R., Radu S., Samsudin N.I.P., Azri F.A. Aspergillus section Flavi and Aflatoxins: Occurrence, Detection, and Identification in Raw Peanuts and Peanut-Based Products Along the Supply Chain. Front. Microbiol. 2019;10:2602. doi: 10.3389/fmicb.2019.02602. PubMed DOI PMC

Jayaratne W.M.S.C., Abeyratne A.H.M.A.K., De Zoysa H.K.S., Dissanayake D.M.R.B.N., Bamunuarachchige T.C., Waisundara V.Y., Chang S. Detection and quantification of Aflatoxin B1 in corn and corn-grown soils in the district of Anuradhapura, Sri Lanka. Heliyon. 2020;6:e05319. doi: 10.1016/j.heliyon.2020.e05319. PubMed DOI PMC

Wenndt A., Sudini H.K., Pingali P., Nelson R. Exploring aflatoxin contamination and household-level exposure risk in diverse Indian food systems. PLoS ONE. 2020;15:e0240565. doi: 10.1371/journal.pone.0240565. PubMed DOI PMC

Pongpraket M., Poapolathep A., Wongpanit K., Phanwimol T., Poapolathep S. Exposure assessment of multiple mycotoxins in black and white sesame seeds consumed in Thailand. Food Prot. 2020;83:1198–1207. doi: 10.4315/JFP-19-597. PubMed DOI

Karlovsky P., Suman M., Berthiller F., De Meester J., Eisenbrand G., Perrin I., Oswald I.P., Speijers G., Chiodini A., Recker T., et al. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016;32:179–205. doi: 10.1007/s12550-016-0257-7. PubMed DOI PMC

Zhou J., Tang L., Wang J., Wang J.S. Aflatoxin B1 disrupts gut-microbial metabolisms of short-chain fatty acids, long-chain fatty acids, and bile acids in male F344 rats. Toxicol. Sci. 2018;164:453–464. doi: 10.1093/toxsci/kfy102. PubMed DOI

Jaćević V., Dumanović J., Lazarević M., Nepovimova E., Resanović R., Milovanović Z., Wu Q., Kuča K. Antidotal Potency of the Novel, Structurally Different Adsorbents in Rats Acutely Intoxicated with the T-2 Toxin. Toxins (Basel) 2020;12:643. doi: 10.3390/toxins12100643. PubMed DOI PMC

Battilani P. Food mycology-a multifaceted approach to fungi and food. World Mycotoxin J. 2008;1:223–224. doi: 10.3920/WMJ2008.x017. DOI

Kumar A., Singh P.P., Gupta V., Prakash B. Assessing the antifungal and aflatoxin B1 inhibitory efficacy of nanoencapsulated antifungal formulation based on combination of Ocimum spp. essential oils. Int. J. Food Microbiol. 2020;330:108766. doi: 10.1016/j.ijfoodmicro.2020.108766. PubMed DOI

Ji J., Xie W. Removal of aflatoxin B1 from contaminated peanut oils using magnetic attapulgite. Food Chem. 2021;339:128072. doi: 10.1016/j.foodchem.2020.128072. PubMed DOI

Čolović R., Puvača N., Cheli F., Avantaggiato G., Greco D., Đuragić O., Kos J., Pinotti L. Decontamination of Mycotoxin-Contaminated Feedstuffs and Compound Feed. Toxins (Basel) 2019;11:617. doi: 10.3390/toxins11110617. PubMed DOI PMC

Yu Y., Shi J., Xie B., He Y., Qin Y., Wang D., Shi H., Ke Y., Sun Q. Detoxification of aflatoxin B1 in corn by chlorine dioxide gas. Food Chem. 2020;328:127121. doi: 10.1016/j.foodchem.2020.127121. PubMed DOI

Conte G., Fontanell i.M., Galli F., Cotrozzi L., Pagni L., Pellegrini E. Mycotoxins in Feed and Food and the Role of Ozone in Their Detoxification and Degradation: An Update. Toxins (Basel) 2020;12:486. doi: 10.3390/toxins12080486. PubMed DOI PMC

Adebo O.A., Njobeh P.B., Gbashi S., Nwinyi O.C., Mavumengwana V. Review on microbial degradation of aflatoxins. Crit. Rev. Food Sci. Nutr. 2017;57:3208–3217. doi: 10.1080/10408398.2015.1106440. PubMed DOI

