Helminth Interactions with Bacteria in the Host Gut Are Essential for Its Immunomodulatory Effect
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RGY0078/2015
Human Frontier Science Program
PubMed
33499240
PubMed Central
PMC7910914
DOI
10.3390/microorganisms9020226
PII: microorganisms9020226
Knihovny.cz E-zdroje
- Klíčová slova
- Hymenolepis diminuta, bacterial microbiota, colitis, helminth, immune markers, intestinal inflammation, microbial changes,
- Publikační typ
- časopisecké články MeSH
Colonization by the benign tapeworm, Hymenolepis diminuta, has been associated with a reduction in intestinal inflammation and changes in bacterial microbiota. However, the role of microbiota in the tapeworm anti-inflammatory effect is not yet clear, and the aim of this study was to determine whether disruption of the microflora during worm colonization can affect the course of intestinal inflammation. We added a phase for disrupting the intestinal microbiota using antibiotics to the experimental design for which we previously demonstrated the protective effect of H. diminuta. We monitored the immunological markers, clinical parameters, bacterial microbiota, and histological changes in the colon of rats. After a combination of colonization, antibiotics, and colitis induction, we had four differently affected experimental groups. We observed a different course of the immune response in each group, but no protective effect was found. Rats treated with colonization and antibiotics showed a strong induction of the Th2 response as well as a significant change in microbial diversity. The microbial results also revealed differences in the richness and abundance of some bacterial taxa, influenced by various factors. Our data suggest that interactions between the tapeworm and bacteria may have a major impact on its protective effect.
Zobrazit více v PubMed
Filyk H.A., Osborne L.C. The Multibiome: The intestinal ecosystem’s influence on immune homeostasis, health, and disease. EbioMedicine. 2016;13:46–54. doi: 10.1016/j.ebiom.2016.10.007. PubMed DOI PMC
Rook G.A.W., Bäckhed F., Levin B.R., McFall-Ngai M.J., McLean A.R. Evolution, human-microbe interactions, and life history plasticity. Lancet. 2017;390:521–530. doi: 10.1016/S0140-6736(17)30566-4. PubMed DOI
Gause W.C., Maizels R.M. Macrobiota—Helminths as active participants and partners of the microbiota in host intestinal homeostasis. Curr. Opin. Microbiol. 2016;32:14–18. doi: 10.1016/j.mib.2016.04.004. PubMed DOI PMC
Maizels R.M., Smits H.H., McSorley H.J. Modulation of host immunity by helminths: The expanding repertoire of parasite effector molecules. Immunity. 2018;49:801–818. doi: 10.1016/j.immuni.2018.10.016. PubMed DOI PMC
Mubaraki M., Ahmad M., Hafiz T.A., Marie M.A. The therapeutic prospect of crosstalk between prokaryotic and eukaryotic organisms in the human gut. FEMS Microbiol. Ecol. 2018;94:1–9. doi: 10.1093/femsec/fiy065. PubMed DOI
Rapin A., Harris N.L. Helminth—bacterial interactions: Cause and consequence. Trends Immunol. 2018;39:724–733. doi: 10.1016/j.it.2018.06.002. PubMed DOI
Parker W., Ollerton J. Evolutionary biology and anthropology suggest biome reconstitution as a necessary approach toward dealing with immune disorders. Evol. Med. Public Health. 2013;2013:89–103. doi: 10.1093/emph/eot008. PubMed DOI PMC
Rook G.A.W., Raison C.L., Lowry C.A. Microbial ‘old friends’, immunoregulation and socioeconomic status. Clin. Exp. Immunol. 2014;177:1–12. doi: 10.1111/cei.12269. PubMed DOI PMC
