Putative ligand binding sites of two functionally characterized bark beetle odorant receptors
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
217-2014-689
Svenska Forskningsrådet Formas
2018-01444
Svenska Forskningsrådet Formas
2017-03804
Vetenskapsrådet
CTS 17:25
Carl Tryggers Stiftelse för Vetenskaplig Forskning
PubMed
33499862
PubMed Central
PMC7836466
DOI
10.1186/s12915-020-00946-6
PII: 10.1186/s12915-020-00946-6
Knihovny.cz E-resources
- Keywords
- Deorphanization, Functional evolution, HEK293 cells, Odorant receptor, Pest insect, Pheromone receptor, Xenopus oocyte,
- MeSH
- Insect Proteins chemistry genetics MeSH
- Ligands MeSH
- Weevils chemistry genetics MeSH
- Receptors, Odorant chemistry genetics MeSH
- Binding Sites MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Insect Proteins MeSH
- Ligands MeSH
- Receptors, Odorant MeSH
BACKGROUND: Bark beetles are major pests of conifer forests, and their behavior is primarily mediated via olfaction. Targeting the odorant receptors (ORs) may thus provide avenues towards improved pest control. Such an approach requires information on the function of ORs and their interactions with ligands, which is also essential for understanding the functional evolution of these receptors. Hence, we aimed to identify a high-quality complement of ORs from the destructive spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) and analyze their antennal expression and phylogenetic relationships with ORs from other beetles. Using 68 biologically relevant test compounds, we next aimed to functionally characterize ecologically important ORs, using two systems for heterologous expression. Our final aim was to gain insight into the ligand-OR interaction of the functionally characterized ORs, using a combination of computational and experimental methods. RESULTS: We annotated 73 ORs from an antennal transcriptome of I. typographus and report the functional characterization of two ORs (ItypOR46 and ItypOR49), which are responsive to single enantiomers of the common bark beetle pheromone compounds ipsenol and ipsdienol, respectively. Their responses and antennal expression correlate with the specificities, localizations, and/or abundances of olfactory sensory neurons detecting these enantiomers. We use homology modeling and molecular docking to predict their binding sites. Our models reveal a likely binding cleft lined with residues that previously have been shown to affect the responses of insect ORs. Within this cleft, the active ligands are predicted to specifically interact with residues Tyr84 and Thr205 in ItypOR46. The suggested importance of these residues in the activation by ipsenol is experimentally supported through site-directed mutagenesis and functional testing, and hydrogen bonding appears key in pheromone binding. CONCLUSIONS: The emerging insight into ligand binding in the two characterized ItypORs has a general importance for our understanding of the molecular and functional evolution of the insect OR gene family. Due to the ecological importance of the characterized receptors and widespread use of ipsenol and ipsdienol in bark beetle chemical communication, these ORs should be evaluated for their potential use in pest control and biosensors to detect bark beetle infestations.
See more in PubMed
Hansson BS, Stensmyr MC. Evolution of insect olfaction. Neuron. 2011;72:698–711. doi: 10.1016/j.neuron.2011.11.003. PubMed DOI
Kandasamy D, Gershenzon J, Andersson MN, Hammerbacher A. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J. 2019;13:1788–800. PubMed PMC
Clyne PJ, Warr CG, Freeman MR, Lessing D, Kim J, Carlson JR. A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron. 1999;22:327–38. PubMed
Kaupp UB. Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci. 2010;11:188–200. doi: 10.1038/nrn2789. PubMed DOI
Smart R, Kiely A, Beale M, Vargas E, Carraher C, Kralicek AV, et al. Drosophila odorant receptors are novel seven transmembrane domain proteins that can signal independently of heterotrimeric G proteins. Insect Biochem Mol Biol. 2008;38:770–80. PubMed
Robertson HM, Warr CG, Carlson JR. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc Natl Acad Sci U S A. 2003;100:14537–42. PubMed PMC
Andersson MN, Löfstedt C, Newcomb RD. Insect olfaction and the evolution of receptor tuning. Front Ecol Evol. 2015;3:53.
