Molecular Methods for the Detection of Toxoplasma gondii Oocysts in Fresh Produce: An Extensive Review
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
773830
Horizon 2020
PubMed
33451081
PubMed Central
PMC7828537
DOI
10.3390/microorganisms9010167
PII: microorganisms9010167
Knihovny.cz E-resources
- Keywords
- Toxoplasma gondii, detection, foodborne parasites, fresh produce, oocyst, ready-to-eat (RTE) salad, toxoplasmosis, zoonosis,
- Publication type
- Journal Article MeSH
- Review MeSH
Human infection with the important zoonotic foodborne pathogen Toxoplasma gondii has been associated with unwashed raw fresh produce consumption. The lack of a standardised detection method limits the estimation of fresh produce as an infection source. To support method development and standardisation, an extensive literature review and a multi-attribute assessment were performed to analyse the key aspects of published methods for the detection of T. gondii oocyst contamination in fresh produce. Seventy-seven published studies were included, with 14 focusing on fresh produce. Information gathered from expert laboratories via an online questionnaire were also included. Our findings show that procedures for oocyst recovery from fresh produce mostly involved sample washing and pelleting of the washing eluate by centrifugation, although washing procedures and buffers varied. DNA extraction procedures including mechanical or thermal shocks were identified as necessary steps to break the robust oocyst wall. The most suitable DNA detection protocols rely on qPCR, mostly targeting the B1 gene or the 529 bp repetitive element. When reported, validation data for the different detection methods were not comparable and none of the methods were supported by an interlaboratory comparative study. The results of this review will pave the way for an ongoing development of a widely applicable standard operating procedure.
See more in PubMed
Dubey J.P. Toxoplasmosis of Animals and Humans. 2nd ed. CRC Press; Boca Raton, FL, USA: 2009.
Torgerson P.R., Devleesschauwer B., Praet N., Speybroeck N., Willingham A.L., Kasuga F., Rokni M.B., Zhou X.N., Fèvre E.M., Sripa B., et al. World Health Organization Estimates of the Global and Regional Disease Burden of 11 Foodborne Parasitic Diseases, 2010: A Data Synthesis. PLoS Med. 2015;12:e1001920. doi: 10.1371/journal.pmed.1001920. PubMed DOI PMC
ECDC . Annual Epidemiological Report for 2015. ECDC; Stockholm, Sweden: 2018. European Centre for Disease Prevention and Control. Congenital toxoplasmosis.
Hald T., Aspinall W., Devleesschauwer B., Cooke R., Corrigan T., Havelaar A.H., Gibb H.J., Torgerson P.R., Kirk M.D., Angulo F.J., et al. World Health Organization Estimates of the Relative Contributions of Food to the Burden of Disease Due to Selected Foodborne Hazards: A Structured Expert Elicitation. PLoS ONE. 2016;11:e0145839. doi: 10.1371/journal.pone.0145839. PubMed DOI PMC
EFSA Panel on Biological Hazards (BIOHAZ) Koutsoumanis K., Allende A., Alvarez-Ordóñez A., Bolton D., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., et al. Public health risks associated with food-borne parasites. Efsa J. 2018;16:e05495. doi: 10.2903/j.efsa.2018.5495. PubMed DOI PMC
Bouwknegt M., Devleesschauwer B., Graham H., Robertson L.J., van der Giessen J.W. The Euro-Fbp Workshop Participants. Prioritisation of food-borne parasites in Europe, 2016. Eurosurveillance. 2018;23:17-00161. doi: 10.2807/1560-7917.ES.2018.23.9.17-00161. PubMed DOI PMC
Food and Agriculture Organization of the United Nations/World Health Organization . Multicriteria Based Ranking for Risk Management of Food Borne Parasites. FAO, World Health Organization; Rome, Italy: 2014. 287p
Castro-Ibáñez I., Gil M.I., Allende A. Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. LWT Food Sci. Technol. 2017;85:284–292. doi: 10.1016/j.lwt.2016.11.073. DOI
Murphy H.R., Almeria S., da Silva A.J. BAM Chapter 19b: Molecular Detection of Cyclospora cayetanensis in Fresh Produce Using Real-Time PCR. U.S: Food and Drug Administration. [(accessed on 10 July 2020)];2019 Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-19b-molecular-detection-cyclospora-cayetanensis-fresh-produce-using-real-time-pcr.