Sobotková K., Parker W., Levá J., Růžková J., Lukeš J., Jirků-Pomajbíková K. Helminth therapy—From the parasite perspective. Trends Parasitol. 2019;35:501–515. doi: 10.1016/j.pt.2019.04.009. PubMed DOI
Grencis R.K. Immunity to helminths: Resistance, regulation, and susceptibility to gastrointestinal nematodes. Annu. Rev. Immunol. 2015;33:201–225. doi: 10.1146/annurev-immunol-032713-120218. PubMed DOI
Harnett M.M., Harnett W. Can parasitic worms cure the modern world’s ills? Trends Parasitol. 2017;33:694–705. doi: 10.1016/j.pt.2017.05.007. PubMed DOI
Maizels R.M., McSorley H.J. Regulation of the host immune system by helminth parasites. J. Allergy Clin. Immunol. 2016;138:666–675. doi: 10.1016/j.jaci.2016.07.007. PubMed DOI PMC
Schirmer M., Smeekens S.P., Vlamakis H., Jaeger M., Oosting M., Franzosa E.A., Jansen T., Jacobs L., Bonder M.J., Kurilshikov A., et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016;167:1125–1136.e8. doi: 10.1016/j.cell.2016.10.020. PubMed DOI PMC
Lambring C.B., Siraj S., Patel K., Sankpal U.T., Mathew S., Basha R. Impact of the microbiome on the immune system. Crit. Rev. Immunol. 2019;39:313–328. doi: 10.1615/CritRevImmunol.2019033233. PubMed DOI PMC
Bernstein C.N., Forbes J.D. Gut microbiome in inflammatory bowel disease and other chronic immune-mediated inflammatory diseases. Inflamm. Intest. Dis. 2017;2:116–123. doi: 10.1159/000481401. PubMed DOI PMC
Bian X., Wu W., Yang L., Lv L., Wang Q., Li Y., Ye J., Fang D., Wu J., Jiang X., et al. Administration of Akkermansia muciniphila ameliorates Dextran Sulfate Sodium-induced ulcerative colitis in mice. Front. Microbiol. 2019;10:2259. doi: 10.3389/fmicb.2019.02259. PubMed DOI PMC
Jang Y.J., Kim W.K., Han D.H., Lee K., Ko G. Lactobacillus fermentum species ameliorate dextran sulfate sodium-induced colitis by regulating the immune response and altering gut microbiota. Gut Microbes. 2019;10:696–711. doi: 10.1080/19490976.2019.1589281. PubMed DOI PMC
Lopez J., Grinspan A. Fecal microbiota transplantation for Inflammatory Bowel Diseases. Gastroenterol. Hepatol. 2016;12:374–379. PubMed PMC
Jenkins T.P., Brindley P.J., Gasser R.B., Cantacessi C. Helminth microbiomes—A hidden treasure trove? Trends Parasitol. 2018;35:13–22. doi: 10.1016/j.pt.2018.10.007. PubMed DOI
White E.C., Houlden A., Bancroft A.J., Hayes K.S., Goldrick M., Grencis R.K., Roberts I.A. Manipulation of host and parasite microbiotas: Survival strategies during chronic nematode infection. Sci. Adv. 2018;4:1–11. doi: 10.1126/sciadv.aap7399. PubMed DOI PMC
Zaiss M.M., Rapin A., Lebon L., Dubey L.K., Mosconi I., Sarter K., Piersigilli A., Menin L., Walker A.W., Rougemont J., et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity. 2015;43:1–13. doi: 10.1016/j.immuni.2015.09.012. PubMed DOI PMC
Brosschot T.P., Reynolds L.A. The impact of a helminth-modified microbiome on host immunity review-article. Mucosal Immunol. 2018;11:1039–1046. doi: 10.1038/s41385-018-0008-5. PubMed DOI
Walk S.T., Blum A.M., Ang-Sheng S., Weinstock J.V., Young V.B. Alteration of the murine gut microbiota during infection with the parasitic helminth, Heligmosomoides polygyrus. Inflamm. Bowel Dis. 2010;16:1841–1849. doi: 10.1002/ibd.21299. PubMed DOI PMC
Rausch S., Held J., Fischer A., Heimesaat M.M., Kühl A.A., Bereswill S., Hartmann S. Small intestinal nematode infection of mice is associated with increased enterobacterial loads alongside the intestinal tract. PLoS ONE. 2013;8:e74026. doi: 10.1371/journal.pone.0074026. PubMed DOI PMC
Holm J.B., Sorobetea D., Kiilerich P., Ramayo-Caldas Y., Estellé J., Ma T., Madsen L., Kristiansen K., Svensson-Frej M. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of lactobacilli. PLoS ONE. 2015;10:e0125495. doi: 10.1371/journal.pone.0125495. PubMed DOI PMC