Nei M, Niimura Y, Nozawa M. The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet. 2008;9:951–963. doi: 10.1038/nrg2480. PubMed DOI
Brand P, Robertson HM, Lin W, Pothula R, Klingeman WE, Jurat-Fuentes JL, et al. The origin of the odorant receptor gene family in insects. eLife. 2018;7:e38340. doi: 10.7554/eLife.38340. PubMed DOI PMC
Butterwick JA, del Mármol J, Kim KH, Kahlson MA, Rogow JA, Walz T, et al. Cryo-EM structure of the insect olfactory receptor Orco. Nature. 2018;560:447–452. doi: 10.1038/s41586-018-0420-8. PubMed DOI PMC
Sato K, Pellegrino M, Nakagawa T, Vosshall LB, Touhara K. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature. 2008;452:1002–1006. doi: 10.1038/nature06850. PubMed DOI
Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature. 2008;452:1007–11. PubMed
Andersson MN, Newcomb RD. Pest control compounds targeting insect chemoreceptors: another silent spring? Front Ecol Evol. 2017;5:5. doi: 10.3389/fevo.2017.00005. DOI
Murugathas T, Zheng HY, Colbert D, Kralicek AV, Carraher C, Plank NOV. Biosensing with insect odorant receptor nanodiscs and carbon nanotube field-effect transistors. ACS Appl Mater Interfaces. 2019;11:9530–9538. doi: 10.1021/acsami.8b19433. PubMed DOI
Khadka R, Aydemir N, Carraher C, Hamiaux C, Colbert D, Cheema J, et al. An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants. Biosens Bioelectron. 2019;126:207–213. doi: 10.1016/j.bios.2018.10.043. PubMed DOI
Khadka R, Carraher C, Hamiaux C, Travas-Sejdic J, Kralicek A. Synergistic improvement in the performance of insect odorant receptor based biosensors in the presence of Orco. Biosens Bioelectron 2020;153:112040. PubMed
Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, et al. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008;452:987–990. doi: 10.1038/nature06777. PubMed DOI
Raffa KF, Andersson MN, Schlyter F. Chapter one-host selection by bark beetles: playing the odds in a high-stakes game. Adv Insect Physiol. 2016;50:1–74. doi: 10.1016/bs.aiip.2016.02.001. DOI
Biedermann PHW, Grégoire J-C, Gruppe A, Hagge J, Hammerbacher A, Hofstetter R, et al. Bark beetle population dynamics in the Anthropocene: challenges and solutions. Trends Ecol Evol. 2018;34:914–924. doi: 10.1016/j.tree.2019.06.002. PubMed DOI
Wermelinger B. Ecology and management of the spruce bark beetle Ips typographus—a review of recent research. For Ecol Manag. 2004;202:67–82.
Bakke A, Frøyen P, Skattebøl LJN. Field response to a new pheromonal compound isolated from Ips typographus. Naturwissenschaften. 1977;64:98–9.
Birgersson G, Schlyter F, Löfqvist J, Bergström G. Quantitative variation of pheromone components in the spruce bark beetle Ips typographus from different attack phases. J Chem Ecol. 1984;10:1029–55. PubMed
Schlyter F, Birgersson G, Byers JA, Löfqvist J, Bergström G. Field response of spruce bark beetle, Ips typographus, to aggregation pheromone candidates. J Chem Ecol. 1987;13:701–16. PubMed
Francke W, Sauerwein P, Vité JP, Klimetzek D. The pheromone bouquet of Ips amitinus. Naturwissenschaften. 1980;67:147–8.
