Duplication of 9p24.3 in three unrelated patients and their phenotypes, considering affected genes, and similar recurrent variants

. 2021 Mar ; 9 (3) : e1592. [epub] 20210117

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33455084

BACKGROUND: Recent studies suggest that duplication of the 9p24.3 chromosomal locus, which includes the DOCK8 and KANK1 genes, is associated with autism spectrum disorders (ASD), intellectual disability/developmental delay (ID/DD), learning problems, language disorders, hyperactivity, and epilepsy. Correlation between this duplication and the carrier phenotype needs further discussion. METHODS: In this study, three unrelated patients with ID/DD and ASD underwent SNP aCGH and MLPA testing. Similarities in the phenotypes of patients with 9p24.3, 15q11.2, and 16p11.2 duplications were also observed. RESULTS: All patients with ID/DD and ASD carried the 9p24.3 duplication and showed intragenic duplication of DOCK8. Additionally, two patients had ADHD, one was hearing impaired and obese, and one had macrocephaly. Inheritance of the 9p24.3 duplication was confirmed in one patient and his sibling. In one patient KANK1 was duplicated along with DOCK8. Carriers of 9p24.3, 15q11.2, and 16p11.2 duplications showed several phenotypic similarities, with ID/DD more strongly associated with duplication of 9p24.3 than of 15q11.2 and 16p11.2. CONCLUSION: We concluded that 9p24.3 is a likely cause of ASD and ID/DD, especially in cases of DOCK8 intragenic duplication. DOCK8 is a likely causative gene, and KANK1 aberrations a modulator, of the clinical phenotype observed. Other modulators were not excluded.

Zobrazit více v PubMed

Benítez‐Burraco, A. , Barcos‐Martínez, M. , Espejo‐Portero, I. , & Jiménez‐Romero, S. (2017). Variable penetrance of the 15q11.2 BP1‐BP2 microduplication in a family with cognitive and language impairment. Molecular Syndromology, 8(3), 139–147. 10.1159/000468192 PubMed DOI PMC

Burnside, R. D. , Pasion, R. , Mikhail, F. M. , Carroll, A. J. , Robin, N. H. , Youngs, E. L. , Gadi, I. K. , Keitges, E. , Jaswaney, V. L. , Papenhausen, P. R. , Potluri, V. R. , Risheg, H. , Rush, B. , Smith, J. L. , Schwartz, S. , Tepperberg, J. H. , & Butler, M. G. (2011). Microdeletion/microduplication of proximal 15q11.2 between BP1 and BP2: a susceptibility region for neurological dysfunction including developmental and language delay. Human Genetics, 130, 517–528. 10.1007/s00439-011-0970-4 PubMed DOI PMC

Cafferkey, M. , Ahn, J. W. , Flinter, F. , & Ogilvie, C. (2014). Phenotypic features in patients with 15q11.2(BP1‐BP2) deletion: Further delineation of an emerging syndrome. American Journal of Medical Genetics Part A, 164, 1916–1922. 10.1002/ajmg.a.36554 PubMed DOI

Cox, D. , & Butler, M. (2015). The 15q11.2 BP1–BP2 microdeletion syndrome: A review. International Journal of Molecular Sciences, 16, 4068–4082. 10.3390/ijms16024068 PubMed DOI PMC

D’Angelo, D. , Lebon, S. , Chen, Q. , Martin‐Brevet, S. , Snyder, L. A. G. , Hippolyte, L. , Hanson, E. , Maillard, A. M. , Faucett, W. A. , Macé, A. , Pain, A. , Bernier, R. , Chawner, S. J. R. A. , David, A. , Andrieux, J. , Aylward, E. , Baujat, G. , Caldeira, I. , Conus, P. , … Chung, W. K. (2016). Defining the effect of the 16p11.2 duplication on cognition, behavior, and medical comorbidities. Jama Psychiatry, 73(1), 20. 10.1001/jamapsychiatry.2015.2123 PubMed DOI PMC