Moher D., Liberati A., Tetzlaff J., Altman D.G. The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097. PubMed DOI PMC
Lalle M., Slana I., Bier N., Mayer-Scholl A., Jokelainen P. Deliverable D-JRP-TOXOSOURCES-WP3.1 Report on Available Analytical Procedures for Detection of Toxoplasma Gondii in Fresh Produce and List of Promising Analytical Procedures. April 2020. [(accessed on 10 July 2020)]; Available online: https://zenodo.org/record/3778719#.X8ENmbPSLcs.
Chandra V., Torres M., Ortega Y.R. Efficacy of wash solutions in recovering Cyclospora cayetanensis, Cryptosporidium parvum, and Toxoplasma gondii from basil. J. Food Prot. 2014;77:1348–1354. doi: 10.4315/0362-028X.JFP-13-381. PubMed DOI
Hohweyer J., Cazeaux C., Travaillé E., Languet E., Dumètre A., Aubert D., Terryn C., Dubey J.P., Azas N., Houssin M., et al. Simultaneous detection of the protozoan parasites Toxoplasma, Cryptosporidium and Giardia in food matrices and their persistence on basil leaves. Food Microbiol. 2016;57:36–44. doi: 10.1016/j.fm.2016.01.002. PubMed DOI
Lalle M., Possenti A., Dubey J.P., Pozio E. Loop-Mediated Isothermal Amplification-Lateral-Flow Dipstick (LAMP-LFD) to detect Toxoplasma gondii oocyst in ready-to-eat salad. Food Microbiol. 2018;70:137–142. doi: 10.1016/j.fm.2017.10.001. PubMed DOI
Shapiro K., Kim M., Rajal V.B., Arrowood M.J., Packham A., Aguilar B., Wuertz S. Simultaneous detection of four protozoan parasites on leafy greens using a novel multiplex PCR assay. Food Microbiol. 2019;84:103252. doi: 10.1016/j.fm.2019.103252. PubMed DOI
de Souza C.Z., Rafael K., Sanders A.P., Tiyo B.T., Marchioro A.A., Colli C.M., Gomes M.L., Falavigna-Guilherme A.L. An alternative method to recover Toxoplasma gondii from greenery and fruits. Int. J. Environ. Health Res. 2016;26:600–605. doi: 10.1080/09603123.2016.1227960. PubMed DOI
Lalonde L.F., Gajadhar A.A. Optimization and validation of methods for isolation and real-time PCR identification of protozoan oocysts on leafy green vegetables and berry fruits. Food Waterborne Parasitol. 2016;2:1–7. doi: 10.1016/j.fawpar.2015.12.002. DOI
Marchioro A.A., Tiyo B.T., Colli C.M., de Souza C.Z., Garcia J.L., Gomes M.L., Falavigna-Guilherme A.L. First Detection of Toxoplasma gondii DNA in the Fresh Leafs of Vegetables in South America. Vector Borne Zoonotic Dis. 2016;16:624–626. doi: 10.1089/vbz.2015.1937. PubMed DOI
Lass A., Pietkiewicz H., Szostakowska B., Myjak P. The first detection of Toxoplasma gondii DNA in environmental fruits and vegetables samples. Eur. J. Clin. Microbiol. Infect. Dis. 2012;31:1101–1108. doi: 10.1007/s10096-011-1414-8. PubMed DOI PMC
Temesgen T.T., Robertson L.J., Tysnes K.R. A novel multiplex real-time PCR for the detection of Echinococcus multilocularis, Toxoplasma gondii, and Cyclospora cayetanensis on berries. Food Res. Int. 2019;125:108636. doi: 10.1016/j.foodres.2019.108636. PubMed DOI
Lalonde L.F., Gajadhar A.A. Detection of Cyclospora cayetanensis, Cryptosporidium spp., and Toxoplasma gondii on imported leafy green vegetables in Canadian survey. Food Waterborne Parasitol. 2016;2:8–14. doi: 10.1016/j.fawpar.2016.01.001. DOI