Schlyter F, Birgersson G, Leufvén A. Inhibition of attraction to aggregation pheromone by verbenone and ipsenol. J Chem Ecol. 1989;15:2263–2277. doi: 10.1007/BF01014114. PubMed DOI
Binyameen M, Jankuvová J, Blaženec M, Jakuš R, Song L, Schlyter F, et al. Co-localization of insect olfactory sensory cells improves the discrimination of closely separated odour sources. Funct Ecol. 2014;28:1216–1223. doi: 10.1111/1365-2435.12252. DOI
Unelius RC, Schiebe C, Bohman B, Andersson MN, Schlyter F. Non-host volatile blend optimization for forest protection against the European spruce bark beetle, Ips typographus. Plos One. 2014;9:e85381. PubMed PMC
Byers J. Avoidance of competition by spruce bark beetles, Ips typographus and Pityogenes chalcographus. Experientia. 1993;49:272–5.
Andersson MN, Larsson MC, Schlyter F. Specificity and redundancy in the olfactory system of the bark beetle Ips typographus: single-cell responses to ecologically relevant odors. J Insect Physiol. 2009;55:556–67. PubMed
Tømmerås BÅ. Specialization of the olfactory receptor cells in the bark beetle Ips typographus and its predator Thanasimus formicarius to bark beetle pheromones and host tree volatiles. J Comp Physiol A. 1985;157:335–42.
Schiebe C, Unelius CR, Ganji S, Binyameen M, Birgersson G, Schlyter F. Styrene, (+)-trans-(1R,4S,5S)-4-thujanol and oxygenated monoterpenes related to host stress elicit strong electrophysiological responses in the bark beetle Ips typographus. J Chem Ecol. 2019;45:474–89. PubMed PMC
Mustaparta H, Tømmerås BA, Baeckström P, Bakke JM, Ohloff G. Ipsdienol-specific receptor cells in bark beetles: structure-activity relationships of various analogues and of deuterium-labelled ipsdienol. J Comp Physiol A. 1984;154:591–596. doi: 10.1007/BF00610172. DOI
Tømmerås BA, Mustaparta H, Gregoire J-C. Receptor cells in Ips typographus and Dendroctonus micans specific to pheromones of the reciprocal genus. J Chem Ecol. 1984;10:759–70. PubMed
de Fouchier A, Walker WB, III, Montagné N, Steiner C, Binyameen M, Schlyter F, et al. Functional evolution of Lepidoptera olfactory receptors revealed by deorphanization of a moth repertoire. Nat Commun. 2017;8:15709. doi: 10.1038/ncomms15709. PubMed DOI PMC
Große-Wilde E, Gohl T, Bouché E, Breer H, Krieger J. Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur J Neurosci. 2007;25:2364–2373. doi: 10.1111/j.1460-9568.2007.05512.x. PubMed DOI
Yuvaraj JK, Andersson MN, Corcoran JA, Anderbrant O, Löfstedt C. Functional characterization of odorant receptors from Lampronia capitella suggests a non-ditrysian origin of the lepidopteran pheromone receptor clade. Insect Biochem Mol Biol. 2018;100:39–47. PubMed
Carey AF, Wang G, Su C-Y, Zwiebel LJ, Carlson JR. Odorant reception in the malaria mosquito Anopheles gambiae. Nature. 2010;464:66–71. PubMed PMC
Hallem EA, Carlson JR. Coding of odors by a receptor repertoire. Cell. 2006;125:143–160. doi: 10.1016/j.cell.2006.01.050. PubMed DOI
Mitchell RF, Hughes DT, Luetje CW, Millar JG, Soriano-Agatón F, Hanks LM, et al. Sequencing and characterizing odorant receptors of the cerambycid beetle Megacyllene caryae. Insect Biochem Mol Biol. 2012;42:499–505. PubMed PMC
Wang X, Wang S, Yi J, Li Y, Liu J, Wang J, et al. Three host plant volatiles, hexanal, lauric acid, and tetradecane, are detected by an antenna-biased expressed odorant receptor 27 in the dark black chafer Holotrichia parallela. J Agric Food Chem. 2020;68:7316–23. PubMed
Antony B, Johny J, Montagné N, Jacquin-Joly E, Capoduro R, Cali K et al. Pheromone receptor of the globally invasive quarantine pest of the palm tree, the red palm weevil (Rhynchophorus ferrugineus). bioRxiv preprint. 2020; doi: 10.1101/2020.07.31.230326. PubMed
Mitchell RF, Andersson MN. Olfactory genomics of the Coleoptera. In: Blomquist GJ, Vogt RG, editors. Insect pheromone biochemistry and molecular biology. 2. Oxford: Academic Press; 2020. pp. 547–590.