Davis, K. , Serrano, M. , Loddo, S. , Robinson, C. , Alesi, V. , Dallapiccola, B. , Novelli, A. , & Butler, M. (2019). Parent‐of‐origin effects in 15q11.2 BP1‐BP2 microdeletion (burnside‐butler) syndrome. International Journal of Molecular Sciences, 20(6), 1459. 10.3390/ijms20061459 PubMed DOI PMC

De Wolf, V. , Brison, N. , Devriendt, K. , & Peeters, H. (2013). Genetic counseling for susceptibility loci and neurodevelopmental disorders: The del15q11.2 as an example. American Journal of Medical Genetics Part A, 161, 2846–2854. 10.1002/ajmg.a.36209 PubMed DOI

Engelhardt, K. R. , McGhee, S. , Winkler, S. , Sassi, A. , Woellner, C. , Lopez‐Herrera, G. , Chen, A. , Kim, H. S. , Lloret, M. G. , Schulze, I. , Ehl, S. , Thiel, J. , Pfeifer, D. , Veelken, H. , Niehues, T. , Siepermann, K. , Weinspach, S. , Reisli, I. , Keles, S. , … Chatila, T. A. (2009). Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal‐recessive form of hyper‐IgE syndrome. The Journal of Allergy and Clinical Immunology, 124(6), 1289–1302. 10.1016/j.jaci.2009.10.038 PubMed DOI PMC

Gadea, G. , & Blangy, A. (2014). Dock‐family exchange factors in cell migration and disease. European Journal of Cell Biology, 93(10–12), 466–477. 10.1016/j.ejcb.2014.06.003 PubMed DOI

Gee, H. Y. , Zhang, F. , Ashraf, S. , Kohl, S. , Sadowski, C. E. , Vega‐Warner, V. , Zhou, W. , Lovric, S. , Fang, H. , Nettleton, M. , Zhu, J.‐Y. , Hoefele, J. , Weber, L. T. , Podracka, L. , Boor, A. , Fehrenbach, H. , Innis, J. W. , Washburn, J. , Levy, S. , … Hildebrandt, F. (2015). KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. Journal of Clinical Investigation, 125(6), 2375–2384. 10.1172/JCI79504 PubMed DOI PMC

Girirajan, S. , Rosenfeld, J. A. , Coe, B. P. , Parikh, S. , Friedman, N. , Goldstein, A. , Filipink, R. A. , McConnell, J. S. , Angle, B. , Meschino, W. S. , Nezarati, M. M. , Asamoah, A. , Jackson, K. E. , Gowans, G. C. , Martin, J. A. , Carmany, E. P. , Stockton, D. W. , Schnur, R. E. , Penney, L. S. , … Eichler, E. E. (2012). Phenotypic heterogeneity of genomic disorders and rare copy‐number variants. New England Journal of Medicine, 367, 1321–1331. 10.1056/NEJMoa1200395 PubMed DOI PMC

Glessner, J. T. , Li, J. , Wang, D. , March, M. , Lima, L. , Desai, A. , Hadley, D. , Kao, C. , Gur, R. E. , Cohen, N. , Sleiman, P. M. A. , Li, Q. , & Hakonarson, H. (2017). Copy number variation meta‐analysis reveals a novel duplication at 9p24 associated with multiple neurodevelopmental disorders. Genome Medicine, 9(1), 106. 10.1186/s13073-017-0494-1 PubMed DOI PMC

Griggs, B. L. , Ladd, S. , Saul, R. A. , DuPont, B. R. , & Srivastava, A. K. (2008). Dedicator of cytokinesis 8 is disrupted in two patients with mental retardation and developmental disabilities. Genomics, 91(2), 195–202. 10.1016/j.ygeno.2007.10.011 PubMed DOI PMC

