A benign helminth alters the host immune system and the gut microbiota in a rat model system

. 2017 ; 12 (8) : e0182205. [epub] 20170803

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28771620

Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs) in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity) in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach.

Zobrazit více v PubMed

Hewitson JP, Grainger JR, Maizels RM. Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity. Molecular and Biochemical Parasitology. 2009;167(1):1–11. doi: 10.1016/j.molbiopara.2009.04.008 PubMed DOI PMC

Girgis NM, Gundra UM, Loke P. Immune regulation during helminth infections. Plos Pathogens. 2013;9(4):3 doi: 10.1371/journal.ppat.1003250 PubMed DOI PMC

Maizels RM, McSorley HJ. Regulation of the host immune system by helminth parasites. Journal of Allergy and Clinical Immunology. 2016;138(3):666–75. doi: 10.1016/j.jaci.2016.07.007 PubMed DOI PMC

Lerner A, Jeremias P, Matthias T. The world incidence and prevalence of autoimmune diseases is incresing. International Journal of Celiac Disease. 2015;3(4):151–5. doi: 10.12691/ijcd-3-4-8 DOI

Weinstock JV. The worm returns. Nature. 2012;491(7423):183–5. doi: 10.1038/491183a PubMed DOI PMC

Shor DB, Harel M, Eliakim R, Shoenfeld Y. The hygiene theory harnessing helminths and their ova to treat autoimmunity. Clinical Reviews in Allergy & Immunology. 2013;45(2):211–6. doi: 10.1007/s12016-012-8352-9 PubMed DOI

Cooper GS, Bynum MLK, Somers EC. Recent insights in the epidemiology of autoimmune diseases: Improved prevalence estimates and understanding of clustering of diseases. Journal of Autoimmunity. 2009;33(3–4):197–207. doi: 10.1016/j.jaut.2009.09.008 PubMed DOI PMC

Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al. Increasing incidence and prevalence of the Inflammatory Bowel Diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46–54. doi: 10.1053/j.gastro.2011.10.001 PubMed DOI

Rook GAW. Hygiene hypothesis and autoimmune diseases. Clinical Reviews in Allergy & Immunology. 2012;42(1):5–15. doi: 10.1007/s12016-011-8285-8 PubMed DOI

Ponder A, Long MD. A clinical review of recent findings in the epidemiology of inflammatory bowel disease. Clinical epidemiology. 2013;5:237–47. doi: 10.2147/CLEP.S33961 . PubMed DOI PMC

Rook GAW, Raison CL, Lowry CA. Microbial "old friends', immunoregulation and socioeconomic status. Clinical and Experimental Immunology. 2014;177(1):1–12. doi: 10.1111/cei.12269 PubMed DOI PMC

Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: An Integrative View. Cell. 2012;148(6):1258–70. doi: 10.1016/j.cell.2012.01.035 PubMed DOI PMC

Kostic AD, Xavier RJ, Gevers D. The microbiome in Inflammatory Bowel Disease: current status and the future ahead. Gastroenterology. 2014;146(6):1489–99. doi: 10.1053/j.gastro.2014.02.009 PubMed DOI PMC

Katz D. An epidemic of absence: A new way of understanding allergies and autoimmune diseases. Nature. 2013;499(7457):150–.

Weinstock JV, Elliott DE. Translatability of helminth therapy in Inflammatory Bowel Diseases. International Journal for Parasitology. 2013;43(3–4):245–51. doi: 10.1016/j.ijpara.2012.10.016 PubMed DOI PMC

Weinstock JV, Elliott DE. Helminth infections decrease host susceptibility to immune-mediated diseases. Journal of Immunology. 2014;193(7):3239–47. doi: 10.4049/jimmunol.1400927 PubMed DOI PMC

McKay DM. The therapeutic helminth? Trends in Parasitology. 2009;25(3):109–14. doi: 10.1016/j.pt.2008.11.008 PubMed DOI

Reynolds LA, Smith KA, Filbey KJ, Harcus Y, Hewitson JP, Redpath SA, et al. Commensal-pathogen interactions in the intestinal tract: lactobacilli promote infection with, and are promoted by, helminth parasites. Gut microbes. 2014;5(4):522–32. doi: 10.4161/gmic.32155 . PubMed DOI PMC

Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30. doi: 10.1038/nature11550 PubMed DOI PMC

Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: A systematic review and meta-analysis. Journal of Crohns & Colitis. 2014;8(12):1569–81. doi: 10.1016/j.crohns.2014.08.006 PubMed DOI PMC

Zaiss MM, Rapin A, Lebon L, Dubey LK, Mosconi I, Sarter K, et al. The intestinal microbiota contributes to the ability of helminths to modulate allergic inflammation. Immunity. 2015;43(5):998–1010. doi: 10.1016/j.immuni.2015.09.012 PubMed DOI PMC