Houlden A., Hayes K.S., Bancroft A.J., Worthington J.J., Wang P., Grencis R.K., Roberts I.S. Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: Effects reversed by pathogen clearance. PLoS ONE. 2015;10:e0125945. doi: 10.1371/journal.pone.0125945. PubMed DOI PMC
Ramanan D., Bowcutt R., Lee S.C., Tang M.S., Kurtz Z.D., Ding Y., Honda K., Gause W.C., Blaser M.J., Bonneau R.A., et al. Helminth infection promotes colonization resistance via type 2 immunity. Science. 2016;352:608–612. doi: 10.1126/science.aaf3229. PubMed DOI PMC
Broadhurst M.J., Ardeshir A., Kanwar B., Mirpuri J., Gundra U.M., Leung J.M., Wiens K.E., Vujkovic-Cvijin I., Kim C.C., Yarovinsky F., et al. Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon. PLoS Pathog. 2012;8:e1003000. doi: 10.1371/journal.ppat.1003000. PubMed DOI PMC
Li R.W., Wu S., Li W., Navarro K., Couch R.D., Hill D., Urban J.F., Jr. Alterations in the porcine colon microbiota induced by the gastrointestinal nematode Trichuris suis. Infect. Immun. 2012;80:2150–2157. doi: 10.1128/IAI.00141-12. PubMed DOI PMC
Stolzenbach S., Myhill L.J., Andersen L.O., Krych L., Mejer H., Williams A.R., Nejsum P., Stensvold C.R., Nielsen D.S., Thamsborg S.M. Dietary inulin and Trichuris suis infection promote beneficial bacteria throughout the porcine gut. Front. Microbiol. 2020;11:312. doi: 10.3389/fmicb.2020.00312. PubMed DOI PMC
Cooper P., Walker A.W., Reyes J., Chico M., Salter S.J., Vaca M., Parkhill J. Patent human infections with the whipworm, Trichuris trichiura, are not associated with alterations in the faecal microbiota. PLoS ONE. 2013;8:e76573. doi: 10.1371/journal.pone.0076573. PubMed DOI PMC
Cantacessi C., Giacomin P., Croese J., Zakrzewski M., Sotillo J., McCann L., Nolan M.J., Mitreva M., Krause L., Loukas A. Impact of experimental hookworm infection on the human gut microbiota. J. Infect. Dis. 2014;210:1431–1434. doi: 10.1093/infdis/jiu256. PubMed DOI PMC
Lee S.C., Tang M.S., Lim Y.A.L., Choy S.H., Kurtz Z.D., Cox L.M., Gundra U.M., Cho I., Bonneau R., Blaser M.J., et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl. Trop. Dis. 2014;8:e2880. doi: 10.1371/journal.pntd.0002880. PubMed DOI PMC
Jenkins T.P., Rathnayaka Y., Perera P.K., Peachey L.E., Nolan M.J., Krause L., Rajakaruna R.S., Cantacessi C. Infections by human gastrointestinal helminths are associated with changes in faecal microbiota diversity and composition. PLoS ONE. 2017;12:e0184719. doi: 10.1371/journal.pone.0184719. PubMed DOI PMC
Lukeš J., Kuchta R., Scholz T., Pomajbíková K. (Self-) infections with parasites: Re-interpretations for the present. Trends Parasitol. 2014;30:377–385. doi: 10.1016/j.pt.2014.06.005. PubMed DOI
Shi M., Wang A., Prescott D., Waterhouse C.C.M., Zhang S., McDougall J.J., Sharkey K.A., McKay D.M. Infection with an intestinal helminth parasite reduces Freund’s complete adjuvant-induced monoarthritis in mice. Arthritis Rheum. 2011;63:434–444. doi: 10.1002/art.30098. PubMed DOI
Matisz C.E., Leung G., Reyes J.L., Wang A., Sharkey K.A., McKay D.M. Adoptive transfer of helminth antigen-pulsed dendritic cells protects against the development of experimental colitis in mice. Eur. J. Immunol. 2015;45:3126–3139. doi: 10.1002/eji.201545579. PubMed DOI
Williamson L.L., McKenney E.A., Holzknecht Z.E., Belliveau C., Rawls J.F., Poulton S., Parker W., Bilbo S.D. Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection. Brain. Behav. Immun. 2016;51:14–28. doi: 10.1016/j.bbi.2015.07.006. PubMed DOI
