Reduction in the QRS area after cardiac resynchronization therapy is associated with survival and echocardiographic response
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33476467
PubMed Central
PMC7986123
DOI
10.1111/jce.14910
Knihovny.cz E-zdroje
- Klíčová slova
- QRS area, QRS area reduction, cardiac resynchronization therapy, echocardiographic response, heart failure, survival,
- MeSH
- echokardiografie MeSH
- elektrokardiografie MeSH
- lidé MeSH
- retrospektivní studie MeSH
- srdeční resynchronizační terapie * MeSH
- srdeční selhání * diagnostické zobrazování terapie MeSH
- tepový objem MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Recent studies have shown that the baseline QRS area is associated with the clinical response after cardiac resynchronization therapy (CRT). In this study, we investigated the association of QRS area reduction (∆QRS area) after CRT with the outcome. We hypothesize that a larger ∆QRS area is associated with a better survival and echocardiographic response. METHODS AND RESULTS: Electrocardiograms (ECG) obtained before and 2-12 months after CRT from 1299 patients in a multi-center CRT-registry were analyzed. The QRS area was calculated from vectorcardiograms that were synthesized from 12-lead ECGs. The primary endpoint was a combination of all-cause mortality, heart transplantation, and left ventricular (LV) assist device implantation. The secondary endpoint was the echocardiographic response, defined as LV end-systolic volume reduction ≥ of 15%. Patients with ∆QRS area above the optimal cut-off value (62 µVs) had a lower risk of reaching the primary endpoint (hazard ratio: 0.43; confidence interval [CI] 0.33-0.56, p < .001), and a higher chance of echocardiographic response (odds ratio [OR] 3.3;CI 2.4-4.6, p < .0001). In multivariable analysis, ∆QRS area was independently associated with both endpoints. In patients with baseline QRS area ≥109 µVs, survival, and echocardiographic response were better when the ∆QRS area was ≥62 µVs (p < .0001). Logistic regression showed that in patients with baseline QRS area ≥109 µVs, ∆QRS area was the only significant predictor of survival (OR: 0.981; CI: 0.967-0.994, p = .006). CONCLUSION: ∆QRS area is an independent determinant of CRT response, especially in patients with a large baseline QRS area. Failure to achieve a large QRS area reduction with CRT is associated with a poor clinical outcome.
Department of Cardiology Radboud University Medical Centre Nijmegen The Netherlands
Department of Cardiology University Medical Center Utrecht Utrecht The Netherlands
Zobrazit více v PubMed
Brignole M, Auricchio A, Baron‐Esquivias G, et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J. 2013;34(29):2281‐2329. PubMed
Mafi Rad M, Wijntjens GWM, Engels EB, et al. Vectorcardiographic QRS area identifies delayed left ventricular lateral wall activation determined by electroanatomic mapping in candidates for cardiac resynchronization therapy. Heart Rhythm. 2016;13(1):217‐225. PubMed
Nguyên UC, Claridge S, Vernooy K, et al. Relationship between vectorcardiographic QRSarea, myocardial scar quantification, and response to cardiac resynchronization therapy. J Electrocardiol. 2018;51(3):457‐463. PubMed
van Stipdonk AMW, Ter Horst I, Kloosterman M, et al. QRS area is a strong determinant of outcome in cardiac resynchronization therapy. Circ Arrhythm Electrophysiol. 2018;11(12):e006497. PubMed
Maass AH, Vernooy K, Wijers SC, et al. Refining success of cardiac resynchronization therapy using a simple score predicting the amount of reverse ventricular remodelling: results from the Markers and Response to CRT (MARC) study. Europace. 2018;20(2):e1‐e10. PubMed
Kors JA, van Herpen G, Sittig AC, et al. Reconstruction of the Frank vectorcardiogram from standard electrocardiographic leads: diagnostic comparison of different methods. Eur Heart J. 1990;11(12):1083‐1092. PubMed
Okafor O, Zegard A, van Dam P, et al. Changes in QRS area and QRS duration after cardiac resynchronization therapy predict cardiac mortality, heart failure hospitalizations, and ventricular arrhythmias. J Am Heart Assoc. 2019;8(21):e013539. PubMed PMC
Emerek K, Friedman DJ, Sørensen PL, et al. Vectorcardiographic QRS area is associated with long‐term outcome after cardiac resynchronization therapy. Heart Rhythm. 2019;16(2):213‐219. PubMed PMC
Wisnoskey B, Varma N. Left ventricular paced activation in cardiac resynchronization therapy patients with left bundle branch block and relationship to its electrical substrate. Heart Rhythm O2. 2020;1(2):85‐95. PubMed PMC
Friedman DJ, Emerek K, Hansen SM, et al. Non‐invasively quantified changes in left ventricular activation predict outcomes in patients undergoing cardiac resynchronization therapy. J Cardiovasc Electrophysiol. 2019;30(11):2475‐2483. PubMed PMC
de Pooter J, El Haddad M, de Buyzere M, et al. Biventricular paced QRS area predicts acute hemodynamic CRT response better than QRS duration or QRS amplitudes. J Cardiovasc Electrophysiol. 2017;28(2):192‐200. PubMed
Hsing JM, Selzman KA, Leclercq C, et al. Paced left ventricular QRS width and ECG parameters predict outcomes after cardiac resynchronization therapy: PROSPECT‐ECG substudy. Circ Arrhythm Electrophysiol. 2011;4(6):851‐857. PubMed
Gold MR, Thébault C, Linde C, et al. Effect of QRS duration and morphology on cardiac resynchronization therapy outcomes in mild heart failure: results from the Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction (REVERSE) study. Circulation. 2012;126(7):822‐829. PubMed
De Pooter J, El Haddad M, Timmers L, et al. Different methods to measure QRS duration in CRT patients: impact on the predictive value of QRS duration parameters. Ann Noninvasive Electrocardiol. 2016;21(3):305‐315. PubMed PMC
De Pooter J, El Haddad M, Stroobandt R, et al. Accuracy of computer‐calculated and manual QRS duration assessments: clinical implications to select candidates for cardiac resynchronization therapy. Int J Cardiol. 2017;236:276‐282. PubMed
Sweeney MO, Hellkamp AS, van Bommel RJ, et al. QRS fusion complex analysis using wave interference to predict reverse remodeling during cardiac resynchronization therapy. Heart Rhythm. 2014;11(5):806‐813. PubMed
Engels EB, Strik M, van Middendorp LB, et al. Prediction of optimal cardiac resynchronization by vectors extracted from electrograms in dyssynchronous canine hearts. J Cardiovasc Electrophysiol. 2017;28(8):944‐951. PubMed
Zanon F, Marcantoni L, Baracca E, et al. Optimization of left ventricular pacing site plus multipoint pacing improves remodeling and clinical response to cardiac resynchronization therapy at 1 year. Heart Rhythm. 2016;13(8):1644‐1651. PubMed
Engels EB, Thibault B, Mangual J, et al. Dynamic atrioventricular delay programming improves ventricular electrical synchronization as evaluated by 3D vectorcardiography. J Electrocardiol. 2020;58:1‐6. PubMed
van Deursen CJM, Vernooy K, Dudink E, et al. Vectorcardiographic QRS area as a novel predictor of response to cardiac resynchronization therapy. J Electrocardiol. 2015;48(1):45‐52. PubMed
Reddy VY, Miller MA, Neuzil P, et al. Cardiac resynchronization therapy with wireless left ventricular endocardial pacing: the SELECT‐LV study. J Am Coll Cardiol. 2017;69(17):2119‐2129. PubMed