Ramanan D, Bowcutt R, Lee SC, Tang MS, Kurtz ZD, Ding Y, et al. Helminth infection promotes colonization resistance via type 2 immunity. Science. 2016;352(6285):608–12. doi: 10.1126/science.aaf3229 PubMed DOI PMC

Walk ST, Blum AM, Ewing SAS, Weinstock JV, Young VB. Alteration of the murine gut microbiota during infection with the parasitic helminth Heligmosomoides polygyrus. Inflammatory Bowel Diseases. 2010;16(11):1841–9. doi: 10.1002/ibd.21299 PubMed DOI PMC

Holm JB, Sorobetea D, Kiilerich P, Ramayo-Caldas Y, Estelle J, Ma T, et al. Chronic Trichuris muris infection decreases diversity of the intestinal microbiota and concomitantly increases the abundance of Lactobacilli. Plos One. 2015;10(5):22 doi: 10.1371/journal.pone.0125495 PubMed DOI PMC

Houlden A, Hayes KS, Bancroft AJ, Worthington JJ, Wang P, Grencis RK, et al. Chronic Trichuris muris infection in C57BL/6 mice causes significant changes in host microbiota and metabolome: effects reversed by pathogen clearance. Plos One. 2015;10(5):25 doi: 10.1371/journal.pone.0125945 PubMed DOI PMC

Broadhurst MJ, Ardeshir A, Kanwar B, Mirpuri J, Gundra UM, Leung JM, et al. Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon. Plos Pathogens. 2012;8(11):12 doi: 10.1371/journal.ppat.1003000 PubMed DOI PMC

Cooper PJ, Figuieredo CA. Immunology of ascaris and immunomodulation In: Holland C, ed. Ascaris: the Neglected Parasite. Amsterdam: Elsevier Science Bv; 2013. p. 3–19.

Cantacessi C, Giacomin P, Croese J, Zakrzewski M, Sotillo J, McCann L, et al. Impact of experimental hookworm infection on the human gut microbiota. Journal of Infectious Diseases. 2014;210(9):1431–4. doi: 10.1093/infdis/jiu256 PubMed DOI PMC

Lee SC, Tang MS, Lim YAL, Choy SH, Kurtz ZD, Cox LM, et al. Helminth colonization is associated with increased diversity of the gut microbiota. Plos Neglected Tropical Diseases. 2014;8(5):15 doi: 10.1371/journal.pntd.0002880 PubMed DOI PMC

McKenney EA, Williamson L, Yoder AD, Rawls JF, Bilbo SD, Parker W. Alteration of the rat cecal microbiome during colonization with the helminth Hymenolepis diminuta. Gut Microbes. 2015;6(3):182–93. doi: 10.1080/19490976.2015.1047128 ; PubMed Central PMCID: PMCPMC4615828. PubMed DOI PMC

Lukeš J, Kuchta R, Scholz T, Pomajbíková K. (Self-) infections with parasites: re-interpretations for the present. Trends in Parasitology. 2014;30(8):377–85. doi: 10.1016/j.pt.2014.06.005 PubMed DOI

Roberts LS. Development of Hymenolepis diminuta in its definitive host Biology of the tapeworm Hymenolepis diminuta: Academic Press, New York; 1980.

McKay DM. The immune response to and immunomodulation by Hymenolepis diminuta. Parasitology. 2010;137(3):385–94. doi: 10.1017/S0031182009990886 PubMed DOI

Webb RA, Hoque T, Dimas S. Expulsion of the gastrointestinal cestode, Hymenolepis diminuta, by tolerant rats: evidence for mediation by a Th2 type immune enhanced goblet cell hyperplasia, increased mucin production and secretion. Parasite Immunology. 2007;29(1):11–21. doi: 10.1111/j.1365-3024.2006.00908.x PubMed DOI

Allen JE, Maizels RM. Diversity and dialogue in immunity to helminths. Nature Reviews Immunology. 2011;11(6):375–88. doi: 10.1038/nri2992 PubMed DOI

Ito A, Honey RD, Scanlon T, Lightowlers MW, Rickard MD. Analysis of antibody responses to Hymenolepis nana infection in mice by the enzyme linked immunosorbent assay and precipitation. Parasite Immunology. 1988;10(3):265–77. doi: 10.1111/j.1365-3024.1988.tb00220.x PubMed DOI

Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research. 2001;29(9):6 doi: 10.1093/nar/29.9.e45 PubMed DOI PMC

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 2010;7(5):335–6. doi: 10.1038/nmeth.f.303 PubMed DOI PMC

Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Xu ZZ, et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems. 2017;2(2):e00191–16. doi: 10.1128/mSystems.00191-16 PubMed DOI PMC

Berger SA, Krompass D, Stamatakis A. Performance, Accuracy, and Web Server for Evolutionary Placement of Short Sequence Reads under Maximum Likelihood. Systematic Biology. 2011;60(3):291–302. doi: 10.1093/sysbio/syr010 PubMed DOI PMC

Clarke KR, Gorley RN. PRIMER v6: User manual, PRIMER-E. 2006.