Jirků-Pomajbíková K., Jirků M., Levá J., Sobotková K., Morien E., Parfrey L.W. The benign helminth Hymenolepis diminuta ameliorates chemically induced colitis in a rat model system. Parasitology. 2018;145:1324–1335. doi: 10.1017/S0031182018000896. PubMed DOI
Wang A., Fernando M., Leung G., Phan V., Smyth D., McKay D.M. Exacerbation of oxazolone colitis by infection with the helminth Hymenolepis diminuta: Involvement of IL-5 and eosinophils. Am. J. Pathol. 2010;177:2850–2859. doi: 10.2353/ajpath.2010.100537. PubMed DOI PMC
Graepel R., Leung G., Wang A., Villemaire M., Jirik F.R., Sharkey K.A., McDougall J.J., McKay D.M. Murine autoimmune arthritis is exaggerated by infection with the rat tapeworm, Hymenolepis diminuta. Int. J. Parasitol. 2013;43:593–601. doi: 10.1016/j.ijpara.2013.02.006. PubMed DOI
Cheng A.M., Jaint D., Thomas S., Wilson J.K., Parker W. Overcoming evolutionary mismatch by self-treatment with helminths: Current practices and experience. J. Evol. Med. 2015;3:1–22. doi: 10.4303/jem/235910. DOI
Liu J., Morey R.A., Wilson J.K., Parker W. Practices and outcomes of self-treatment with helminths based on physicians’ observations. J. Helminthol. 2017;91:267–277. doi: 10.1017/S0022149X16000316. PubMed DOI
McKay D.M. The immune response to and immunomodulation by Hymenolepis diminuta. Parasitology. 2010;137:385–394. doi: 10.1017/S0031182009990886. PubMed DOI
McKenney E.A., Williamson L., Yoder A.D., Rawls J.F., Bilbo S.D., Parker W. Alteration of the rat cecal microbiome during colonization with the helminth Hymenolepis diminuta. Gut Microbes. 2015;6:182–193. doi: 10.1080/19490976.2015.1047128. PubMed DOI PMC
Parfrey L.W., Jirků M., Šíma R., Jalovecká M., Sak B., Grigore K., Jirků-Pomajbíková K. A benign helminth alters the host immune system and the gut microbiota in a rat model system. PLoS ONE. 2017;12:e0182205. doi: 10.1371/journal.pone.0182205. PubMed DOI PMC
Shute A., Wang A., Jayme T.S., Strous M., McCoy K.D., Buret A.G., McKay D.M. Worm expulsion is independent of alterations in composition of the colonic bacteria that occur during experimental Hymenolepis diminuta-infection in mice. Gut Microbes. 2020;11:497–510. doi: 10.1080/19490976.2019.1688065. PubMed DOI PMC
Knox N.C., Forbes J.D., van Domselaar G., Bernstein C.N. The gut microbiome as a target for IBD treatment: Are we there yet? Curr. Treat. Options Gastroenterol. 2019;17:115–126. doi: 10.1007/s11938-019-00221-w. PubMed DOI
Manichanh C., Reeder J., Gibert P., Varela E., Llopis M., Antolin M., Guigo R., Knight R., Guarner F. Reshaping the gut microbiome with bacterial transplantation and antibiotic intake. Genome Res. 2010;20:1411–1419. doi: 10.1101/gr.107987.110. PubMed DOI PMC
Hintze K.J., Cox J.E., Rrompato G., Benninghoff A.D., Ward R., Broadbent J., Lefevre M. Broad scope method for creating humanized animal models for animal health and disease research through antibiotic treatment and human fecal transfer. Gut Microbes. 2014;5:183–191. doi: 10.4161/gmic.28403. PubMed DOI PMC
Radwan M.A., AlQuadeib B.T., Šiller L., Wright M.C., Horrocks B. Oral administration of amphotericin B nanoparticles: Antifungal activity, bioavailability and toxicity in rats. Drug Deliv. 2017;24:40–50. doi: 10.1080/10717544.2016.1228715. PubMed DOI PMC
Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Gonzales-Peña A.G., Goodrich J.K., Gordon J.I., et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303. PubMed DOI PMC
Hannon G.J. FASTX-Toolkit. [(accessed on 25 February 2020)];2010 Available online: http://hannonlab.cshl.edu/fastx_toolkit.
