Molecular detection of Toxoplasma gondii in ready-to-eat salad mixes: multi-country survey using a validated and harmonised standard operating procedure, Europe, 2021 to 2022

. 2025 Jun ; 30 (22) : .

Jazyk angličtina Země Švédsko Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40476292

BackgroundMost Toxoplasma gondii infections in humans are considered foodborne, but the relative importance of the various routes of infection is largely unknown. Consumption of green produce contaminated with T. gondii oocysts has been identified as a possible source.AimWe aimed to estimate the occurrence and prevalence of T. gondii oocysts in commercially available ready-to-eat (RTE) salad mixes in 10 European countries.MethodsA real-time PCR-based method for oocyst detection was developed and optimised by two laboratories and validated in an interlaboratory test. This detection method and a harmonised sampling strategy were applied in a multi-country study. Multivariable logistic regression was used to investigate risk factors for oocyst contamination of RTE salad.ResultsThe real-time PCR method had a detection limit of 10 oocysts per 30 g of salad. We collected 3,329 RTE salad samples (baby leaf and cut leaf mixes) from October 2021 to September 2022. The prevalence of T. gondii oocyst contamination was 4.1% (95% confidence interval (CI): 3.4-4.8%; n = 3,293). In multivariable regression analysis, winter season, sampling and packaging of salad in Northern Europe and production of salad in Western Europe were associated with detection of T. gondii, with no statistically significant differences between salad types.ConclusionWe estimated the prevalence of T. gondii oocysts in RTE leafy green salads using a validated and standardised procedure to assess the potential risk for human infection; highlighting the need to address this risk at each critical point of the salad production chain.

Animal Health and Zoonoses Research Group Animal Health Department Faculty of Veterinary Sciences Complutense University of Madrid Madrid Spain

Anses INRAE Ecole Nationale Vétérinaire d'Alfort Laboratoire de Santé Animale BIPAR Maisons Alfort France

Department of Biological Safety Unit Diagnostics Pathogen Characterization Parasites in Food German Federal Institute for Risk Assessment Berlin Germany

Department of Comparative Biomedical Sciences School of Veterinary Medicine University of Surrey Guildford the United Kingdom†

Department of Infectious Diseases Istituto Superiore di Sanità Rome Italy

Department of Microbiology and Antimicrobial Resistance Veterinary Research Institute Brno Czechia

Department of Parasitology and Invasive Diseases Bee Diseases and Aquatic Animal Diseases National Veterinary Research Institute Pulawy Poland

Laboratory of Parasitology Department of Bacteria Parasites and Fungi Statens Serum Institut Copenhagen Denmark†

Laboratory of Parasitology The National Institute for Agricultural and Veterinary Research Oeiras Portugal

Lewyt College of Veterinary Medicine Long Island University New York New York the United States†

Microtech S R L Moca Espaillat Dominican Republic

Secretariat for Infectious Disease Preparedness and One Health Statens Serum Institut Copenhagen Denmark

Section for Food Safety and Animal Health Research Norwegian Veterinary Institute Ås Norway

Section for Food Safety and Animal Health Research Norwegian Veterinary Institute Tromsø Norway

University of Agricultural Sciences and Veterinary Medicine Cluj Napoca Romania

Zobrazit více v PubMed

Dubey JP. Toxoplasmosis of Animals and Humans. 3rd ed. Boca Ratón: CRC Press; 2021.

Hald T, Aspinall W, Devleesschauwer B, Cooke R, Corrigan T, Havelaar AH, et al. World Health Organization estimates of the relative contributions of food to the burden of disease due to selected foodborne hazards: a structured expert elicitation. PLoS One. 2016;11(1):e0145839. 10.1371/journal.pone.0145839 PubMed DOI PMC

Pinto-Ferreira F, Caldart ET, Pasquali AKS, Mitsuka-Breganó R, Freire RL, Navarro IT. Patterns of transmission and sources of infection in outbreaks of human toxoplasmosis. Emerg Infect Dis. 2019;25(12):2177-82. 10.3201/eid2512.181565 PubMed DOI PMC

Garweg JG, Kieffer F, Mandelbrot L, Peyron F, Wallon M. Long-term outcomes in children with congenital toxoplasmosis-a systematic review. Pathogens. 2022;11(10):1187. 10.3390/pathogens11101187 PubMed DOI PMC

EFSA Panel on Biological Hazards (BIOHAZ) Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, et al. Public health risks associated with food-borne parasites. EFSA J. 2018;16(12):e05495. PubMed PMC

