Collateral sensitivity associated with antibiotic resistance plasmids
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33470194
PubMed Central
PMC7837676
DOI
10.7554/elife.65130
PII: 65130
Knihovny.cz E-zdroje
- Klíčová slova
- E. coli, antibiotics, collateral sensitivity, evolutionary biology, infectious disease, microbiology, plasmid,
- MeSH
- antibakteriální látky farmakologie MeSH
- Escherichia coli účinky léků genetika MeSH
- karbapenemy farmakologie MeSH
- kolaterální senzitivita * MeSH
- mnohočetná bakteriální léková rezistence genetika MeSH
- plazmidy účinky léků fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- karbapenemy MeSH
Collateral sensitivity (CS) is a promising alternative approach to counteract the rising problem of antibiotic resistance (ABR). CS occurs when the acquisition of resistance to one antibiotic produces increased susceptibility to a second antibiotic. Recent studies have focused on CS strategies designed against ABR mediated by chromosomal mutations. However, one of the main drivers of ABR in clinically relevant bacteria is the horizontal transfer of ABR genes mediated by plasmids. Here, we report the first analysis of CS associated with the acquisition of complete ABR plasmids, including the clinically important carbapenem-resistance conjugative plasmid pOXA-48. In addition, we describe the conservation of CS in clinical E. coli isolates and its application to selectively kill plasmid-carrying bacteria. Our results provide new insights that establish the basis for developing CS-informed treatment strategies to combat plasmid-mediated ABR.
Centro Nacional de Biotecnología CSIC Madrid Spain
Red Española de Investigación en Patología Infecciosa Instituto de Salud Carlos 3 Madrid Spain
Zobrazit více v PubMed
Alonso-del Valle A, León-Sampedro R, Rodríguez-Beltrán J, Hernández-García M, Ruiz-Garbajosa P, Cantón R, Á SM, Spain M, Peña-Miller R. The distribution of plasmid fitness effects explains plasmid persistence in bacterial. bioRxiv. 2020 doi: 10.1101/2020.08.01.230672. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Baym M, Stone LK, Kishony R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science. 2016;351:aad3292. doi: 10.1126/science.aad3292. PubMed DOI PMC
Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O. ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microbial Genomics. 2018;4:1–8. doi: 10.1099/mgen.0.000192. PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. In silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrobial Agents and Chemotherapy. 2014;58:3895–3903. doi: 10.1128/AAC.02412-14. PubMed DOI PMC
David S, Reuter S, Harris SR, Glasner C, Feltwell T, Argimon S, Abudahab K, Goater R, Giani T, Errico G, Aspbury M, Sjunnebo S. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nature. 2019;4:1919–1929. doi: 10.1038/s41564-019-0492-8. PubMed DOI PMC
DelaFuente J, Rodriguez-Beltran J, San Millan A. Methods to study fitness and compensatory adaptation in Plasmid-Carrying Bacteria. Gene Transfer. 2020;2075:371–382. doi: 10.1007/978-1-4939-9877-7_26. PubMed DOI
Dortet L, Oueslati S, Jeannot K, Tandé D, Naas T, Nordmann P. Genetic and biochemical characterization of OXA-405, an OXA-48-type extended-spectrum β-lactamase without significant carbapenemase activity. Antimicrobial Agents and Chemotherapy. 2015;59:3823–3828. doi: 10.1128/AAC.05058-14. PubMed DOI PMC
EUCAST The European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters. v11.0EUCAST. 2021 http://www.eucast.org/clinical_breakpoints/
Flach C-F, Johnning A, Nilsson I, Smalla K, Kristiansson E, Larsson DGJ. Isolation of novel IncA/C and IncN fluoroquinolone resistance plasmids from an antibiotic-polluted lake. Journal of Antimicrobial Chemotherapy. 2015;70:2709–2717. doi: 10.1093/jac/dkv167. PubMed DOI
Fröhlich C, Sørum V, Thomassen AM, Johnsen PJ, Leiros HS, Samuelsen Ø. OXA-48-Mediated Ceftazidime-Avibactam resistance is associated with evolutionary Trade-Offs. mSphere. 2019;4 doi: 10.1128/mSphere.00024-19. PubMed DOI PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–1075. doi: 10.1093/bioinformatics/btt086. PubMed DOI PMC
