The use of an O-arm in endonasal endoscopic operations of the skull base
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
33485359
PubMed Central
PMC7825238
DOI
10.1186/s12893-021-01066-w
PII: 10.1186/s12893-021-01066-w
Knihovny.cz E-zdroje
- Klíčová slova
- Endonasal approach, Endoscopic skull base surgery, Neuronavigation, O-arm,
- MeSH
- adenom * diagnostické zobrazování chirurgie MeSH
- baze lební * diagnostické zobrazování chirurgie MeSH
- chirurgie s pomocí počítače * metody MeSH
- dospělí MeSH
- hypofýza * diagnostické zobrazování chirurgie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- nádory hypofýzy * diagnostické zobrazování chirurgie MeSH
- neuronavigace metody MeSH
- peroperační doba MeSH
- pilotní projekty MeSH
- počítačová rentgenová tomografie MeSH
- prospektivní studie MeSH
- senioři MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Endoscopic endonasal transsphenoidal approaches are broadly used nowadays for a vast spectrum of pathologies sited in the anterior and middle cranial fossa. The usage of neuronavigation systems (neuronavigation) in these surgeries is crucial for improving orientations deeply inside the skull and increasing patient safety. METHODS: The aim of this study was to assess the use of optical neuronavigation, together with an intraoperative O-arm O2 imaging system, in a group of patients with hypophyseal adenoma that underwent a transnasal transsphenoidal surgery, and correlate the accuracy and its deviation during the navigational process against the use of conventional neuronavigation that uses preoperative MRI and CT scans. The overall group consisted of six patients, between 39 and 78 years old, with a diagnosis of hypophyseal adenoma. Patients were treated with an endoscopic transsphenoidal technique and all of them underwent preoperative MRI and CT scans of the brain. These images were used in the neuronavigation system StealthStation S7® during the surgery, where we defined two bony anatomical landmarks, such as a vomer or the origin of an intrasphenoidal septum, in each operated patient. The tip of the navigational instrument, under endoscopic control, pointed to these landmarks and the distance between the tip and the bony structure was measured on the neuronavigation system. Afterwards, intraoperative 3D x-ray imaging was performed via the mobile system O-arm O2® system with automatic transfer into the navigational system. Under endoscopic guidance, we localized the identical bony anatomical landmarks used in the previous measurement and re-measured the distance between the tip and bony landmark in images acquired by the O-arm. The results of both measurements were statistically compared. RESULTS: The mean error of accuracy during conventional neuronavigation with usage of preoperative CT and MRI scans was 2.65 mm. During the neuronavigation, with utilization of intraoperative 3D O-arm images, the mean error of accuracy 0 mm. These mean errors of accuracy (both measurement methods were compared by nonparametric Wilcoxon test) had a statistically significant difference (p = 0.043). CONCLUSIONS: Based on this preliminary clinical study, we conclude that the O-arm is capable of providing intraoperative x-ray 3D images in sufficient spatial resolution in a clinically feasible acquisition. The mean error of accuracy during intraoperative navigation, based on 3D O-arm scans at the skull base, is significantly lower compared to the usage of navigation using conventional presurgical CT and MRI images. This suggests the suitability of this method for utilization during endoscopic endonasal skull base approaches.
Zobrazit více v PubMed
Dusick JR, Esposito F, Malkasian D, Kelly DF. Avoidance of carotid artery injuries in transsphenoidal surgery with the Doppler probe and micro-hood blades. Neurosurgery. 2007;60:322–328. PubMed
Zhao B, Wei YK, Li GL, Li YN, Yao Y, Kang J, Ma WB, Yan Y, Wang RZ. Extended transsphenoidal approach for pituitary adenomas invading the anterior cranial base, cavernous sinus, and clivus: a single center experience with 126 consecutive cases. J Neurosurg. 2010;112:108–117. doi: 10.3171/2009.3.JNS0929. PubMed DOI
Lauretti L, D’Alessandris QG, Rigante M, Ricciardi L, Mattogno PP, Alessandro O. O-arm in endonasal endoscopic cranial base surgery: technical note on initial feasibility. World Neurosurg. 2018;117:103–108. doi: 10.1016/j.wneu.2018.06.015. PubMed DOI
Patel SK, Husain Q, Eloy JA, Couldwell WT, Liu JK. Norman Dott, Gerard Guiot, and Jules Hardy: key players in the resurrection and preservation of transsphenoidal surgery. Neurosurg Focus. 2012;33(2):E6. doi: 10.3171/2012.6.FOCUS12125. PubMed DOI
Netuka D. Intraoperační zobrazení při operacích adenomů hypofýzy. In: Netuka D, editor. Adenomy hypofýzy: diagnostika a komplexní léčba. Prague: Maxdorf; 2019. pp. 186–194.
Raza SM, See AP, Lim M. Real-time imaging with the o-arm for skull base applications: a cadaveric feasibility study. J Neurol Surg B Skull Base. 2012;73:293–301. doi: 10.1055/s-0032-1321505. PubMed DOI PMC
Linsler S, Antes S, Senger S, Oertel J. The use of intraoperative computed tomography navigation in pituitary surgery promises a better intraoperative orientation in special cases. J Neurosci Rural Pract. 2016;7:598–602. doi: 10.4103/0976-3147.186977. PubMed DOI PMC
Batra PS, Manes RP, Ryan MW, Marple BF. Prospective evaluation of intraoperative computed tomography imaging for endoscopic sinonasal and skull-base surgery. Int Forum Allergy Rhinol. 2010;1(6):481–487. doi: 10.1002/alr.20076. PubMed DOI
Snow R, Levi M, Taylor J, Palush. Accuracy of Acclarent TruDiTM Navigation System using MiniCAT 2020 and MiniCAT IQ In-Office CT. 2019. https://xorantech.com/wp-content/uploads/2020/03/white-paper_2019-MiniCAT-TruDi_2019-002.pdf.
Verma T, Gong W, Norman N, Keck J, Kampen W. Optimization of Intraoperative CT with Automatically-Registered Surgical Navigation. 2017. https://xorantech.com/wp-content/uploads/2020/03/white-paper_iCT-w-Autoregister-IGS-DRAFT-20170908.pdf.
Eboli P, Shafa B, Mayberg M. Intraoperative computed tomography registration and electromagnetic neuronavigation for transsphenoidal pituitary surgery: accuracy and time effectiveness. J Neurosurg. 2011;114:329–335. doi: 10.3171/2010.5.JNS091821. PubMed DOI
Jaffe TA, Hoang JK, Yoshizumi TT, Toncheva G, Lowry C, Ravin C. Radiation dose for routine clinical adult brain CT: variability on different scanners at one institution. Am J Roentgenol. 2011;195:433–438. doi: 10.2214/AJR.09.3957. PubMed DOI
Mori R, Joki T, Matsuwaki Y, Karagiozov K, Murayama Y, Abe T. Initial experience of real-time intraoperative o-arm computed-tomography-guided navigation surgery for pituitary tumors. World Neurosurg. 2013;79(2):319–326. doi: 10.1016/j.wneu.2012.10.011. PubMed DOI
Marcus HJ, Vercauteren T, Ourselin S, Dorward NL. Intraoperative ultrasound in patients undergoing transsphenoidal surgery for pituitary adenoma: systemic review. World Neurosurg. 2017;106:680–685. doi: 10.1016/j.wneu.2017.07.054. PubMed DOI