Flegr J, Prandota J, Sovičková M, Israili ZH. Toxoplasmosis--a global threat. Correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLoS One. 2014;9(3):e90203. 10.1371/journal.pone.0090203 PubMed DOI PMC

European Food Safety Authority (EFSA) European Centre for Disease Prevention and Control (ECDC) . The European Union One Health 2023 Zoonoses report. EFSA J. 2024;22(12):e9106. PubMed PMC

Cassini A, Colzani E, Pini A, Mangen MJ, Plass D, McDonald SA, et al. Impact of infectious diseases on population health using incidence-based disability-adjusted life years (DALYs): results from the Burden of Communicable Diseases in Europe study, European Union and European Economic Area countries, 2009 to 2013. Euro Surveill. 2018;23(16):17-00454. 10.2807/1560-7917.ES.2018.23.16.17-00454 PubMed DOI PMC

López Ureña NM, Chaudhry U, Calero Bernal R, Cano Alsua S, Messina D, Evangelista F, et al. Contamination of soil, water, fresh produce, and bivalve mollusks with Toxoplasma gondii oocysts: a systematic review. Microorganisms. 2022;10(3):517. 10.3390/microorganisms10030517 PubMed DOI PMC

Dámek F, Swart A, Waap H, Jokelainen P, Le Roux D, Deksne G, et al. Systematic review and modelling of age-dependent prevalence of Toxoplasma gondii in livestock, wildlife and felids in Europe. Pathogens. 2023;12(1):97. 10.3390/pathogens12010097 PubMed DOI PMC

Caradonna T, Marangi M, Del Chierico F, Ferrari N, Reddel S, Bracaglia G, et al. Detection and prevalence of protozoan parasites in ready-to-eat packaged salads on sale in Italy. Food Microbiol. 2017;67:67-75. 10.1016/j.fm.2017.06.006 PubMed DOI

Betts R. Microbial update: fruit and salad. Int Food Hyg. 2014;25(3):9-12.

Slana I, Bier N, Bartosova B, Marucci G, Possenti A, Mayer-Scholl A, et al. Molecular methods for the detection of Toxoplasma gondii oocysts in fresh produce: an extensive review. Microorganisms. 2021;9(1):167. 10.3390/microorganisms9010167 PubMed DOI PMC

Wainwright KE, Miller MA, Barr BC, Gardner IA, Melli AC, Essert T, et al. Chemical inactivation of Toxoplasma gondii oocysts in water. J Parasitol. 2007;93(4):925-31. 10.1645/GE-1063R.1 PubMed DOI

Dubey JP, Swan GV, Frenkel JK. A simplified method for isolation of Toxoplasma gondii from the feces of cats. J Parasitol. 1972;58(5):1005-6. 10.2307/3286603 PubMed DOI

Lalle M, Possenti A, Dubey JP, Pozio E. Loop-Mediated Isothermal Amplification-Lateral-Flow Dipstick (LAMP-LFD) to detect Toxoplasma gondii oocyst in ready-to-eat salad. Food Microbiol. 2018;70:137-42. 10.1016/j.fm.2017.10.001 PubMed DOI

Slany M, Dziedzinska R, Babak V, Kralik P, Moravkova M, Slana I. Toxoplasma gondii in vegetables from fields and farm storage facilities in the Czech Republic. FEMS Microbiol Lett. 2019;366(14):fnz170. 10.1093/femsle/fnz170 PubMed DOI

Cazeaux C, Lalle M, Durand L, Aubert D, Favennec L, Dubey JP, et al. Evaluation of real-time qPCR-based methods to detect the DNA of the three protozoan parasites Cryptosporidium parvum, Giardia duodenalis and Toxoplasma gondii in the tissue and hemolymph of blue mussels (M. edulis). Food Microbiol. 2022;102:103870. 10.1016/j.fm.2021.103870 PubMed DOI

United Nations Statistics Division (UNSD). Standard country or area codes for statistical use (M49). New York: UNSD. [Accessed: 3 Jun 2025]. Available from: https://unstats.un.org/unsd/methodology/m49

Hurtado A, Aduriz G, Moreno B, Barandika J, García-Pérez AL. Single tube nested PCR for the detection of Toxoplasma gondii in fetal tissues from naturally aborted ewes. Vet Parasitol. 2001;102(1-2):17-27. 10.1016/S0304-4017(01)00526-X PubMed DOI

Joeres M, Cardron G, Passebosc-Faure K, Plault N, Fernández-Escobar M, Hamilton CM, et al. A ring trial to harmonize Toxoplasma gondii microsatellite typing: comparative analysis of results and recommendations for optimization. Eur J Clin Microbiol Infect Dis. 2023;42(7):803-18. 10.1007/s10096-023-04597-7 PubMed DOI PMC