Hernández-García M, León-Sampedro R, Pérez-Viso B, Morosini MI, López-Fresneña N, Díaz-Agero C, Coque TM, Ruiz-Garbajosa P, Cantón R. First Report of an OXA-48- and CTX-M-213-Producing Kluyvera Species Clone Recovered from Patients Admitted in a University Hospital in Madrid, Spain. Antimicrobial Agents and Chemotherapy. 2018a;62:e01238-18. doi: 10.1128/AAC.01238-18. PubMed DOI PMC
Hernández-García M, Pérez-Viso B, Carmen Turrientes M, Díaz-Agero C, López-Fresneña N, Bonten M, Malhotra-Kumar S, Ruiz-Garbajosa P, Cantón R. Characterization of carbapenemase-producing Enterobacteriaceae from colonized patients in a university hospital in Madrid, Spain, during the R-GNOSIS project depicts increased clonal diversity over time with maintenance of high-risk clones. Journal of Antimicrobial Chemotherapy. 2018b;73:3039–3043. doi: 10.1093/jac/dky284. PubMed DOI
Imamovic L, Sommer MO. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Science Translational Medicine. 2013;5:204ra132. doi: 10.1126/scitranslmed.3006609. PubMed DOI
Jim O. Tackling Drug-Resistant Infections Globally: Final Report and Recommnedations. The Review on Antimicrobial Resistance; 2016. https://www.iica.int/pt/node/18560
Katz L, Griswold T, Morrison S, Caravas J, Zhang S, Bakker H, Deng X, Carleton H. Mashtree: a rapid comparison of whole genome sequence files. Journal of Open Source Software. 2019;4:1762. doi: 10.21105/joss.01762. PubMed DOI PMC
Kim S, Lieberman TD, Kishony R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. PNAS. 2014;111:14494–14499. doi: 10.1073/pnas.1409800111. PubMed DOI PMC
Lázár V, Pal Singh G, Spohn R, Nagy I, Horváth B, Hrtyan M, Busa-Fekete R, Bogos B, Méhi O, Csörgő B, Pósfai G, Fekete G, Szappanos B, Kégl B, Papp B, Pál C. Bacterial evolution of antibiotic hypersensitivity. Molecular Systems Biology. 2013;9:700. doi: 10.1038/msb.2013.57. PubMed DOI PMC
Le Roux F, Binesse J, Saulnier D, Mazel D. Construction of a Vibrio splendidus mutant lacking the metalloprotease gene vsm by use of a novel counterselectable suicide vector. Applied and Environmental Microbiology. 2007;73:777–784. doi: 10.1128/AEM.02147-06. PubMed DOI PMC
León-Sampedro R, DelaFuente J, Díaz-Agero C, Musicha P, Rodriguez-Beltran J, de la Vega C, Hernández-García M, Group S, Lopez-Fresneña N, Ruiz-Garbajosa P, Canton R, Cooper BS, San A, Behnke M, Blok H, Brun-Buisson C, Fankhauser C, Gastmeier P, Goossens H, Hansen S, Harbarth S, Huttner B, Kloosterman F, Kola A, Kuperberg A, Lammens C, Leus F, Maechler F, Malhotra S, Schotsman J, Schwab F, Triay C. Dissemination routes of the carbapenem resistance plasmid pOXA-48 in a hospital setting. bioRxiv. 2020 doi: 10.1101/2020.04.20.050476. DOI
Letunic I, Bork P. Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Research. 2011;39:W475–W478. doi: 10.1093/nar/gkr201. PubMed DOI PMC
Lübbert C. Antimicrobial therapy of acute diarrhoea: a clinical review. Expert Review of Anti-Infective Therapy. 2016;14:193–206. doi: 10.1586/14787210.2016.1128824. PubMed DOI
MacLean RC, San Millan A. The evolution of antibiotic resistance. Science. 2019;365:1082–1083. doi: 10.1126/science.aax3879. PubMed DOI
Maltas J, Wood KB. Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance. PLOS Biology. 2019;17:e3000515. doi: 10.1371/journal.pbio.3000515. PubMed DOI PMC
Morrill HJ, Pogue JM, Kaye KS, LaPlante KL. Treatment options for Carbapenem-Resistant Enterobacteriaceae infections. Open Forum Infectious Diseases. 2015;2:ofvo50. doi: 10.1093/ofid/ofv050. PubMed DOI PMC
Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, Phillippy AM. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biology. 2016;17:1–14. doi: 10.1186/s13059-016-0997-x. PubMed DOI PMC
Papagiannitsis CC, Dolejska M, Izdebski R, Dobiasova H, Studentova V, Esteves FJ, Derde LPG, Bonten MJM, Hrabák J, Gniadkowski M. Characterization of pKP-M1144, a novel ColE1-Like plasmid encoding IMP-8, GES-5, and BEL-1 β-Lactamases, from a Klebsiella pneumoniae sequence type 252 isolate. Antimicrobial Agents and Chemotherapy. 2015;59:5065–5068. doi: 10.1128/AAC.00937-15. PubMed DOI PMC
