Changes in Sepsis Biomarkers after Immunosuppressant Administration in Transplant Patients

. 2021 ; 2021 () : 8831659. [epub] 20210105

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33505219

Sepsis biomarkers change continuously during the postoperative period. We aimed to demonstrate the influence of immunosuppressants after transplantation (Tx) on presepsin, procalcitonin, CRP, white blood cells, and IL-6. A group of 140 patients after major surgery (86 non-Tx, 54 Tx) without any signs of sepsis or infectious complications was followed for 7 days. The changes in biomarkers were analyzed with respect to the type of surgery, organ, and induction immunosuppressant used (antithymocyte globulin, corticosteroids, or basiliximab/rituximab). Concentrations (95th percentiles) of presepsin and procalcitonin were higher in the Tx group (presepsin: Tx < 2380 vs. non-Tx < 1368 ng/L, p < 0.05; procalcitonin: <28.0 vs. 3.49 μg/L, p < 0.05). In contrast, CRP and IL-6 were lower in the Tx group (CRP: Tx < 84.2 vs. non-Tx < 229 mg/L, p < 0.05; IL-6: <71.2 vs. 317 ng/L, p < 0.05). Decreases in CRP and IL-6 were found for all immunosuppressants, and procalcitonin was increased after antithymocyte globulin and corticosteroids. Negligible changes were found for white blood cells. Different responses of presepsin, procalcitonin, CRP, and IL-6 were therefore found in patients without any infectious complications after major surgery or transplantation. Immunosuppression decreased significantly IL-6 and CRP in comparison to non-Tx patients, while procalcitonin was increased after corticosteroids and antithymocyte globulin only. Cautious interpretation of sepsis biomarkers is needed in the early posttransplant period. This work was conducted as a noninterventional (nonregistered) study.

Zobrazit více v PubMed

Dellinger R. P., Levy M. M., Rhodes A., et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Critical Care Medicine. 2013;41(2):580–637. doi: 10.1097/CCM.0b013e31827e83af. PubMed DOI

Singer M., Deutschman C. S., Seymour C. W., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287. PubMed DOI PMC

Pierrakos C., Vincent J. L. Sepsis biomarkers: a review. Critical Care. 2010;14(1):p. R15. doi: 10.1186/cc8872. PubMed DOI PMC

Bone R. C., Balk R. A., Cerra F. B., et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest. 1992;101(6):1644–1655. doi: 10.1378/chest.101.6.1644. PubMed DOI

Wacker C., Prkno A., Brunkhorst F. M., Schlattmann P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta- analysis. The Lancet Infectious Diseases. 2013;13(5):426–435. doi: 10.1016/S1473-3099(12)70323-7. PubMed DOI

Cohn B. Can procalcitonin differentiate sepsis from systemic inflammatory response syndrome without infection? Annals of Emergency Medicine. 2014;63(5):631–632. doi: 10.1016/j.annemergmed.2013.12.014. PubMed DOI

Brodska H., Drabek T., Malickova K., et al. Marked increase of procalcitonin after the administration of anti-thymocyte globulin in patients before hematopoietic stem cell transplantation does not indicate sepsis: a prospective study. Critical Care. 2009;13(2):p. R37. doi: 10.1186/cc7749. PubMed DOI PMC

Chapman G., Holton J., Chapman A. A threshold for concern? C-reactive protein levels following operatively managed neck of femur fractures can detect infectious complications with a simple formula. Clinical Biochemistry. 2016;49(3):219–224. doi: 10.1016/j.clinbiochem.2015.10.018. PubMed DOI

Jukic T., Ihan A., Stubljar D. Dynamics of inflammation biomarkers C-reactive protein, leukocytes, neutrophils, and CD64 on neutrophils before and after major surgical procedures to recognize potential postoperative infection. Scandinavian Journal of Clinical and Laboratory Investigation. 2015;75(6):500–507. doi: 10.3109/00365513.2015.1057759. PubMed DOI