Caradonna T., Marangi M., Del Chierico F., Ferrari N., Reddel S., Bracaglia G., Normanno G., Putignani L., Giangaspero A. Detection and prevalence of protozoan parasites in ready-to-eat packaged salads on sale in Italy. Food Microbiol. 2017;67:67–75. doi: 10.1016/j.fm.2017.06.006. PubMed DOI
Lass A., Ma L., Kontogeorgos I., Zhang X., Li X., Karanis P. First molecular detection of Toxoplasma gondii in vegetable samples in China using qualitative, quantitative real-time PCR and multilocus genotyping. Sci. Rep. 2019;26:17581. doi: 10.1038/s41598-019-54073-6. PubMed DOI PMC
Slany M., Dziedzinska R., Babak V., Kralik P., Moravkova M., Slana I. Toxoplasma gondii in vegetables from fields and farm storage facilities in the Czech Republic. FEMS Microbiol. Lett. 2019;366:fnz170. doi: 10.1093/femsle/fnz170. PubMed DOI
Herrmann D.C., Maksimov A., Pantchev N., Vrhovec M.G., Conraths F.J., Schares G. Comparison of different commercial DNA extraction kits to detect Toxoplasma gondii oocysts in cat faeces. Berl Munch Tierarztl. Wochenschr. 2011;124:497–502. PubMed
Staggs S.E., Keely S.P., Ware M.W., Schable N., See M.J., Gregorio D., Zou X., Su C., Dubey J.P., Villegas E.N. The development and implementation of a method using blue mussels (Mytilus spp.) as biosentinels of Cryptosporidium spp. and Toxoplasma gondii contamination in marine aquatic environments. Parasitol. Res. 2015;114:4655–4667. doi: 10.1007/s00436-015-4711-9. PubMed DOI
Manore A.J.W., Harper S.L., Aguilar B., Weese J.S., Shapiro K. Comparison of freeze-thaw cycles for nucleic acid extraction and molecular detection of Cryptosporidium parvum and Toxoplasma gondii oocysts in environmental matrices. J. Microbiol. Methods. 2019;156:1–4. doi: 10.1016/j.mimet.2018.11.017. PubMed DOI
Durand L., La Carbona S., Geffard A., Possenti A., Dubey J.P., Lalle M. Comparative evaluation of loop-mediated isothermal amplification (LAMP) vs qPCR for detection of Toxoplasma gondii oocysts DNA in mussels. Exp. Parasitol. 2020;208:107809. doi: 10.1016/j.exppara.2019.107809. PubMed DOI
Géba E., Aubert D., Durand L., Escotte S., La Carbona S., Cazeaux C., Bonnard I., Bastien F., Palos Ladeiro M., Dubey J.P., et al. Use of the bivalve Dreissena polymorpha as a biomonitoring tool to reflect the protozoan load in freshwater bodies. Water Res. 2020;170:115297. doi: 10.1016/j.watres.2019.115297. PubMed DOI
Escotte-Binet S., Da Silva A.M., Cancès B., Aubert D., Dubey J., La Carbona S., Villena I., Poulle M.L. A rapid and sensitive method to detect Toxoplasma gondii oocysts in soil samples. Vet. Parasitol. 2019;274:108904. doi: 10.1016/j.vetpar.2019.07.012. PubMed DOI
Galvani A.T., Christ A.P.G., Padula J.A., Barbosa M.R.F., de Araújo R.S., Sato M.I.Z., de Araújo R.S., Sato M.I.Z., Razzolini M.T.P. Real-time PCR detection of Toxoplasma gondii in surface water samples in São Paulo, Brazil. Parasitol. Res. 2019;118:631–640. doi: 10.1007/s00436-018-6185-z. PubMed DOI
Ribeiro L.A., Santos L.K., Brito P.A., Jr., Maciel B.M., Da Silva A.V., Albuquerque G.R. Detection of Toxoplasma gondii DNA in Brazilian oysters (Crassostrea rhizophorae) Genet. Mol. Res. 2015;14:4658–4665. doi: 10.4238/2015.May.4.25. PubMed DOI