Ho, K. , Wassman, E. , Baxter, A. , Hensel, C. , Martin, M. , Prasad, A. , Twede, H. , Vanzo, R. , & Butler, M. (2016). Chromosomal microarray analysis of consecutive individuals with autism spectrum disorders using an ultra‐high resolution chromosomal microarray optimized for neurodevelopmental disorders. International Journal of Molecular Sciences, 17(12), 2070. 10.3390/ijms17122070 PubMed DOI PMC

Jing, H. , Zhang, Q. , Zhang, Y. , Hill, B. J. , Dove, C. G. , Gelfand, E. W. , Atkinson, T. P. , Uzel, G. , Matthews, H. F. , Mustillo, P. J. , Lewis, D. B. , Kavadas, F. D. , Hanson, I. C. , Kumar, A. R. , Geha, R. S. , Douek, D. C. , Holland, S. M. , Freeman, A. F. , & Su, H. C. (2014). Somatic reversion in dedicator of cytokinesis 8 immunodeficiency modulates disease phenotype. Journal of Allergy and Clinical Immunology, 133(6), 1667–1675. 10.1016/j.jaci.2014.03.025 PubMed DOI PMC

Kearney, H. M. , Thorland, E. C. , Brown, K. K. , Quintero‐Rivera, F. , & South, S. T. (2011). American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genetics in Medicine, 13(7), 680–685. 10.1097/GIM.0b013e3182217a3a PubMed DOI

Krgovic, D. , Kokalj Vokac, N. , Zagorac, A. , & Gregoric Kumperscak, H. (2018). Rare structural variants in the DOCK8 gene identified in a cohort of 439 patients with neurodevelopmental disorders. Scientific Reports, 8(1), 9449. 10.1038/s41598-018-27824-0 PubMed DOI PMC

Lee, I. S. , Carvalho, C. M. B. , Douvaras, P. , Ho, S.‐M. , Hartley, B. J. , Zuccherato, L. W. , Ladran, I. G. , Siegel, A. J. , McCarthy, S. , Malhotra, D. , Sebat, J. , Rapoport, J. , Fossati, V. , Lupski, J. R. , Levy, D. L. , & Brennand, K. J. (2015). Characterization of molecular and cellular phenotypes associated with a heterozygous CNTNAP2 deletion using patient‐derived hiPSC neural cells. Npj Schizophrenia, 1(1), 10.1038/npjschz.2015.19 PubMed DOI PMC

Lin, A. , Ching, C. R. K. , Vajdi, A. , Sun, D. , Jonas, R. K. , Jalbrzikowski, M. , Kushan‐wells, L. , Hansen, L. P. , Krikorian, E. , Gutman, B. , Dokoru, D. , Helleman, G. , Thompson, P. M. , & Bearden, C. E. (2017). Mapping 22q11.2 Gene dosage effects on brain morphometry. Journal of Neuroscience, 37(26), 6183–6199. 10.1523/JNEUROSCI.094417.2017 PubMed DOI PMC

Moreno‐De‐Luca, D. , Sanders, S. J. , Willsey, A. J. , Mulle, J. G. , Lowe, J. K. , Geschwind, D. H. , State, M. W. , Martin, C. L. , & Ledbetter, D. H. (2013). Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Molecular Psychiatry, 18(10), 1090–1095. 10.1038/mp.2012.138 PubMed DOI PMC

Niarchou, M. , Chawner, S. J. R. A. , Doherty, J. L. , Maillard, A. M. , Jacquemont, S. , Chung, W. K. , Green‐Snyder, L. A. , Bernier, R. A. , Goin‐Kochel, R. P. , Hanson, E. , Linden, D. E. J. , Linden, S. C. , Raymond, F. L. , Skuse, D. , Hall, J. , Owen, M. J. , & van den Bree, M. B. M. (2019). Psychiatric disorders in children with 16p11.2 deletion and duplication. Translational Psychiatry, 9(1), 10.1038/s41398-018-0339-8 PubMed DOI PMC