Eren A.M., Morrison H.G., Lescault P.J., Reveillaud J., Vineis J.H., Sogin M.L. Minimum entropy decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 2015;9:968–979. doi: 10.1038/ismej.2014.195. PubMed DOI PMC
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2019. [(accessed on 25 February 2020)]. Available online: https://www.R-project.org/
McMurdie P.J., Holmes S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Chao A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984;11:265–270.
Bray J.R., Curtis J.T. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 1957;27:325–349. doi: 10.2307/1942268. DOI
Oksanen F.J., Guillaume Blanchet F., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., et al. Vegan: Community Ecology Package. R Package Version 2.4-3. [(accessed on 25 February 2020)];2017 Available online: https://CRAN.R-project.org/package=vegan.
Benjamini Y., Hochberg Y. Controlling the false discovery rate—A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016. [(accessed on 25 February 2020)]. Available online: https://ggplot2.tidyverse.org.
Himmerich H., Fischer J., Bauer K., Kirkby K.C., Sack U., Krügel U. Stress-induced cytokine changes in rats. Eur. Cytokine Netw. 2013;24:97–103. doi: 10.1684/ecn.2013.0338. PubMed DOI
Dea-Ayuela M.A., Rama-Iñiguez S., Bolás-Fernandez F. Enhanced susceptibility to Trichuris muris infection of B10Br mice treated with the probiotic Lactobacillus casei. Int. Immunopharmacol. 2008;8:28–35. doi: 10.1016/j.intimp.2007.10.003. PubMed DOI
Hayes K.S., Bancroft A.J., Goldrick M., Portsmouth C., Roberts I.S., Grencis R.K. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science. 2010;328:1391–1394. doi: 10.1126/science.1187703. PubMed DOI PMC
Webb R.A., Hoque T., Dimas S. Expulsion of the gastrointestinal cestode, Hymenolepis diminuta by tolerant rats: Evidence for mediation by a Th2 type immune enhanced goblet cell hyperplasia, increased mucin production and secretion. Parasite Immunol. 2007;29:11–21. doi: 10.1111/j.1365-3024.2006.00908.x. PubMed DOI
Hunter M.M., Wang A., Hirota C.L., McKay D.M. Neutralizing Anti-IL-10 Antibody blocks the protective effect of tapeworm infection in a murine model of chemically induced colitis. J. Immunol. 2005;174:7368–7375. doi: 10.4049/jimmunol.174.11.7368. PubMed DOI
Persaud R., Wang A., Reardon C., McKay D.M. Characterization of the immuno-regulatory response to the tapeworm Hymenolepis diminuta in the non-permissive mouse host. Int. J. Parasitol. 2007;37:393–403. doi: 10.1016/j.ijpara.2006.09.012. PubMed DOI
Melon A., Wang A., Phan V., McKay D.M. Infection with Hymenolepis diminuta is more effective than daily corticosteroids in blocking chemically induced colitis in mice. J. Biomed. Biotechnol. 2010;2010:384523. doi: 10.1155/2010/384523. PubMed DOI PMC