Zychowski K.E., Hoffmann A.R., Ly H.J., Pohlenz C., Buentello A., Romoser A., Gatlin D.M., Phillips T.D. The effect of aflatoxin-B1 on red drum (Sciaenops ocellatus) and assessment of dietary supplementation of NovaSil for the prevention of aflatoxicosis. Toxins (Basel) 2013;5:1555–1573. doi: 10.3390/toxins5091555. PubMed DOI PMC

Zhou G., Chen Y., Kong Q., Ma Y., Liu Y. Detoxification of Aflatoxin B1 by Zygosaccharomyces rouxii with Solid State Fermentation in Peanut Meal. Toxins (Basel) 2017;9:42. doi: 10.3390/toxins9010042. PubMed DOI PMC

Markowiak P., Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9:1021. doi: 10.3390/nu9091021. PubMed DOI PMC

Afshar P., Shokrzadeh M., Raeisi S.N., Ghorbani-HasanSaraei A., Nasiraii L.R. Aflatoxins biodetoxification strategies based on probiotic bacteria. Toxicon. 2020;178:50–58. doi: 10.1016/j.toxicon.2020.02.007. PubMed DOI

Asurmendi P., Gerbaldo G., Pascual L., Barberis L. Lactic acid bacteria with promising AFB1 binding properties as an alternative strategy to mitigate contamination on brewers’ grains. J. Environ. Sci. Health B. 2020;20:1–7. PubMed

Ren X., Zhang Q., Zhang W., Mao J., Li P. Control of Aflatoxigenic Molds by Antagonistic Microorganisms: Inhibitory Behaviors, Bioactive Compounds, Related Mechanisms, and Influencing Factors. Toxins (Basel) 2020;12:24. doi: 10.3390/toxins12010024. PubMed DOI PMC

Adeniji A.A., Loots D.T., Babalola O.O. Bacillus velezensis: Phylogeny, useful applications, and avenues for exploitation. Appl. Microbiol. Biotechnol. 2019;103:3669–3682. doi: 10.1007/s00253-019-09710-5. PubMed DOI

Farzaneh M., Shi Z.Q., Ghassempour A., Sedaghat N., Ahmadzadeh M., Mirabolfathy M., Javan-Nikkhah M. Aflatoxin B1 degradation by Bacillus subtilis, UTBSP1 isolated from pistachio nuts of Iran. Food Control. 2012;23:100–106. doi: 10.1016/j.foodcont.2011.06.018. DOI

Farzaneh M., Shi Z.Q., Ahmadzadeh M., Hu L.B., Ghassempour A. Inhibition of the Aspergillus flavus growth and aflatoxin B1 contamination on pistachio nut by fengycin and surfactin-producing Bacillus subtilis UTBSP1. Plant. Pathol. J. 2016;32:209–215. doi: 10.5423/PPJ.OA.11.2015.0250. PubMed DOI PMC

Gao X., Ma Q., Zhao L. Isolation of Bacillus subtilis: Screening for aflatoxins B1, M and G1, detoxification. Eur. Food Res. Technol. 2011;232:957–962. doi: 10.1007/s00217-011-1463-3. DOI

Fan Y., Zhao L., Ma Q. Effects of Bacillus subtilis ANSB060 on growth performance, meat quality and aflatoxin residues in broilers fed moldy peanut meal naturally contaminated with aflatoxins. Food Chem. Toxicol. 2013;59:748–753. doi: 10.1016/j.fct.2013.07.010. PubMed DOI

Gu X., Sun J., Cui Y., Wang X., Sang Y. Biological degradation of aflatoxin M1 by Bacillus pumilus E-1-1-1. Microbiologyopen. 2019;8:663. doi: 10.1002/mbo3.663. PubMed DOI PMC

Rao K.R., Vipin A.V., Hariprasad P., Appaiah K.A., Venkateswaran G. Biological detoxification of aflatoxin b1 by bacillus licheniformis cfr1. Food Control. 2016;71:234–241.