Yang W., Lindquist H.D., Cama V., Schaefer F.W., 3rd, Villegas E., Fayer R., Lewis E.J., Feng Y., Xiao L. Detection of Toxoplasma gondii oocysts in water sample concentrates by real-time PCR. Appl. Environ. Microbiol. 2009;75:3477–3483. doi: 10.1128/AEM.00285-09. PubMed DOI PMC
Lass A., Pietkiewicz H., Modzelewska E., Dumètre A., Szostakowska B., Myjak P. Detection of Toxoplasma gondii oocysts in environmental soil samples using molecular methods. Eur. J. Clin. Microbiol. Infect. Dis. 2009;28:599–605. doi: 10.1007/s10096-008-0681-5. PubMed DOI
Salant H., Markovics A., Spira D.T., Hamburger J. The development of a molecular approach for coprodiagnosis of Toxoplasma gondii. Vet. Parasitol. 2007;146:214–220. doi: 10.1016/j.vetpar.2007.02.022. PubMed DOI
Tavalla M., Oormazdi H., Akhlaghi L., Shojaee S., Razmjou E., Hadighi R., Meamar A. Genotyping of Toxoplasma gondii Isolates from Soil Samples in Tehran, Iran. Iran. J. Parasitol. 2013;8:227–233. PubMed PMC
Du F., Feng H.L., Nie H., Tu P., Zhang Q.L., Hu M., Zhou Y.Q., Zhao J.L. Survey on the contamination of Toxoplasma gondii oocysts in the soil of public parks of Wuhan, China. Vet. Parasitol. 2012;184:141–146. doi: 10.1016/j.vetpar.2011.08.025. PubMed DOI
Schares G., Vrhovec M.G., Pantchev N., Herrmann D.C., Conraths F.J. Occurrence of Toxoplasma gondii and Hammondia hammondi oocysts in the faeces of cats from Germany and other European countries. Vet. Parasitol. 2008;152:34–45. doi: 10.1016/j.vetpar.2007.12.004. PubMed DOI
Matsuo J., Kimura D., Rai S.K., Uga S. Detection of Toxoplasma oocysts from soil by modified sucrose flotation and PCR methods. Southeast. Asian J. Trop Med. Public Health. 2004;35:270–274. PubMed
Chemoh W., Sawangjaroen N., Nissapatorn V., Sermwittayawong N. Molecular investigation on the occurrence of Toxoplasma gondii oocysts in cat feces using TOX-element and ITS-1 region targets. Vet. J. 2016;215:118–122. doi: 10.1016/j.tvjl.2016.05.018. PubMed DOI
Herrmann D.C., Pantchev N., Vrhovec M.G., Barutzki D., Wilking H., Fröhlich A., Lüder C.G., Conraths F.J., Schares G. Atypical Toxoplasma gondii genotypes identified in oocysts shed by cats in Germany. Int. J. Parasitol. 2010;40:285–292. doi: 10.1016/j.ijpara.2009.08.001. PubMed DOI
Lélu M., Gilot-Fromont E., Aubert D., Richaume A., Afonso E., Dupuis E., Gotteland C., Marnef F., Poulle M.L., Dumètre A., et al. Development of a sensitive method for Toxoplasma gondii oocyst extraction in soil. Vet. Parasitol. 2011;183:59–67. doi: 10.1016/j.vetpar.2011.06.018. PubMed DOI
Villena I., Aubert D., Gomis P., Ferté H., Inglard J.C., Denis-Bisiaux H., Dondon J.M., Pisano E., Ortis N., Pinon J.M. Evaluation of a strategy for Toxoplasma gondii oocyst detection in water. Appl. Environ. Microbiol. 2004;70:4035–4039. doi: 10.1128/AEM.70.7.4035-4039.2004. PubMed DOI PMC
de Wit L.A., Kilpatrick A.M., VanWormer E., Croll D.A., Tershy B.R., Kim M., Shapiro K. Seasonal and spatial variation in Toxoplasma gondii contamination in soil in urban public spaces in California, United States. Zoonoses Public Health. 2020;67:70–78. doi: 10.1111/zph.12656. PubMed DOI