Bray JR, Curtis JT. An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs. 1957;27(4):326–49.

Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology. 2005;71(12):8228–35. doi: 10.1128/AEM.71.12.8228-8235.2005 PubMed DOI PMC

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O`Hara RB, et al. Vegan: community ecology package. Ordination methods, diversity analyses and other functions for community and vegetation ecologists. Version 2.3–0. 2015.

Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecological Monographs. 2013;83(4):557–74. doi: 10.1890/12-2010.1 DOI

Chao A. Nonparametric-estimation of the number of classes in a population. Scandinavian Journal of Statistics. 1984;11(4):265–70.

Haegeman B, Hamelin J, Moriarty J, Neal P, Dushoff J, Weitz JS. Robust estimation of microbial diversity in theory and in practice. Isme Journal. 2013;7(6):1092–101. doi: 10.1038/ismej.2013.10 PubMed DOI PMC

Faith DP. Conservation evaluation and phylogenetic diversity. Biological Conservation. 1992;61(1):1–10. doi: 10.1016/0006-3207(92)91201-3. DOI

Team RC. R: a language and environment for statistical computing R Foundation for Statistical computing; Vienna, Austria: 2013.

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for ma-seq data with deseq2. Genome Biol. 2014;15(12):550 doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC

El-Malky M, Nabih N, Heder M, Saudy N, El-Mahdy M. Helminth infections: therapeutic potential in autoimmune disorders. Parasite Immunology. 2011;33(11):589–93. doi: 10.1111/j.1365-3024.2011.01324.x PubMed DOI

Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell. 2016;167(4):1125–+. doi: 10.1016/j.cell.2016.10.020 PubMed DOI PMC

Cooper P, Walker AW, Reyes J, Chico M, Salter SJ. Vaca M, et al. Patent human infection with the whipworm, Trichuris trichiura, are not associated with alterations in the faecal microbiota. Plos One. 2013;8(10):12 doi: 10.1371/journal.pone.0076573 PubMed DOI PMC

Anthony RM, Rutitzky LI, Urban JF, Stadecker MJ, Gause WC. Protective immune mechanisms in helminth infection. Nature Reviews Immunology. 2007;7(12):975–87. doi: 10.1038/nri2199 PubMed DOI PMC

Helmby H. Human helminth therapy to treat inflammatory disorders: where do we stand? BMC Immunology. 2015;16:5 doi: 10.1186/s12865-015-0069-0 PubMed DOI PMC

Velazquez P, Wei B, Braun J. Surveillance B lymphocytes and mucosal immunoregulation. Springer Semin Immun. 2005;26(4):453–62. doi: 10.1007/s00281-004-0189-8 PubMed DOI

Persaud R, Wang A, Reardon C, McKay DM. Characterization of the immuno-regulatory response to the tapeworm Hymenolepis diminuta in the non-permissive mouse host. International Journal for Parasitology. 2007;37(3–4):393–403. doi: 10.1016/j.ijpara.2006.09.012 PubMed DOI

Johnston MJG, Wang A, Catarino MED, Ball L, Phan VC, MacDonald JA, et al. Extracts of the rat tapeworm, Hymenolepis diminuta, suppress macrophage activation in vitro and alleviate chemically induced colitis in mice. Infection and Immunity. 2010;78(3):1364–75. doi: 10.1128/IAI.01349-08 PubMed DOI PMC

Melon A, Wang A, Phan V, McKay DM. Infection with Hymenolepis diminuta is more effective than daily corticosteroids in blocking chemically induced colitis in mice. Journal of Biomedicine and Biotechnology. 2010:7 doi: 10.1155/2010/384523 PubMed DOI PMC

Wang A, McKay DM. Immune modulation by a high molecular weight fraction from the rat tapeworm Hymenolepis diminuta. Parasitology. 2005;130:575–85. doi: 10.1017/s0031182004006985 PubMed DOI

Goswami R, Singh SM, Kataria M, Somvanshi R. Clinicopathological studies on spontaneous Hymenolepis diminuta infection in wild and laboratory rats. Brazilian Journal of Veterinary Pathology. 2011;4:103–11.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...