Adebo O.A., Njobeh P.B., Mavumengwana V. Degradation and detoxification of AFB1 by Staphylocococcus warneri, Sporosarcina sp. and Lysinibacillus fusiformis. Food Control. 2016;68:92–96. doi: 10.1016/j.foodcont.2016.03.021. DOI

Jebali R., Abbèss S., Salah-Abbès J.B., Younes R.B., Haous Z., Oueslati R. Ability of Lactobacillus plantarum Mon03 to mitigate aflatoxins (B1 and M1) immunotoxicities in mice. J. Immunot. 2015;12:290–299. doi: 10.3109/1547691X.2014.973622. PubMed DOI

Huang L., Duan C., Zhao Y., Gao L., Niu C., Xu J., Li S. Reduction of aflatoxin B1 toxicity by Lactobacillus plantarum C88: A potential probiotic strain isolated from Chinese traditional fermented food “tofu”. PLoS ONE. 2017;12:e0170109. doi: 10.1371/journal.pone.0170109. PubMed DOI PMC

Lahtinen S.J., Haskard C.A., Ouwehand A.C., Salminen S.J., Ahokas J.T. Binding of aflatoxin B1 to cell wall components of Lactobacillus rhamnosus strain GG. Food Addit. Contam. 2004;21:158–164. doi: 10.1080/02652030310001639521. PubMed DOI

Rahaie S., Emam-Djomeh Z., Razavi S.H. Evaluation of aflatoxin decontaminating by two strains of Saccharomyces cerevisiae and Lactobacillus rhamnosus strain GG in pistachio nuts. Int. J. Food Sci. Tech. 2012;47:1647–1653. doi: 10.1111/j.1365-2621.2012.03015.x. DOI

Chen Y., Kong Q., Chi C., Shan S., Guan B. Biotransformation of aflatoxin B1 and aflatoxin G1 in peanut meal by anaerobic solid fermentation of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. Int. J. Food Microbiol. 2015;211:1–5. doi: 10.1016/j.ijfoodmicro.2015.06.021. PubMed DOI

Kumara S.S., Gayathri D., Hariprasad P., Venkateswaran G., Swamy C.T. In vivo AFB1 detoxification by Lactobacillus fermentum LC5-a with chlorophyll and immunopotentiating activity in albino mice. Toxicon. 2020;187:214–222. doi: 10.1016/j.toxicon.2020.09.004. PubMed DOI

Topcu A., Bulat T., Wishah R., Boyacı I.H. Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. Int. J. Food Microbiol. 2010;139:202–205. doi: 10.1016/j.ijfoodmicro.2010.03.006. PubMed DOI

Wang L., Wu J., Liu Z., Yutao S., Jinqiu L., Xiaofan H., Peiqiang M., Fengru D., Yiqun D. Aflatoxin B1 degradation and detoxification by Escherichia coli CG1061 isolated from chicken cecum. Front. Pharmacol. 2019;9:1548. doi: 10.3389/fphar.2018.01548. PubMed DOI PMC

Li J., Huang J., Jin Y., Wu C., Shen D., Zhang S., Zhou R. Aflatoxin B1 degradation by salt tolerant Tetragenococcus halophilus CGMCC 3792. Food Chem. Toxicol. 2018;121:430–436. doi: 10.1016/j.fct.2018.08.063. PubMed DOI

Sangare L., Zhao Y., Folly Y.M.E., Chang J., Li J., Selvaraj J.N., Xing F., Zhou L., Wang Y., Liu Y. Aflatoxin B1 degradation by a Pseudomonas strain. Toxins. 2014;6:3028–3040. doi: 10.3390/toxins6103028. PubMed DOI PMC

Singh J., Mehta A. Protein-mediated degradation of aflatoxin B1 by Pseudomonas putida. Braz. J. Microbiol. 2019;50:1031–1039. doi: 10.1007/s42770-019-00134-x. PubMed DOI PMC

Samuel M.S., Sivaramakrishna A., Alka M. Degradation and detoxification of aflatoxin B1 by Pseudomonas putida. Int. Biodeter. Biodegr. 2014;86:202–209. doi: 10.1016/j.ibiod.2013.08.026. DOI

Mengyu C., Yingying Q., Chen N., Tiejun L., Jingjing W., Hong J., Xu W., Kezong Q., Yu Z. Detoxification of aflatoxin B1 by Stenotrophomonas sp. CW117 and characterization the thermophilic degradation process. Environ. Pollut. 2020;6:114178. PubMed

Yang X., Chen X., Song Z. Antifungal, plant growth-promoting, and mycotoxin detoxication activities of Burkholderia sp. strain XHY-12. 3 Biotech. 2020;10:158. doi: 10.1007/s13205-020-2112-y. PubMed DOI PMC

Wu Q., Jezkova A., Yuan Z., Pavlikova L., Dohnal V., Kuca K. Biological degradation of aflatoxins. Drug Metab. Rev. 2009;41:1–7. doi: 10.1080/03602530802563850. PubMed DOI