Adamina M., Steffen T., Tarantino I., Beutner U., Schmied B. M., Warschkow R. Meta-analysis of the predictive value of C-reactive protein for infectious complications in abdominal surgery. The British Journal of Surgery. 2015;102(6):590–598. doi: 10.1002/bjs.9756. PubMed DOI

Liu B., Chen Y. X., Yin Q., Zhao Y. Z., Li C. S. Diagnostic value and prognostic evaluation of presepsin for sepsis in an emergency department. Critical Care. 2013;17(5):p. R244. doi: 10.1186/cc13070. PubMed DOI PMC

Ulla M., Pizzolato E., Lucchiari M., et al. Diagnostic and prognostic value of presepsin in the management of sepsis in the emergency department: a multicenter prospective study. Critical Care. 2013;17(4):p. R168. doi: 10.1186/cc12847. PubMed DOI PMC

Endo S., Suzuki Y., Takahashi G., et al. Usefulness of presepsin in the diagnosis of sepsis in a multicenter prospective study. Journal of Infection and Chemotherapy. 2012;18(6):891–897. doi: 10.1007/s10156-012-0435-2. PubMed DOI

Pizzolato E., Ulla M., Galluzzo C., et al. Role of presepsin for the evaluation of sepsis in the emergency department. Clinical Chemistry and Laboratory Medicine. 2014;52(10):1395–1400. doi: 10.1515/cclm-2014-0199. PubMed DOI

Behnes M., Bertsch T., Lepiorz D., et al. Diagnostic and prognostic utility of soluble CD 14 subtype (presepsin) for severe sepsis and septic shock during the first week of intensive care treatment. Critical Care. 2014;18(5):p. 507. doi: 10.1186/s13054-014-0507-z. PubMed DOI PMC

Popov A., Pliushch M. G., Ovseenko S. T., Abramian M. V., Podshchekoldina O. O., Iarustovskiĭ M. B. SCD14-ST (presepsin) level monitoring in cardiac surgical patients during perioperative period. Anesteziologiia i Reanimatologiia. 2013;3:30–35. PubMed

Franeková J., Sečník P., Jr., Lavríková P., et al. Serial measurement of presepsin, procalcitonin, and C-reactive protein in the early postoperative period and the response to antithymocyte globulin administration after heart transplantation. Clinical Transplantation. 2017;31(1, article e12870) doi: 10.1111/ctr.12870. PubMed DOI

Zhang X., Liu D., Liu Y.-N., Wang R., Xie L.-X. The accuracy of presepsin (sCD14-ST) for the diagnosis of sepsis in adults: a meta-analysis. Critical Care. 2015;19(1) doi: 10.1186/s13054-015-1032-4. PubMed DOI PMC

Wu J., Hu L., Zhang G., Wu F., He T. Accuracy of presepsin in sepsis diagnosis: a systematic review and meta-analysis. PLoS One. 2015;10(7, article e0133057) doi: 10.1371/journal.pone.0133057. PubMed DOI PMC

de Guadiana Romualdo L. G., Torrella P. E., González M. V., et al. Diagnostic accuracy of presepsin (soluble CD14 subtype) for prediction of bacteremia in patients with systemic inflammatory response syndrome in the emergency department. Clinical Biochemistry. 2014;47(7-8):505–508. doi: 10.1016/j.clinbiochem.2014.02.011. PubMed DOI

Chenevier-Gobeaux C., Borderie D., Weiss N., Mallet-Coste T., Claessens Y. E. Presepsin (sCD14-ST), an innate immune response marker in sepsis. Clinica Chimica Acta. 2015;450:97–103. doi: 10.1016/j.cca.2015.06.026. PubMed DOI

Brodska H., Valenta J., Pelinkova K., et al. Diagnostic and prognostic value of presepsin vs. established biomarkers in critically ill patients with sepsis or systemic inflammatory response syndrome. Clinical Chemistry and Laboratory Medicine. 2018;56(4):658–668. doi: 10.1515/cclm-2017-0839. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...