Reyes J.L., Lopes F., Leung G., Mancini N.L., Matisz C.E., Wang A., Thomson E.A., Graves N., Gilleard J., McKay D.M. Treatment with cestode parasite antigens results in recruitment of CCR2+ myeloid cells, the adoptive transfer of which ameliorates colitis. Infect. Immun. 2016;84:3471–3483. doi: 10.1128/IAI.00681-16. PubMed DOI PMC
Ozkul C., Ruiz V.E., Battaglia T., Xu J., Roubaud-Baudron C., Cadwell K., Perer-Perez G.I., Blaser M.J. A single early-in-life antibiotic course increases susceptibility to DSS-induced colitis. Genome Med. 2020;12:1–16. doi: 10.1186/s13073-020-00764-z. PubMed DOI PMC
Moges R., De Lamache D.D., Sajedy S., Renaus B.S., Hollenberg M.D., Muench G., Abbott E.M., Buret A.G. Anti-inflammatory benefits of antibiotics: Tylvalosin induces apoptosis of porcine neutrophils and macrophages, promotes efferocytosis, an inhibits proinflammatoy CXCL-8, Il1a, and LTB4 production, while inducing the release of pro-resolving lipoxin A4 and resolvin D1. Front. Vet. Sci. 2018;5:57. doi: 10.3389/fvets.2018.00057. PubMed DOI PMC
Giannoudaki E., Hernandez-Santana Y.E., Mulfaul K., Doyle S.L., Hams E., Fallon P.G., Mat A., O’Shea D., Kopf M., Hogan A.E., et al. Interleukin-36 cytokines alter the intestinal microbiome and can protect against obesity and metabolic dysfunction. Nat. Commun. 2019;10:1–14. doi: 10.1038/s41467-019-11944-w. PubMed DOI PMC
Huang S., Mao J., Zhou L., Xiong X., Deng Y. The imbalance of gut microbiota and its correlation with plasma inflammatory cytokines in pemphigus vulgaris patients. Scand. J. Immunol. 2019;90:1–10. doi: 10.1111/sji.12799. PubMed DOI PMC
Saltykova I.V., Petrov V.A., Logacheva M.D., Ivanova P.G., Merzlikin N.V., Sazonov A.E., Ogorodova L.M., Brindley P.J. Biliary microbiota, gallstone disease and infection with Opisthorchis felineus. PLoS Negl. Trop. Dis. 2016;10:e0004809. doi: 10.1371/journal.pntd.0004809. PubMed DOI PMC
Fricke W.F., Song Y., Wang A.J., Smith A., Grinchuk V., Pei C., Ma B., Lu N., Urban J.F., Jr., Shea-Donohue T., et al. Type 2 immunity-dependent reduction of segmented filamentous bacteria in mice infected with the helminthic parasite Nippostrongylus brasiliensis. Microbiome. 2015;3:40. doi: 10.1186/s40168-015-0103-8. PubMed DOI PMC
Hill D.A., Hoffmann C., Abt M.C., Du Y., Kobuley D., Kirn T.J., Bushman F.D., Artis D. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol. 2010;3:148–158. doi: 10.1038/mi.2009.132. PubMed DOI PMC
Panda S., El Khader I., Casellas F., López Vivancos J., García Cors M., Santiago A., Cuenca S., Guarner F., Manichanh C. Short-term effect of antibiotics on human gut microbiota. PLoS ONE. 2014;9:e95476. doi: 10.1371/journal.pone.0095476. PubMed DOI PMC
Zarrinpar A., Chaix A., Xu Z.Z., Chang M.W., Marotz C.A., Saghatelian A., Knight R., Panda S. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat. Commun. 2018;9:2872. doi: 10.1038/s41467-018-05336-9. PubMed DOI PMC