Hormisch D., Brost I., Kohring G.W., Giffhorn F., Kroppenstedt R.M., Stackebrandt E., Färber P., Holzapfel W.H. Mycobacterium fluoranthenivorans sp. nov. a fluoranthene and aflatoxin B1 degrading bacterium from contaminated soil of a former coal gas plant. Syst. Appl. Microbiol. 2004;27:653–660. doi: 10.1078/0723202042369866. PubMed DOI

Ibrahim S., Abdul K.K., Zahr i.K.N.M., Gomez-Fuentes C., Convey P., Zulkharnain A., Sabri S., Alias S.A., González-Rocha G., Ahmad S.A. Biosurfactant production and growth kinetics studies of the waste canola oil-degrading bacterium Rhodococcuserythropolis AQ5-07 from Antarctica. Molecules. 2020;25:3878. doi: 10.3390/molecules25173878. PubMed DOI PMC

Tejada-Castaneda Z.I., Avila-Gonzalez E., Casaubon-Huguenin M.T., Cervantes-Olivares R.A., Vasquez-Pelaez C., Hernandez-Baumgarten E.M., Moreno-Martinez E. Bio-detoxification of aflatoxin-contaminated chick feed. Poult. Sci. 2008;87:1569–1576. doi: 10.3382/ps.2007-00304. PubMed DOI

Caceres I., Snini S.P., Puel O., Mathieu F. Streptomyces roseolus, a promising biocontrol agent against Aspergillus flavus, the main aflatoxin B1 producer. Toxins. 2018;10:442. doi: 10.3390/toxins10110442. PubMed DOI PMC

Peltonen K., El-Nezami H., Haskard C., Ahokas J., Salminen S. Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. J. Dairy Sci. 2001;84:2152–2156. doi: 10.3168/jds.S0022-0302(01)74660-7. PubMed DOI

Smiley R.D., Draughon F.A. Preliminary evidence that degradation of aflatoxin B1 by Flavobacterium aurantiacum is enzymatic. J. Food Protect. 2020;63:415–418. doi: 10.4315/0362-028X-63.3.415. PubMed DOI

Taheur F.B., Fedhila K., Chaieb K., Kouidhi B., Bakhrouf A., Abrunhosa L. Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. Int. J. Food Microbiol. 2017;251:1–7. doi: 10.1016/j.ijfoodmicro.2017.03.021. PubMed DOI

Zhang Y.X., Xing M., Fei X., Zhang J.H., Tian S.L., Li M.H., Liu S.D. Identification of a novel PSR as the substrate of an SR protein kinase in the true slime mold. J. Biochem. 2011;149:275–283. doi: 10.1093/jb/mvq141. PubMed DOI

Zhao L.H., Guan S., Gao X., Ma Q.G., Lei Y.P., Bai X.M., Ji C. Preparation, purification and characteristics of an aflatoxin degradation enzyme from Myxococcus fulvus ANSM068. J. Appl. Microbiol. 2010;110:147–155. doi: 10.1111/j.1365-2672.2010.04867.x. PubMed DOI

Wochner K.F., Becker-Algeri T.A., Colla E. The action of probiotic microorganisms on chemical contaminants in milk. Crit Rev. Microbiol. 2018;44:112–123. doi: 10.1080/1040841X.2017.1329275. PubMed DOI

Zhang W., Xue B., Li M., Mu Y., Chen Z., Li J., Shan A. Screening a strain of Aspergillus niger and optimization of fermentation conditions for degradation of aflatoxin B1. Toxins. 2014;6:3157–3172. doi: 10.3390/toxins6113157. PubMed DOI PMC

Li J., Huang J., Jin Y., Wu C., Shen D., Zhang S., Zhou R. Mechanism and kinetics of degrading aflatoxin B1 by salt tolerant Candida versatilis CGMCC 3790. J. Hazard. Mater. 2018;359:382–387. doi: 10.1016/j.jhazmat.2018.05.053. PubMed DOI

Kusumaningtyas E., Widiastuti R., Maryam R. Reduction of aflatoxin B1 in chicken feed by using Saccharomyces cerevisiae, Rhizopus oligosporus, and their combination. Mycopathologia. 2006;162:307–311. doi: 10.1007/s11046-006-0047-4. PubMed DOI

Chlebicz A., Śliżewska K. In vitro detoxification of aflatoxin B1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast. Probiotics Antimicro. Prot. 2020;12:289–301. doi: 10.1007/s12602-018-9512-x. PubMed DOI PMC