Andersson MN, Grosse-Wilde E, Keeling CI, Bengtsson JM, Yuen MM, Li M, et al. Antennal transcriptome analysis of the chemosensory gene families in the tree killing bark beetles, Ips typographus and Dendroctonus ponderosae (Coleoptera: Curculionidae: Scolytinae). BMC Genomics. 2013;14:198. PubMed PMC
Mitchell RF, Schneider TM, Schwartz AM, Andersson MN, McKenna DD. The diversity and evolution of odorant receptors in beetles (Coleoptera) Insect Mol Biol. 2020;29:77–91. doi: 10.1111/imb.12611. PubMed DOI
Andersson MN, Keeling CI, Mitchell RF. Genomic content of chemosensory genes correlates with host range in wood-boring beetles (Dendroctonus ponderosae, Agrilus planipennis, and Anoplophora glabripennis). BMC Genomics. 2019;20:690. PubMed PMC
Corcoran JA, Jordan MD, Carraher C, Newcomb RD. A novel method to study insect olfactory receptor function using HEK293 cells. Insect Biochem Mol Biol. 2014;54:22–32. doi: 10.1016/j.ibmb.2014.08.005. PubMed DOI
Hou X, Zhang D-D, Yuvaraj JK, Corcoran JA, Andersson MN, Löfstedt C. Functional characterization of odorant receptors from the moth Eriocrania semipurpurella: a comparison of results in the Xenopus oocyte and HEK cell systems. Insect Biochem Mol Biol. 2020;117:103289. PubMed
Brown HC, Randad RS. Chiral synthesis VIA organoboranes. 26. An efficient synthesis of isoprenyl derivatives of borane-valuable reagents for the isoprenylboration of aldehydes. A convenient route to both enantiomers of ipsenol and ipsdienol in high optical purity. Tetrahedron. 1990;46:4463–4472. doi: 10.1016/S0040-4020(01)85575-7. DOI
Erver F, Hilt G. Multi-component regio-and diastereoselective cobalt-catalyzed hydrovinylation/allylboration reaction sequence. Org Lett. 2011;13:5700–5703. doi: 10.1021/ol202481j. PubMed DOI
Klusener PAA, Hommes HH, Verkruijsse HD, Brandsma L. Direct metallation of isoprene. J Chem Soc Chem Comm. 1985;1985:1677–1678. doi: 10.1039/c39850001677. DOI
Nemoto H. A new alkenyl ether giving acetal with stereospecific manner. Tetrahedron Lett. 1994;35:7785–7788. doi: 10.1016/S0040-4039(00)77372-2. DOI
Nemoto H, Zhong W, Kawamura T, Kamiya M, Nakano Y, Sakamoto K. Synthesis of pptically active δ-dodecalactone via chiral resolution using CPF. Synlett. 2007;2007:2343–2346. doi: 10.1055/s-2007-985604. DOI
Corcoran JA, Sonntag Y, Andersson MN, Johanson U, Löfstedt C. Endogenous insensitivity to the Orco agonist VUAA1 reveals novel olfactory receptor complex properties in the specialist fly Mayetiola destructor. Sci Rep. 2018;8:3489. PubMed PMC
Hopf TA, Morinaga S, Ihara S, Touhara K, Marks DS, Benton R. Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors. Nat Commun. 2015;6:6077. doi: 10.1038/ncomms7077. PubMed DOI PMC
Pellegrino M, Steinbach N, Stensmyr MC, Hansson BS, Vosshall LB. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature. 2011;478:511–514. doi: 10.1038/nature10438. PubMed DOI PMC
Leary GP, Allen JE, Bunger PL, Luginbill JB, Linn CE, Macallister IE, et al. Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proc Natl Acad Sci U S A. 2012;109:14081–14086. doi: 10.1073/pnas.1204661109. PubMed DOI PMC
Nichols AS, Luetje CW. Transmembrane segment 3 of Drosophila melanogaster odorant receptor subunit 85b contributes to ligand-receptor interactions. J Biol Chem. 2010;285:11854–62. PubMed PMC
Hallberg E. Sensory organs in Ips typographus (Insecta: Coleoptera) - fine structure of antennal sensilla. Protoplasma. 1982;111:206–14.