Wells B., Shaw H., Innocent G., Guido S., Hotchkiss E., Parigi M., Opsteegh M., Green J., Gillespie S., Innes E.A., et al. Molecular detection of Toxoplasma gondii in water samples from Scotland and a comparison between the 529bp real-time PCR and ITS1 nested PCR. Water Res. 2015;87:175–181. doi: 10.1016/j.watres.2015.09.015. PubMed DOI
Poulle M.L., Bastien M., Richard Y., Josse-Dupuis É., Aubert D., Villena I., Knapp J. Detection of Echinococcus multilocularis and other foodborne parasites in fox, cat and dog faeces collected in kitchen gardens in a highly endemic area for alveolar echinococcosis. Parasite. 2017;24:29. doi: 10.1051/parasite/2017031. PubMed DOI PMC
Bigot-Clivot A., Palos Ladeiro M., Lepoutre A., Bastien F., Bonnard I., Dubey J.P., Villena I., Aubert D., Geffard O., François A., et al. Bioaccumulation of Toxoplasma and Cryptosporidium by the freshwater crustacean Gammarus fossarum: Involvement in biomonitoring surveys and trophic transfer. Ecotoxicol. Environ. Saf. 2016;133:188–194. doi: 10.1016/j.ecoenv.2016.07.006. PubMed DOI
Gao X., Wang H., Wang H., Qin H., Xiao J. Land use and soil contamination with Toxoplasma gondii oocysts in urban areas. Sci. Total Environ. 2016;568:1086–1091. doi: 10.1016/j.scitotenv.2016.06.165. PubMed DOI
Poulle M.L., Forin-Wiart M.A., Josse-Dupuis É., Villena I., Aubert D. Detection of Toxoplasma gondii DNA by qPCR in the feces of a cat that recently ingested infected prey does not necessarily imply oocyst shedding. Parasite. 2016;23:29. doi: 10.1051/parasite/2016029. PubMed DOI PMC
Palos Ladeiro M., Bigot-Clivot A., Aubert D., Villena I., Geffard A. Assessment of Toxoplasma gondii levels in zebra mussel (Dreissena polymorpha) by real-time PCR: An organotropism study. Environ. Sci. Pollut. Res. Int. 2015;22:13693–13701. PubMed
Bier N.S., Schares G., Johne A., Martin A., Nöckler K., Mayer-Scholl A. Performance of three molecular methods for detection of Toxoplasma gondii in pork. Food Waterborne Parasitol. 2019;14:e00038. doi: 10.1016/j.fawpar.2019.e00038. PubMed DOI PMC
Gotteland C., Gilot-Fromont E., Aubert D., Poulle M.L., Dupuis E., Dardé M.L., Forin-Wiart M.A., Rabilloud M., Riche B., Villena I. Spatial distribution of Toxoplasma gondii oocysts in soil in a rural area: Influence of cats and land use. Vet. Parasitol. 2014;205:629–637. doi: 10.1016/j.vetpar.2014.08.003. PubMed DOI
Afonso E., Lemoine M., Poulle M.L., Ravat M.C., Romand S., Thulliez P., Villena I., Aubert D., Rabilloud M., Riche B., et al. Spatial distribution of soil contamination by Toxoplasma gondii in relation to cat defecation behaviour in an urban area. Int. J. Parasitol. 2008;38:1017–1023. doi: 10.1016/j.ijpara.2008.01.004. PubMed DOI
Aubert D., Villena I. Detection of Toxoplasma gondii oocysts in water: Proposition of a strategy and evaluation in Champagne-Ardenne Region, France. Mem Inst. Oswaldo Cruz. 2009;104:290–295. doi: 10.1590/S0074-02762009000200023. PubMed DOI