Suresh G., Cabezudo I., Pulicharla R., Cuprys A., Rouissi T., Brar S.K. Biodegradation of aflatoxin B1 with cell-free extracts of Trametes versicolor and Bacillus subtilis. Res. Vet. Sci. 2020;133:85–91. doi: 10.1016/j.rvsc.2020.09.009. PubMed DOI

Zhou Z., Li R., Ng T.B., Lai Y., Yang J., Ye X. A New Laccase of Lac 2 from the White Rot Fungus Cerrena unicolor 6884 and Lac 2-Mediated Degradation of Aflatoxin B1. Toxins (Basel) 2020;12:476. doi: 10.3390/toxins12080476. PubMed DOI PMC

Von Hertwig A.M., Iamanaka B.T., Amorim Neto D.P., Rezende J.B., Martins L.M., Taniwaki M.H., Nascimento M.S. Interaction of Aspergillus flavus and A. parasiticus with Salmonella spp. isolated from peanuts. Int. J. Food Microbiol. 2020;328:108666. doi: 10.1016/j.ijfoodmicro.2020.108666. PubMed DOI

Fouché T., Claassens S., Maboeta M. Aflatoxins in the soil ecosystem: An overview of its occurrence, fate, effects and future perspectives. Mycotoxin Res. 2020;36:303–309. doi: 10.1007/s12550-020-00393-w. PubMed DOI

Serrano R., González-Menéndez V., Rodríguez L., Martín J., Tormo J.R., Genilloud O. Co-culturing of fungal strains against Botrytis cinerea as a model for the induction of chemical diversity and therapeutic agents. Front. Microbiol. 2017;8:649. doi: 10.3389/fmicb.2017.00649. PubMed DOI PMC

Sarrocco S., Mauro A., Battilani P. Use of Competitive Filamentous Fungi as an Alternative Approach for Mycotoxin Risk Reduction in Staple Cereals: State of Art and Future Perspectives. Toxins (Basel) 2019;11:701. doi: 10.3390/toxins11120701. PubMed DOI PMC

Bertrand S., Bohni N., Schnee S., Schumpp O., Gindro K., Wolfender J.L. Metabolite induction via microorganism co-culture: A potential way to enhance chemical diversity for drug discovery. Biotechnol. Adv. 2014;32:1180–1204. doi: 10.1016/j.biotechadv.2014.03.001. PubMed DOI

Yang K., Geng Q., Song F., He X., Hu T., Wang S., Tian J. Transcriptome Sequencing Revealed an Inhibitory Mechanism of Aspergillus flavus Asexual Development and Aflatoxin Metabolism by Soy-Fermenting Non-Aflatoxigenic Aspergillus. Int. J. Mol. Sci. 2020;21:6994. doi: 10.3390/ijms21196994. PubMed DOI PMC

Haskard C.A., El-Nezami H.S., Kankaanpaa P.E., Seppo S., Jorma T.A. Surface binding of aflatoxin B1 by lactic acid bacteria. Appl. Environ. Microb. 2001;67:3086–3091. PubMed PMC

Kolosova A., Stroka J. Substances for reduction of the contamination of feed by mycotoxins: A review. World Mycotoxin J. 2011;4:225–256. doi: 10.3920/WMJ2011.1288. DOI

Kabak B., Dobson A.D., Var I.I.L. Strategies to prevent mycotoxin contamination of food and animal feed: A review. Crit. Rev. Food Sci. Nutr. 2006;46:593–619. doi: 10.1080/10408390500436185. PubMed DOI

Deepak M.B., Jhanvi S.P. Aflatoxin binding and detoxification by non-saccharomyces yeast a new vista for decontamination. Int. J. Curr. Microbiol. Appl. Sci. 2015;4:310–317.

Kim J.A., Bayo J., Cha J., Choi Y.J., Jung M.Y., Kim D.H., Kim Y. Investigating the probiotic characteristics of four microbial strains with potential application in feed industry. PLoS ONE. 2019;14:e0218922. doi: 10.1371/journal.pone.0218922. PubMed DOI PMC

Elghandour M.M.Y., Tan Z.L., Abu Hafsa S.H., Adegbeye M.J., Greiner R., Ugbogu E.A., Cedillo Monroy J., Salem A.Z.M. Saccharomyces cerevisiae as a probiotic feed additive to non and pseudo-ruminant feeding: A review. J. Appl. Microbiol. 2020;128:658–674. doi: 10.1111/jam.14416. PubMed DOI