Oikonomakis, V. , Kosma, K. , Mitrakos, A. , Sofocleous, C. , Pervanidou, P. , Syrmou, A. , Pampanos, S. , Psoni, S. , Fryssira, H. , Kanavakis, E. , Kitsiou‐tzeli, S. , & Tzetis, M. (2016). Recurrent copy number variations as risk factors for autism spectrum disorders: Analysis of the clinical implications. Clinical Genetics, 89(6), 708–709. 10.1111/cge.12740 PubMed DOI

Qin, T. , An, Y. , Liu, C. , Wu, J. , Dai, R. , Liu, D. , Li, X. , Jiang, L. , Wu, D. , Tang, X. , Song, W. , Wang, T. , & Zhao, X. (2016). Novel DOCK8 gene mutations lead to absence of protein expression in patients with hyper‐IgE syndrome. Immunologic Research, 64(1), 260–271. 10.1007/s12026-015-8745-y PubMed DOI

Richards, S. , Aziz, N. , Bale, S. , Bick, D. , Das, S. , Gastier‐Foster, J. , Grody, W. W. , Hegde, M. , Lyon, E. , Spector, E. , Voelkerding, K. , & Rehm, H. L. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405–423. 10.1038/gim.2015.30 PubMed DOI PMC

Ruiter, E. M. , Koolen, D. A. , Kleefstra, T. , Nillesen, W. M. , Pfundt, R. , de Leeuw, N. , Hamel, H. , Brunner, H. G. , Sistermans, E. A. , & de Vries, B. (2007). Pure subtelomeric microduplications as a cause of mental retardation. Clinical Genetics, 72(4), 362–363. 10.1111/j.1399-0004.2007.00874.x PubMed DOI

Schaefer, G. B. , & Mendelsohn, N. J. (2013). Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genetics in Medicine, 15(5), 399–407. 10.1038/gim.2013.32 PubMed DOI

Singh, A. K. , Eken, A. , Hagin, D. , Komal, K. , Bhise, G. , Shaji, A. , Arkatkar, T. , Jackson, S. W. , Bettelli, E. , Torgerson, T. R. , & Oukka, M. (2017). DOCK8 regulates fitness and function of regulatory T cells through modulation of IL‐2 signaling. JCI Insight, 2(19), 10.1172/jci.insight.94275 PubMed DOI PMC

Steinman, K. J. , Spence, S. J. , Ramocki, M. B. , Proud, M. B. , Kessler, S. K. , Marco, E. J. , Green Snyder, L. A. , D'Angelo, D. , Chen, Q. , Chung, W. K. , & Sherr, E. H. (2016). 16p11.2 deletion and duplication: Characterizing neurologic phenotypes in a large clinically ascertained cohort. American Journal of Medical Genetics Part A, 170(11), 2943–2955. 10.1002/ajmg.a.37820 PubMed DOI

Su, H. C. (2010). Dedicator of cytokinesis 8 (DOCK8) deficiency. Current Opinion in Allergy and Clinical Immunology, 10(6), 515–520. 10.1097/ACI.0b013e32833fd718 PubMed DOI PMC

Tang, H.‐Y. , Fang, P. , Ward, P. A. , Schmitt, E. , Darilek, S. , Manolidis, S. , Oghalai, J. S. , Roa, B. B. , & Alford, R. L. (2006). DNA sequence analysis of GJB2, encoding connexin 26: Observations from a population of hearing impaired cases and variable carrier rates, complex genotypes, and ethnic stratification of alleles among controls. American Journal of Medical Genetics Part A, 140A(22), 2401–2415. 10.1002/ajmg.a.31525 PubMed DOI PMC