Jones PL, Pask GM, Rinker DC, Zwiebel LJ. Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci U S A. 2011;108:8821–8825. doi: 10.1073/pnas.1102425108. PubMed DOI PMC
Gu X-C, Zhang Y-N, Kang K, Dong S-L, Zhang L-W. Antennal transcriptome analysis of odorant reception genes in the red turpentine beetle (RTB), Dendroctonus valens Plos One 2015;10:e0125159. PubMed PMC
Antony B, Soffan A, Jakše J, Abdelazim MM, Aldosari SA, Aldawood AS, et al. Identification of the genes involved in odorant reception and detection in the palm weevil Rhynchophorus ferrugineus, an important quarantine pest, by antennal transcriptome analysis. BMC Genomics. 2016;17:69. PubMed PMC
Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, St. John O, Wild R, et al. A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science. 2007;318:1913–1916. doi: 10.1126/science.1146954. PubMed DOI
Larsson MC, Leal WS, Hansson BS. Olfactory receptor neurons detecting plant odours and male volatiles in Anomala cuprea beetles (Coleoptera: Scarabaeidae). J Insect Physiol. 2001;47:1065–76. PubMed
Miazzi F, Schulze H-C, Zhang L, Kaltofen S, Hansson BS, Wicher D. Low Ca2+ levels in the culture media support the heterologous expression of insect odorant receptor proteins in HEK cells. J Neurosci Methods. 2018;312:122–125. doi: 10.1016/j.jneumeth.2018.11.021. PubMed DOI
Andersson MN, Corcoran JA, Zhang D-D, Hillbur Y, Newcomb RD, Löfstedt C. A sex pheromone receptor in the hessian fly Mayetiola destructor (Diptera, Cecidomyiidae). Front Cell Neurosci. 2016;10:212. PubMed PMC
Yuvaraj JK, Corcoran JA, Andersson MN, Newcomb RD, Anderbrant O, Löfstedt C. Characterization of odorant receptors from a non-ditrysian moth, Eriocrania semipurpurella sheds light on the origin of sex pheromone receptors in Lepidoptera. Mol Biol Evol. 2017;34:2733–46. PubMed PMC
Andersson MN. Mechanisms of odor coding in coniferous bark beetles: From neuron to behavior and application. Psyche J Entomol 2012;2012: Article ID 149572.
Schlyter F, Birgersson GA. Forest beetles. In: Hardie J, Minks AK, editors. Pheromones of non-Lepidopteran insects associated with agricultural plants. Oxford: CAB International; 1999. pp. 113–148.