Kowalczyk P., Ligas B., Skrzypczak D., Mikula K., Izydorczyk G., Witek-Krowiak A., Moustakas K., Chojnacka K. Biosorption as a method of biowaste valorization to feed additives: RSM optimization. Environ. Pollut. 2021;268:115937. doi: 10.1016/j.envpol.2020.115937. PubMed DOI

Shetty P.H., Hald B., Jespersen L. Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. Int. J. Food Microbiol. 2007;113:41–46. doi: 10.1016/j.ijfoodmicro.2006.07.013. PubMed DOI

Samuel M.S., Aiko V., Panda P. Aflatoxin B1 occurrence, biosynthesis and its degradation. J. Pure Appl. Microbiol. 2013;7:1–7.

Theumer M.G., Henneb Y., Khoury L., Snini S.P., Tadrist S., Canlet C., Audebert M. Genotoxicity of aflatoxins and their precursors in human cells. Toxicol. Lett. 2018;287:100–107. doi: 10.1016/j.toxlet.2018.02.007. PubMed DOI

Zuki-Orozco B.A., Batres-Esquivel L.E., Ortiz-Pérez M.D., Juárez-Flores B.I., Díaz-Barriga F. Aflatoxins contamination in maize products from rural communities in San Luis Potosi, Mexico. Ann. Glob. Health. 2018;84:300–305. doi: 10.29024/aogh.918. PubMed DOI PMC

Zhao C., Wang Y., Lv Y., Cheng W., Guo P., Cui Z. The research process of aflatoxins biodegradation. Agr. Sci. Hubei. 2016;55:5172–5176.

Cao H., Liu D., Mo X., Xie C.H., Yao D. A fungal enzyme with the ability of aflatoxin B1 conversion: Purification and ESI-MS/MS identification. Microbiol. Res. 2011;166:474–483. doi: 10.1016/j.micres.2010.09.002. PubMed DOI

Xu T., Xie C., Yao D., Zhou C.Z., Liu J. Crystal structures of aflatoxin-oxidase from armillariella tabescens reveal a dual activity enzyme. Biochem. Biophys. Res. Commun. 2017;494:621–625. doi: 10.1016/j.bbrc.2017.10.077. PubMed DOI

Alberts J.F., Gelderblom W.C.A., Botha A., Van Zyl W.H. Degradation of aflatoxin B1 by fungal laccase enzymes. Int. J. Food Microbiol. 2009;135:47–52. doi: 10.1016/j.ijfoodmicro.2009.07.022. PubMed DOI

Zaid A.M.A. Biodegradation of aflatoxin by peroxidase enzyme produced by local isolate of Pseudomonas sp. Int. J. Sci. Res. Manag. 2017;5:7456–7467.

Li C.H., Li W.Y., Hsu I.N., Liao Y.Y., Yang C.Y., Taylor M.C., Liu Y.F., Huang W.H., Chang H.H., Huang H.L., et al. Recombinant aflatoxin-degrading F420H2-dependent reductase from mycobacterium smegmatis protects mammalian cells from aflatoxin toxicity. Toxins. 2019;11:259. doi: 10.3390/toxins11050259. PubMed DOI PMC

Karim G., Kamkar A. A study on the effect of lactoperoxidase system (LPS) and LPS plus riboflavin on the aflatoxin M1 in milk. Journal of the Faculty of Veterinary Medicine. Univ. Tehran. 2020;55:5–7.

Yehia R.S. Aflatoxin detoxification by manganese peroxidase purified from Pleurotus ostreatus. Braz. J. Microbiol. 2014;45:127–134. doi: 10.1590/S1517-83822014005000026. PubMed DOI PMC

Guan S., Zhao L., Ma Q., Zhou T., Wang N., Hu X., Ji C. In vitro efficacy of myxococcus fulvus ANSM068 to biotransform aflatoxin B1. Int. J. Mol. Sci. 2010;11:4063–4079. doi: 10.3390/ijms11104063. PubMed DOI PMC

Guan L.Z., Sun Y.P., Cai J.S. The aflatoxin-detoxifizyme specific expression in mouse parotid gland. Transgenic Res. 2015;24:489–496. doi: 10.1007/s11248-015-9863-y. PubMed DOI

Wu Y.Z., Lu F.P., Jiang H.L., Tan C.P., Yao D.S., Xie C.F., Liu D.L. The furofuran-ring selectivity, hydrogen peroxide-production and low Km value are the three elements for highly effective detoxification of aflatoxin oxidase. Food Chem. Toxicol. 2015;76:125–131. doi: 10.1016/j.fct.2014.12.004. PubMed DOI