Tassano, E. , Accogli, A. , Pavanello, M. , Bruno, C. , Capra, V. , Gimelli, G. , & Cuoco, C. (2016). Interstitial 9p24.3 deletion involving only DOCK8 and KANK1 genes in two patients with non‐overlapping phenotypic traits. European Journal of Medical Genetics, 59, 20–25. 10.1016/j.ejmg.2015.11.011 PubMed DOI

Ulfarsson, M. O. , Walters, G. B. , Gustafsson, O. , Steinberg, S. , Silva, A. , Doyle, O. M. , Brammer, M. , Gudbjartsson, D. F. , Arnarsdottir, S. , Jonsdottir, G. A. , Gisladottir, R. S. , Bjornsdottir, G. , Helgason, H. , Ellingsen, L. M. , Halldorsson, J. G. , Saemundsen, E. , Stefansdottir, B. , Jonsson, L. , Eiriksdottir, V. K. , … Stefansson, K. (2017). 15q11.2 CNV affects cognitive, structural and functional correlates of dyslexia and dyscalculia. Translational Psychiatry, 7(4), e1109. 10.1038/tp.2017.77 PubMed DOI PMC

Urraca, N. , Cleary, J. , Brewer, V. , Pivnick, E. K. , McVicar, K. , Thibert, R. L. , Schanen, N. C. , Esmer, C. , Lamport, D. , & Reiter, L. T. (2013). The interstitial duplication 15q11.2‐q13 syndrome includes autism, mild facial anomalies and a characteristic EEG signature. Autism Research, 6(4), 268–279. 10.1002/aur.1284 PubMed DOI PMC

van der Zwaag, B. , Staal, W. G. , Hochstenbach, R. , Poot, M. , Spierenburg, H. A. , de Jonge, M. V. , Verbeek, N. E. , van ‘t Slot, R. , van Es, M. A. , Staal, F. J. , Freitag, C. M. , Buizer‐Voskamp, J. E. , Nelen, M. R. , van den Berg, L. H. , van Amstel, H. K. P. , van Engeland, H. , & Burbach, J. P. H. (2009). A co‐segregating microduplication of chromosome 15q11.2 pinpoints two risk genes for autism spectrum disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 9999B. 10.1002/ajmg.b.31055 PubMed DOI PMC

Vanzo, R. J. , Twede, H. , Ho, K. S. , Prasad, A. , Martin, M. M. , South, S. T. , & Wassman, E. R. (2019). Clinical significance of copy number variants involving KANK1 in patients with neurodevelopmental disorders. European Journal of Medical Genetics, 62(1), 15–20. 10.1016/j.ejmg.2018.04.012 PubMed DOI

Wallis, M. J. , Boys, A. , Tassano, E. , & Delatycki, M. B. (2020). Small interstitial 9p24.3 deletions principally involving KANK1 are likely benign copy number variants. European Journal of Medical Genetics, 63(1), 103618. 10.1016/j.ejmg.2019.01.008 PubMed DOI

Wegiel, J. , Schanen, N. C. , Cook, E. H. , Sigman, M. , Brown, W. T. , Kuchna, I. , Nowicki, K. , Wegiel, J. , Imaki, H. , Ma, S. Y. , Marchi, E. , Wierzba‐Bobrowicz, T. , Chauhan, A. , Chauhan, V. , Cohen, I. L. , London, E. , Flory, M. , Lach, B. , & Wisniewski, T. (2012). Differences between the pattern of developmental abnormalities in autism associated with duplications 15q11.2‐q13 and idiopathic autism. Journal of Neuropathology & Experimental Neurology, 71, 382–397. 10.1097/NEN.0b013e318251f537 PubMed DOI PMC

Zhou, Y. , Lum, J. M. S. , Yeo, G.‐H. , Kiing, J. , Tay, S. K. H. , & Chong, S. S. (2006). Simplified molecular diagnosis of fragile X syndrome by fluorescent methylation‐specific PCR and GeneScan analysis. Clinical Chemistry, 52(8), 1492–1500. 10.1373/clinchem.2006.068593 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...