Burg JL, Grover CM, Pouletty P, Boothroyd JC. Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. J Clin Microbiol. 1989;27(8):1787-92. 10.1128/jcm.27.8.1787-1792.1989 PubMed DOI PMC

Homan WL, Vercammen M, De Braekeleer J, Verschueren H. Identification of a 200- to 300-fold repetitive 529 bp DNA fragment in Toxoplasma gondii, and its use for diagnostic and quantitative PCR. Int J Parasitol. 2000;30(1):69-75. 10.1016/S0020-7519(99)00170-8 PubMed DOI

Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, de Wit LA, VanWormer E, et al. Environmental transmission of PubMed DOI PMC

Lalonde LF, Gajadhar AA. Optimization and validation of methods for isolation and realtime PCR identification of protozoan oocysts on leafy green vegetables and berry fruits. Food Waterborne Parasitol. 2016;2:1-7. 10.1016/j.fawpar.2015.12.002 DOI

Lalonde LF, Gajadhar AA. Detection of Cyclospora cayetanensis, Cryptosporidium spp., and Toxoplasma gondii on imported leafy green vegetables in Canadian survey. Food Waterborne Parasitol. 2016;2:8-14. 10.1016/j.fawpar.2016.01.001 DOI

European Commission (EC). Food-Based Dietary Guidelines recommendations for vegetables. Brussels: EC; 13 Jan 2025. Available from: https://knowledge4policy.ec.europa.eu/health-promotion-knowledge-gateway/food-based-dietary-guidelines-europe-table-5_en

Moreno-Mesonero L, Soler L, Amorós I, Moreno Y, Ferrús MA, Alonso JL. Protozoan parasites and free-living amoebae contamination in organic leafy green vegetables and strawberries from Spain. Food Waterborne Parasitol. 2023;32:e00200. 10.1016/j.fawpar.2023.e00200 PubMed DOI PMC

Castro-Ibáñez I, Gil MI, Allende A. Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. Lebensm Wiss Technol. 2017;85:284-92. 10.1016/j.lwt.2016.11.073 DOI

Fernández-Escobar M, Schares G, Maksimov P, Joeres M, Ortega-Mora LM, Calero-Bernal R. Toxoplasma gondii genotyping: a closer look into Europe. Front Cell Infect Microbiol. 2022;12:842595. 10.3389/fcimb.2022.842595 PubMed DOI PMC

Castro-Ibáñez I, Gil MI, Allende A. Ready-to-eat vegetables: Current problems and potential solutions to reduce microbial risk in the production chain. Lebensm Wiss Technol. 2017;85:284-92. 10.1016/j.lwt.2016.11.073 DOI

European Commission (EC). Commission Delegated Regulation (EU) 2023/2429 of 17 August 2023 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards marketing standards for the fruit and vegetables sector, certain processed fruit and vegetable products and the bananas sector, and repealing Commission Regulation (EC) No 1666/1999 and Commission Implementing Regulations (EU) No 543/2011 and (EU) No 1333/2011. EC: Brussels; 3 Nov 2023. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202302429&qid=1747399302221

Food and Agriculture Organization (FAO) and World Health Organization (WHO). Prevention and control of microbiological hazards in fresh fruits and vegetables – Parts 1 & 2: General principles, No. 42. FAO: Rome; 2023. Available from: https://openknowledge.fao.org/handle/20.500.14283/cc8490en

Calero-Bernal R, Gennari SM, Cano S, Salas-Fajardo MY, Ríos A, Álvarez-García G, et al. Anti-Toxoplasma gondii antibodies in European residents: a systematic review and meta-analysis of studies published between 2000 and 2020. Pathogens. 2023;12(12):1430. 10.3390/pathogens12121430 PubMed DOI PMC

Logar J, Soba B, Premru-Srsen T, Novak-Antolic Z. Seasonal variations in acute toxoplasmosis in pregnant women in Slovenia. Clin Microbiol Infect. 2005;11(10):852-5. 10.1111/j.1469-0691.2005.01244.x PubMed DOI

Sagel U, Mikolajczyk RT, Krämer A. Seasonal trends in acute toxoplasmosis in pregnancy in the federal state of Upper Austria. Clin Microbiol Infect. 2010;16(5):515-7. 10.1111/j.1469-0691.2009.02880.x PubMed DOI

Castro-Ibáñez I, López-Gálvez F, Gil MI, Allende A. Identification of sampling points suitable for the detection of microbial contamination in fresh-cut processing lines. Food Control. 2016;59:841-8. 10.1016/j.foodcont.2015.07.004 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...