Wang X., Bai Y., Huang H., Tu T., Wang Y., Wang Y., Luo H., Yao B., Su X. Degradation of aflatoxin B1 and zearalenone by bacterial and fungal laccases in presence of structurally defined chemicals and complex natural mediators. Toxins (Basel) 2019;11:609. doi: 10.3390/toxins11100609. PubMed DOI PMC

Liu Y., Mao H., Hu C., Tron T., Lin J., Wang J., Sun B. Molecular docking studies and in vitrodegradation of four aflatoxins (AFB1, AFB2, AFG1, and AFG2) by a recombinant laccase from Saccharomyces cerevisiae. J. Food Sci. 2020;85:1353–1360. doi: 10.1111/1750-3841.15106. PubMed DOI

Tomin M., Tomić S. Oxidase or peptidase? A computational insight into a putative aflatoxin oxidase from Armillariella tabescens. Proteins. 2019;87:390–400. doi: 10.1002/prot.25661. PubMed DOI

Tian F., Lee S.Y., Woo S.Y., Chun H.S. Alternative Oxidase: A Potential Target for Controlling Aflatoxin Contamination and Propagation of Aspergillus flavus. Front. Microbiol. 2020;11:419. doi: 10.3389/fmicb.2020.00419. PubMed DOI PMC

Li Q., Bai Z., O-Donnell A., Harvey L.M., Hoskisson P.A., McNeil B. Oxidative stress in fungal fermentation processes: The roles of alternative respiration. Biotechnol. Lett. 2011;33:457–467. doi: 10.1007/s10529-010-0471-x. PubMed DOI

Taylor M.C., Jackson C.J., Tattersall D.B., French N., Peat T.S., Newman J., Briggs L.J., Lapalikar G.V., Campbell P.M., Scott C., et al. Identification and characterization of two families of F420H2-dependent reductases from mycobacteria that catalyse aflatoxin degradation. Mol. Microbiol. 2010;78:561–575. doi: 10.1111/j.1365-2958.2010.07356.x. PubMed DOI PMC

Guo Y., Qin X., Tang Y., Ma Q., Zhang J., Zhao L. CotA laccase, a novel aflatoxin oxidase from Bacillus licheniformis, transforms aflatoxin B1 to aflatoxin Q1 and epi-aflatoxin Q1. Food Chem. 2020;325:126877. doi: 10.1016/j.foodchem.2020.126877. PubMed DOI

Eaton D.L., Gallagher E.P. Mechanisms of aflatoxin carcinogenesis. Ann. Rev. Pharmacol. Toxicol. 1994;34:135–172. doi: 10.1146/annurev.pa.34.040194.001031. PubMed DOI

Massey T.E., Stewart R.K., Daniels J.M., Liu L. Biochemical and molecular aspects of mammalian susceptibility to aflatoxin B1 carcinogenicity. Proc. Soc. Exp. Biol. Med. 1995;208:213–227. doi: 10.3181/00379727-208-43852A. PubMed DOI

Ueng Y.F., Shimada T., Yamazaki H., Guengerich F.P. Oxidation of aflatoxin B1 by bacterial recombinant human cytochrome P450 enzymes. Chem. Res. Toxicol. 1995;8:218–225. doi: 10.1021/tx00044a006. PubMed DOI

Van Vleet T.R., Klein P.J., Coulombe R.A. Metabolism of aflatoxin B1 by normal human bronchial epithelial cells. J. Toxicol. Environ. Health A. 2001;63:525–540. doi: 10.1080/15287390152410156. PubMed DOI

Shu X., Wang Y., Zhou Q., Li M., Hu H., Ma Y., Chen X., Ni J., Zhao W., Huang S., et al. Biological degradation of aflatoxin B1 by cell-free extracts of Bacillus velezensis DY3108 with broad PH stability and excellent thermostability. Toxins. 2018;10:330. doi: 10.3390/toxins10080330. PubMed DOI PMC

Alberts J.F., Engelbrecht Y., Steyn P.S. Biological degradation of aflatoxin B1 by Rhodococcus erythropolis cultures. Int. J. Food Microbiol. 2006;109:121–126. doi: 10.1016/j.ijfoodmicro.2006.01.019. PubMed DOI