Sroka J., Karamon J., Dutkiewicz J., Wójcik-Fatla A., Cencek T. Optimization of flotation, DNA extraction and PCR methods for detection of Toxoplasma gondii oocysts in cat faeces. Ann. Agric. Environ. Med. 2018;25:680–685. doi: 10.26444/aaem/97402. PubMed DOI
Reischl U., Bretagne S., Krüger D., Ernault P., Costa J.M. Comparison of two DNA targets for the diagnosis of Toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC Infect. Dis. 2003;3:7. doi: 10.1186/1471-2334-3-7. PubMed DOI PMC
Shapiro K., Mazet J.A., Schriewer A., Wuertz S., Fritz H., Miller W.A., Largier J., Conrad P.A. Detection of Toxoplasma gondii oocysts and surrogate microspheres in water using ultrafiltration and capsule filtration. Water Res. 2010;44:893–903. doi: 10.1016/j.watres.2009.09.061. PubMed DOI
Arkush K.D., Miller M.A., Leutenegger C.M., Gardner I.A., Packham A.E., Heckeroth A.R., Tenter A.M., Barr B.C., Conrad P.A. Molecular and bioassay-based detection of Toxoplasma gondii oocyst uptake by mussels (Mytilus galloprovincialis) Int. J. Parasitol. 2003;33:1087–1097. doi: 10.1016/S0020-7519(03)00181-4. PubMed DOI
Marquis N.D., Bishop T.J., Record N.R., Countway P.D., Fernández Robledo J.A. Molecular Epizootiology of Toxoplasma gondii and Cryptosporidium parvum in the Eastern Oyster (Crassostrea virginica) from Maine (USA) Pathogens. 2019;8:125. doi: 10.3390/pathogens8030125. PubMed DOI PMC
Coupe A., Howe L., Shapiro K., Roe W.D. Comparison of PCR assays to detect Toxoplasma gondii oocysts in green-lipped mussels (Perna canaliculus) Parasitol. Res. 2019;118:2389–2398. doi: 10.1007/s00436-019-06357-z. PubMed DOI
Opsteegh M., Langelaar M., Sprong H., den Hartog L., De Craeye S., Bokken G., Ajzenberg D., Kijlstra A., van der Giessen J. Direct detection and genotyping of Toxoplasma gondii in meat samples using magnetic capture and PCR. Int. J. Food Microbiol. 2010;139:193–201. doi: 10.1016/j.ijfoodmicro.2010.02.027. PubMed DOI
Aksoy U., Marangi M., Papini R., Ozkoc S., Bayram Delibas S., Giangaspero A. Detection of Toxoplasma gondii and Cyclospora cayetanensis in Mytilus galloprovincialis from Izmir Province coast (Turkey) by Real Time PCR/High-Resolution Melting analysis (HRM) Food Microbiol. 2014;44:128–135. doi: 10.1016/j.fm.2014.05.012. PubMed DOI
Marangi M., Giangaspero A., Lacasella V., Lonigro A., Gasser R.B. Multiplex PCR for the detection and quantification of zoonotic taxa of Giardia, Cryptosporidium and Toxoplasma in wastewater and mussels. Mol. Cell Probes. 2015;29:122–125. doi: 10.1016/j.mcp.2015.01.001. PubMed DOI
Chalmers R., Robertson L., Dorny P., Suzanne J., Kärssin A., Katzer F., La Carbona S., Lalle M., Lassen B., Mladineo I., et al. Parasite detection in food: Current status and future needs for validation. Trends Food Sci. Technol. 2020;99:337–350. doi: 10.1016/j.tifs.2020.03.011. DOI
Kourenti C., Karanis P. Development of a sensitive polymerase chain reaction method for the detection of Toxoplasma gondii in water. Water Sci. Technol. 2004;50:287–291. doi: 10.2166/wst.2004.0069. PubMed DOI