Papagiannitsis CC, Paskova V, Chudejova K, Medvecky M, Bitar I, Jakubu V, Zemlickova H, Jirsa R, Hrabak J. Characterization of pEncl-30969cz, a novel ColE1-like plasmid encoding VIM-1 carbapenemase, from an Enterobacter cloacae sequence type 92 isolate. Diagnostic Microbiology and Infectious Disease. 2018;91:191–193. doi: 10.1016/j.diagmicrobio.2018.01.024. PubMed DOI
Partridge SR, Kwong SM, Firth N, Jensen SO. Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Reviews. 2018;31:17. doi: 10.1128/CMR.00088-17. PubMed DOI PMC
Podnecky NL, Fredheim EGA, Kloos J, Sørum V, Primicerio R, Roberts AP, Rozen DE, Samuelsen Ø, Johnsen PJ. Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli. Nature Communications. 2018;9:3673. doi: 10.1038/s41467-018-06143-y. PubMed DOI PMC
Poirel L, Bonnin RA, Nordmann P. Genetic features of the widespread plasmid coding for the carbapenemase OXA-48. Antimicrobial Agents and Chemotherapy. 2012;56:559–562. doi: 10.1128/AAC.05289-11. PubMed DOI PMC
Revell LJ. Phytools: an R package for phylogenetic comparative biology (and other things) Methods in Ecology and Evolution. 2012;3:217–223. doi: 10.1111/j.2041-210X.2011.00169.x. DOI
Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microbial Genomics. 2018;4:206. doi: 10.1099/mgen.0.000206. PubMed DOI PMC
Rodriguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A. Treatment of infections caused by Extended-Spectrum-Beta- Clinical Microbiology Reviews. 2018;31:e00079-17. doi: 10.1128/CMR.00079-17. PubMed DOI PMC
Rodriguez-Beltran J, Hernandez-Beltran JCR, DelaFuente J, Escudero JA, Fuentes-Hernandez A, MacLean RC, Peña-Miller R, San Millan A. Multicopy plasmids allow Bacteria to escape from fitness trade-offs during evolutionary innovation. Nature Ecology & Evolution. 2018;2:873–881. doi: 10.1038/s41559-018-0529-z. PubMed DOI PMC
Roemhild R, Linkevicius M, Andersson DI. Molecular mechanisms of collateral sensitivity to the antibiotic nitrofurantoin. PLOS Biology. 2020;18:e3000612. doi: 10.1371/journal.pbio.3000612. PubMed DOI PMC
Roemhild R, Schulenburg H. Evolutionary ecology meets the antibiotic crisis Can we control pathogen adaptation through sequential therapy? Evol Med Public Heal. 2019;2019:37–45. doi: 10.1093/emph/eoz008. PubMed DOI PMC
Rosenkilde CEH, Munck C, Porse A, Linkevicius M, Andersson DI, Sommer MOA. Collateral sensitivity constrains resistance evolution of the CTX-M-15 β-lactamase. Nature Communications. 2019;10:1–10. doi: 10.1038/s41467-019-08529-y. PubMed DOI PMC
San Millan A, Toll-Riera M, Qi Q, Betts A, Hopkinson RJ, McCullagh J, MacLean RC. Integrative analysis of fitness and metabolic effects of plasmids in Pseudomonas aeruginosa PAO1. The ISME Journal. 2018;12:3014–3024. doi: 10.1038/s41396-018-0224-8. PubMed DOI PMC
San Millan A, MacLean RC. Fitness costs of plasmids: a limit to plasmid transmission. Microbiology Spectrum. 2017;5:0016-2017. doi: 10.1128/microbiolspec.MTBP-0016-2017. PubMed DOI
Seemann T. Genome analysis prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI
Seemann T. snippy: fast bacterial variant calling from NGS reads. 2af674c GitHub. 2015 https://github.com/tseemann/snippy
Szybalski W, Bryson V. Genetic studies on microbial cross resistance to toxic agents. I. cross resistance of Escherichia coli to fifteen antibiotics. Journal of Bacteriology. 1952;64:489–499. doi: 10.1128/JB.64.4.489-499.1952. PubMed DOI PMC
Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative Bacteria. Clinical Microbiology Reviews. 2012;25:450–470. doi: 10.1128/CMR.05041-11. PubMed DOI PMC
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Computational Biology. 2017;13:e1005595. doi: 10.1371/journal.pcbi.1005595. PubMed DOI PMC
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. Identification of acquired antimicrobial resistance genes. Journal of Antimicrobial Chemotherapy. 2012;67:2640–2644. doi: 10.1093/jac/dks261. PubMed DOI PMC