Cserhárti M., Kriszt B., Krifaton C., Szoboszlay S., Háhn I., Tóth S., Kukolya J. Mycotoxin degradation profile of Rhodococcus strains. Int. J. Food Microbiol. 2013;16:176–185. doi: 10.1016/j.ijfoodmicro.2013.06.002. PubMed DOI

Peña-Rodas O., Martinez-Lopez R., Hernandez-Rauda R. Occurrence of Aflatoxin M1 in cow milk in El Salvador: Results from a two-year survey. Toxicol. Rep. 2018;5:671–678. doi: 10.1016/j.toxrep.2018.06.004. PubMed DOI PMC

Wang N., Wu W., Pan J., Long M. Detoxification Strategies for Zearalenone Using Microorganisms: A Review. Microorganisms. 2019;7:208. doi: 10.3390/microorganisms7070208. PubMed DOI PMC

Martínez M.P., Magnoli A.P., González Pereyra M.L., Cavaglieri L. Probiotic bacteria and yeasts adsorb aflatoxin M1 in milk and degrade it to less toxic AFM1-metabolites. Toxicon. 2019;172:1–7. doi: 10.1016/j.toxicon.2019.10.001. PubMed DOI

Barati M., Chamani M., Mousavi S.N. Effects of biological and mineral compounds in aflatoxin-contaminated diets on blood parameters and immune response of broiler chickens. J. Appl. Anim. Res. 2018;46:707–713. doi: 10.1080/09712119.2017.1388243. DOI

Bovo F., Corassin C.H., Rosim R.E., Oliveira C.A.F. Efficiency of lactic acid bacteria strains for decontamination of aflatoxin M1 in phosphate buffer saline solution and in skimmed milk. Food Bioprocess. Tech. 2009;6:2230–2234. doi: 10.1007/s11947-011-0770-9. DOI

Ismail A., Riaz M., Akhtar S., Yoo S.H., Park S., Abid M., Ahmad Z. Seasonal variation of aflatoxin B1 content in dairy feed. J. Anim. Feed Sci. 2017;26:33–37. doi: 10.22358/jafs/69008/2017. DOI

Hamad G.M., Zahran E., Hafez E.E. The efficacy of bacteria and yeast strain and their combination to bind aflatoxin B1 and B2 in artificially contaminated infants food. J. Food Saf. 2017;37:e12365. doi: 10.1111/jfs.12365. DOI

Huang W., Chang J., Wang P. Effect of the combined compound probiotics with mycotoxin-degradation enzyme on detoxifying aflatoxin B1 and zearalenone. J. Toxicol. Sci. 2018;43:377–385. doi: 10.2131/jts.43.377. PubMed DOI

Watanakij N., Visessanguan W., Petchkongkaew A. Aflatoxin B1-degrading activity from Bacillus subtilis BCC 42005 isolated from fermented cereal products. Food Addit. Contam. A. 2020;37:1579–1589. doi: 10.1080/19440049.2020.1778182. PubMed DOI

Boukaew S., Prasertsan P. Efficacy of volatile compounds from Streptomyces philanthi RL-1-178 as a biofumigant for controlling growth and aflatoxin production of the two aflatoxin-producing fungi on stored soybean seeds. J. Appl. Microbiol. 2020;129:652–664. doi: 10.1111/jam.14643. PubMed DOI

Chen Y., Li R., Chang Q., Dong Z., Yang H., Xu C. Lactobacillus bulgaricus or Lactobacillus rhamnosus Suppresses NF-κB Signaling Pathway and Protects against AFB₁-Induced Hepatitis: A Novel Potential Preventive Strategy for Aflatoxicosis? Toxins (Basel) 2019;11:17. doi: 10.3390/toxins11010017. PubMed DOI PMC

Khanian M., Karimi-Torshizi M.A., Allameh A. Alleviation of aflatoxin-related oxidative damage to liver and improvement of growth performance in broiler chickens consumed Lactobacillus plantarum 299v for entire growth period. Toxicon. 2019;158:57–62. doi: 10.1016/j.toxicon.2018.11.431. PubMed DOI

Rashidi N., Khatibjoo A., Taherpour K., Akbari-Gharaei M., Shirzadi H. Effects of licorice extract, probiotic, toxin binder and poultry litter biochar on performance, immune function, blood indices and liver histopathology of broilers exposed to aflatoxin-B1. Poult. Sci. 2020;99:5896–5906. doi: 10.1016/j.psj.2020.08.034. PubMed DOI PMC

Muhialdin B.J., Saari N., Meor Hussin A.S. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply. Molecules. 2020;7:2655. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...