Involvement of laccase-like enzymes in humic substance degradation by diverse polar soil bacteria
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
PE20170
Korea Polar Research Institute
PubMed
33471293
DOI
10.1007/s12223-020-00847-9
PII: 10.1007/s12223-020-00847-9
Knihovny.cz E-zdroje
- MeSH
- Bacteria * enzymologie genetika MeSH
- fylogeneze MeSH
- huminové látky * mikrobiologie MeSH
- lakasa * genetika metabolismus MeSH
- půda MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- huminové látky * MeSH
- lakasa * MeSH
- půda MeSH
- RNA ribozomální 16S MeSH
Humic substances (HS) in soil are widely distributed in cold environments and account for a significant fraction of soil's organic carbon. Bacterial strains (n = 281) were isolated at 15 °C using medium containing humic acids (HA), a principal component of HS, from a variety of polar soil samples: 217 from the Antarctic and 64 from the Arctic. We identified 73 potential HA-degrading bacteria based on 16S rRNA sequence similarity, and these sequences were affiliated with phyla Proteobacteria (73.9%), Actinobacteria (20.5%), and Bacteroidetes (5.5%). HA-degrading strains were further classified into the genera Pseudomonas (51 strains), Rhodococcus (10 strains), or others (12 strains). Most strains degraded HA between 10 and 25 °C, but not above 30 °C, indicating cold-adapted degradation. Thirty unique laccase-like multicopper oxidase (LMCO) gene fragments were PCR-amplified from 71% of the 73 HA-degrading bacterial strains, all of which included conserved copper-binding regions (CBR) I and II, both essential for laccase activity. Bacterial LMCO sequences differed from known fungal laccases; for example, a cysteine residue between CBR I and CBR II in fungal laccases was not detected in bacterial LMCOs. This suggests a bacterial biomarker role for LMCO to predict changes in HS-degradation rates in tundra regions as global climate changes. Computer-aided molecular modeling showed these LMCOs contain a highly-conserved copper-dependent active site formed by three histidine residues between CBR I and CBR II. Phylogenetic- and modeling-based methods confirmed the wide occurrence of LMCO genes in HA-degrading polar soil bacteria and linked their putative gene functions with initial HS-degradation processes.
Department of Systems Biology Yonsei University 03722 Seoul Republic of Korea
Division of Life Sciences Korea Polar Research Institute 21990 Incheon Republic of Korea
Zobrazit více v PubMed
Abakumov E, Alekseev I (2018) Stability of soil organic matter in cryosols of the maritime Antarctic: insights from 13c nmr and electron spin resonance spectroscopy. Solid Earth 9:1329–1339. https://doi.org/10.5194/se-9-1329-2018 DOI
Ausec L, van Elsas JD, Mandic-Mulec I (2011) Two- and three-domain bacterial laccase-like genes are present in drained peat soils. Soil Biol Biochem 43:975–983. https://doi.org/10.1016/j.soilbio.2011.01.013 DOI
Baldrian P (2006) Fungal laccases - occurrence and properties. FEMS Microbiol Rev 30:215–242. https://doi.org/10.1111/j.1574-4976.2005.00010.x PubMed DOI
Bej AK, Saul D, Aislabie J (2000) Cold-tolerant alkane-degrading rhodococcus species from Antarctica. Polar Biol 23:100–105. https://doi.org/10.1007/s003000050014 DOI
Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150. https://doi.org/10.1007/s00203-002-0510-7 PubMed DOI
Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150. https://doi.org/10.1007/s00203-002-0510-7 PubMed DOI
Dick DP, Burba P, Herzog H (1999) Influence of extractant and soil type on molecular characteristics of humic substances from two Brazilian soils. J Braz Chem Soc 10:140–145. https://doi.org/10.1590/S0103-50531999000200012 DOI
Esham EC, Ye W, Moran MA (2000) Identification and characterization of humic substances-degrading bacterial isolates from an estuarine environment. FEMS Microbiol Ecol 34:103–111. https://doi.org/10.1111/j.1574-6941.2000.tb00759.x PubMed DOI
Fakoussa RM, Frost PJ (1999) In vivo-decolorization of coal-derived humic acids by laccase-excreting fungus Trametes versicolor. Appl Microbiol Biotechnol 52:60–65. https://doi.org/10.1007/s002530051487 DOI
Freedman Z, Zak DR (2014) Atmospheric n deposition increases bacterial laccase-like multicopper oxidases: Implications for organic matter decay. Appl Environ Microbiol 80:4460–4468. https://doi.org/10.1128/AEM.01224-14 PubMed DOI PMC
Freedman Z, Zak DR (2014) Atmospheric n deposition increases bacterial laccase-like multicopper oxidases: Implications for organic matter decay. Appl Environ Microbiol 80:4460–4468. https://doi.org/10.1128/AEM.01224-14 PubMed DOI PMC