Cook N., Paton C.A., Wilkinson N., Nichols R.A., Barker K., Smith H.V. Towards standard methods for the detection of Cryptosporidium parvum on lettuce and raspberries. Part 1: Development and optimization of methods. Int. J. Food Microbiol. 2006;109:215–221. doi: 10.1016/j.ijfoodmicro.2005.12.015. PubMed DOI
Schrader C., Schielke A., Ellerbroek L., Johne R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 2012;113:1014–1026. doi: 10.1111/j.1365-2672.2012.05384.x. PubMed DOI
International Standards Organisation . Microbiology of Food and Animal Feeding Stuffs–Polymerase Chain Reaction (PCR) for the Detection of Food-Borne Pathogens—General Requirements and Definitions (ISO 22174:2005) International Standards Organisation; Geneva, Switzerland: 2005.
Hoorfar J., Malorny B., Abdulmawjood A., Cook N., Wagner M., Fach P. Practical considerations in design of internal amplification controls for diagnostic PCR assays. J. Clin. Microbiol. 2004;42:1863–1868. doi: 10.1128/JCM.42.5.1863-1868.2004. PubMed DOI PMC
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Bustin S.A. Why the need for qPCR publication guidelines?—The case for MIQE. Methods. 2010;50:217–226. doi: 10.1016/j.ymeth.2009.12.006. PubMed DOI
Taylor S., Wakem M., Dijkman G., Alsarraj M., Nguyen M. A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods. 2010;50:S1–S5. doi: 10.1016/j.ymeth.2010.01.005. PubMed DOI
International Standards Organisation . Microbiology of Food and Animal Feeding Stuffs—Polymerase Chain Reaction (PCR) for the Detection of Food-Borne Pathogens (ISO 22174:2005) International Standards Organisation; Geneva, Switzerland: 2005.
International Standards Organisation . Microbiology of Food and Animal Feeding Stuffs—Polymerase Chain Reaction (PCR) for the Detection of Food-Borne Pathogens—Performance Testing for Thermal Cyclers (ISO/TS 20836:2005) International Standards Organisation; Geneva, Switzerland: 2005.
International Standards Organisation . Microbiology of Food and Animal Feeding Stuffs—Polymerase Chain Reaction (PCR) for the Detection of Food-Borne Pathogens—Requirements for Sample Preparation for Qualitative Detection (ISO 20837:2006) International Standards Organisation; Geneva, Switzerland: 2006.
International Standards Organisation . Microbiology of Food and Animal Feeding Stuffs—Polymerase Chain Reaction (PCR) for the Detection of Food-Borne Pathogens—Requirements for Amplification and Detection for Qualitative Methods (ISO 20838:2006) International Standards Organisation; Geneva, Switzerland: 2006.
International Standards Organisation . Microbiology of Food and Animal Feeding Stuffs—General Requirements and Guidance for Microbiological Examinations (ISO 7218:2007 and Amendments 2013) International Standards Organisation; Geneva, Switzerland: 2013.
International Standards Organisation . Microbiology of the Food Chain—Method Validation—Part. 2: Protocol for the Validation of Alternative (Proprietary) Methods against a Reference Method (ISO 16140-2:2016) International Standards Organisation; Geneva, Switzerland: 2016.
Food and Drug Administration (US) Foods Program Regulatory Science Steering Committee (RSSC) Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds. 3rd ed. U.S. FDA; Silver Spring, MD, USA: 2019.