Nichols AS, Chen S, Luetje CW. Subunit contributions to insect olfactory receptor function: channel block and odorant recognition. Chem Senses. 2011;36:781–790. doi: 10.1093/chemse/bjr053. PubMed DOI PMC
Kumar P, Wang Y, Zhang Z, Zhao Z, Cymes GD, Tajkhorshid E, et al. Cryo-EM structures of a lipid-sensitive pentameric ligand-gated ion channel embedded in a phosphatidylcholine-only bilayer. Proc Natl Acad Sci U S A. 2020;117:1788–1798. doi: 10.1073/pnas.1906823117. PubMed DOI PMC
Turner SL, Li N, Guda T, Githure J, Cardé RT, Ray A. Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature. 2011;474:87–91. doi: 10.1038/nature10081. PubMed DOI PMC
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644. doi: 10.1038/nbt.1883. PubMed DOI PMC
Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol. 2017;35:543–548. doi: 10.1093/molbev/msx319. PubMed DOI PMC
McKenna DD, Scully ED, Pauchet Y, Hoover K, Kirsch R, Geib SM, et al. Genome of the Asian longhorned beetle (Anoplophora glabripennis), a globally significant invasive species, reveals key functional and evolutionary innovations at the beetle–plant interface. Genome Biol. 2016;17:227. PubMed PMC
Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, et al. A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep. 2018;8:1931. PubMed PMC
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512. PubMed PMC
Katoh K, Misawa K, Ki K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Lanfear R, Frandsen PB, Wright AM, Senfeld T, Calcott B. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol Biol Evol. 2016;34:772–773. PubMed
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Miller MA, Pfeiffer W, Schwartz T. 2010 gateway computing environments workshop (GCE): 14 Nov. New Orleans: Ieee; 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees; pp. 1–8.
Zhang D-D, Löfstedt C. Functional evolution of a multigene family: orthologous and paralogous pheromone receptor genes in the turnip moth, Agrotis segetum. Plos One. 2013;8:e77345. PubMed PMC
Krieger J, Grosse-Wilde E, Gohl T, Dewer Y, Raming K, Breer H. Genes encoding candidate pheromone receptors in a moth (Heliothis virescens). Proc Natl Acad Sci U S A. 2004;101:11845–50. PubMed PMC
Schultze A, Pregitzer P, Walter MF, Woods DF, Marinotti O, Breer H, et al. The co-expression pattern of odorant binding proteins and olfactory receptors identify distinct trichoid sensilla on the antenna of the malaria mosquito Anopheles gambiae. Plos One. 2013;8:e69412. PubMed PMC
Zhang D-D, Wang H-L, Schultze A, Froß H, Francke W, Krieger J, et al. Receptor for detection of a type II sex pheromone in the winter moth Operophtera brumata. Sci Rep. 2016;6:18576. PubMed PMC
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC
Hildebrand PW, Goede A, Bauer RA, Gruening B, Ismer J, Michalsky E, et al. SuperLooper—a prediction server for the modeling of loops in globular and membrane proteins. Nucleic Acids Res. 2009;37:W571–W574. doi: 10.1093/nar/gkp338. PubMed DOI PMC
Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26:1781–1802. doi: 10.1002/jcc.20289. PubMed DOI PMC
Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–461. PubMed PMC
Yuvaraj JK, Roberts RE, Sonntag Y, Hou X-Q, Grosse-Wilde E, Machara A, Zhang D-D, Hansson BS, Johanson U, Löfstedt C, Andersson MN. Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. NCBI accession PRJNA602798, https://www.ncbi.nlm.nih.gov/bioproject/PRJNA602798. Accessed 6 Oct 2020. PubMed PMC
Yuvaraj JK, Roberts RE, Sonntag Y, Hou X-Q, Grosse-Wilde E, Machara A, Hansson BS, Johanson U, Löfstedt C, Andersson MN: Functional characterization of two bark beetle odorant receptors and their putative ligand binding site. GenBank accession MN987209-MN987211, https://www.ncbi.nlm.nih.gov/nuccore/MN987209. Accessed 20 Oct 2020.
Identification of the trail-following pheromone receptor in termites
Complex Genomic Landscape of Inversion Polymorphism in Europe's Most Destructive Forest Pest
The Genome of Rhyzopertha dominica (Fab.) (Coleoptera: Bostrichidae): Adaptation for Success
Putative ligand binding sites of two functionally characterized bark beetle odorant receptors