Gramss G, Ziegenhagen D, Sorge S (1999) Degradation of soil humic extract by wood- and soil-associated fungi, bacteria, and commercial enzymes. Microb Ecol 37:140–151. https://doi.org/10.1007/s002489900138 PubMed DOI
Granja-Travez RS, Bugg TDH (2018) Characterization of multicopper oxidase copa from Pseudomonas putida kt2440 and Pseudomonas fluorescens pf-5: involvement in bacterial lignin oxidation. Arch Biochem Biophys 660:97–107. https://doi.org/10.1016/j.abb.2018.10.012 PubMed DOI
Granja-Travez RS, Wilkinson RC, Persinoti GF, Squina FM, Fulop V, Bugg TDH (2018) Structural and functional characterisation of multi-copper oxidase cueo from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate. FEBS J 285:1684–1700. https://doi.org/10.1111/febs.14437 PubMed DOI
Hoegger PJ, Kilaru S, James TY, Thacker JR, Kues U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326. https://doi.org/10.1111/j.1742-4658.2006.05247.x PubMed DOI
Jurelevicius D, Alvarez VM, Peixoto R, Rosado AS, Seldin L (2012) Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases (PAH-RHD) encoding genes in different soils from King George Bay, Antarctic Peninsula. Appl Soil Ecol 55:1–9. https://doi.org/10.1016/j.apsoil.2011.12.008 DOI
Kellner H, Luis P, Zimdars B, Kiesel B, Buscot F (2008) Diversity of bacterial laccase-like multicopper oxidase genes in forest and grassland cambisol soil samples. Soil Biol Biochem 40:638–648. https://doi.org/10.1016/j.soilbio.2007.09.013 DOI
Kim D, Park HJ, Nam S, Kim SC, Lee H (2019) Humic substances degradation by a microbial consortium enriched from subarctic tundra soil. Korean J Microbiol 55:367–376. https://doi.org/10.7845/kjm.2019.9141 DOI
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549 DOI
Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528:60–68. https://doi.org/10.1038/nature16069 PubMed DOI
Lipczynska-Kochany E (2018) Humic substances, their microbial interactions and effects on biological transformations of organic pollutants in water and soil: a review. Chemosphere 202:420–437. https://doi.org/10.1016/j.chemosphere.2018.03.104 PubMed DOI
Ma Y, Wang L, Shao Z (2006) Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 8:455–465. https://doi.org/10.1111/j.1462-2920.2005.00911.x PubMed DOI
Mohammadian M, Fathi-Roudsari M, Mollania N, Badoei-Dalfard A, Khajeh K (2010) Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: Purification and biochemical characterization. J Ind Microbiol Biotechnol 37:863–869. https://doi.org/10.1007/s10295-010-0734-5 PubMed DOI
Necochea R, Valderrama B, Diaz-Sandoval S, Folch-Mallol JL, Vazquez-Duhalt R, Iturriaga G (2005) Phylogenetic and biochemical characterisation of a recombinant laccase from Trametes versicolor. FEMS Microbiol Lett 244:235–241. https://doi.org/10.1016/j.femsle.2005.01.054 PubMed DOI
Park HJ, Kim D (2015) Isolation and characterization of humic substances-degrading bacteria from the subarctic Alaska grasslands. J Basic Microbiol 55:54–61. https://doi.org/10.1002/jobm.201300087 PubMed DOI
Park HJ, Chae N, Sul WJ, Lee BY, Lee YK, Kim D (2015) Temporal changes in soil bacterial diversity and humic substances degradation in subarctic tundra soil. Microb Ecol 69:668–675. https://doi.org/10.1007/s00248-014-0499-x PubMed DOI
Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90 Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669. https://doi.org/10.1074/jbc.M204571200 PubMed DOI
Quintanar L, Stoj C, Wang TP, Kosman DJ, Solomon EI (2005) Role of aspartate 94 in the decay of the peroxide intermediate in the multicopper oxidase Fet3p. Biochemistry 44:6081–6091. https://doi.org/10.1021/bi047379c PubMed DOI
Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonad: a taxonomic study. J Gen Microbiol 43:157–271 DOI
Tikhonov VV, Yakushev AV, Zavgorodnyaya YA, Byzov BA, Demin VV (2010) Effects of humic acids on the growth of bacteria. Eurasian Soil Sci 43:305–313. https://doi.org/10.1134/S1064229310030087 DOI
Tribelli PM, Lopez NI (2018) Reporting key features in cold-adapted bacteria. Life (Basel) 8(1):8. https://doi.org/10.3390/life8010008 DOI
Van Trump JI, Sun Y, Coates JD (2006) Microbial interactions with humic substances. Adv Appl Microbiol 60:55–96. https://doi.org/10.1016/S0065-2164(06)60003-8 PubMed DOI
Yoon SH, Ha SM, Lim J, Kwon S, Chun J (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Ant van Leeuwenhoek 110:1281–1286 DOI