Microthermal-induced subcellular-targeted protein damage in cells on plasmonic nanosilver-modified surfaces evokes a two-phase HSP-p97/VCP response
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33514738
PubMed Central
PMC7846584
DOI
10.1038/s41467-021-20989-9
PII: 10.1038/s41467-021-20989-9
Knihovny.cz E-resources
- MeSH
- Single-Cell Analysis methods MeSH
- Metal Nanoparticles chemistry MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Surface Plasmon Resonance MeSH
- Proteasome Endopeptidase Complex metabolism MeSH
- Valosin Containing Protein genetics metabolism MeSH
- HSP70 Heat-Shock Proteins metabolism MeSH
- Heat-Shock Response * MeSH
- Silver chemistry MeSH
- Ubiquitin metabolism MeSH
- Hot Temperature adverse effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Proteasome Endopeptidase Complex MeSH
- Valosin Containing Protein MeSH
- HSP70 Heat-Shock Proteins MeSH
- Silver MeSH
- Ubiquitin MeSH
- VCP protein, human MeSH Browser
Despite proteotoxic stress and heat shock being implicated in diverse pathologies, currently no methodology to inflict defined, subcellular thermal damage exists. Here, we present such a single-cell method compatible with laser-scanning microscopes, adopting the plasmon resonance principle. Dose-defined heat causes protein damage in subcellular compartments, rapid heat-shock chaperone recruitment, and ensuing engagement of the ubiquitin-proteasome system, providing unprecedented insights into the spatiotemporal response to thermal damage relevant for degenerative diseases, with broad applicability in biomedicine. Using this versatile method, we discover that HSP70 chaperone and its interactors are recruited to sites of thermally damaged proteins within seconds, and we report here mechanistically important determinants of such HSP70 recruitment. Finally, we demonstrate a so-far unsuspected involvement of p97(VCP) translocase in the processing of heat-damaged proteins. Overall, we report an approach to inflict targeted thermal protein damage and its application to elucidate cellular stress-response pathways that are emerging as promising therapeutic targets.
Danish Cancer Society Research Center Copenhagen Denmark
Regional Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
See more in PubMed
Hartl FU. Protein misfolding diseases. Annu. Rev. Biochem. 2017;86:21–26. doi: 10.1146/annurev-biochem-061516-044518. PubMed DOI
Deshaies RJ. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 2014;12:94. doi: 10.1186/s12915-014-0094-0. PubMed DOI PMC
Guin D, Gelman H, Wang Y, Gruebele M. Heat shock-induced chaperoning by Hsp70 is enabled in-cell. PLoS ONE. 2019;14:e0222990. doi: 10.1371/journal.pone.0222990. PubMed DOI PMC
Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Ulrich Hartl F. Molecular chaperone functions in protein folding and proteostasis. Annu. Rev. Biochem. 2013;82:323–355. doi: 10.1146/annurev-biochem-060208-092442. PubMed DOI
Kim M, Lee J, Nam J. Plasmonic photothermal nanoparticles for biomedical applications. Adv. Sci. 2019;6:1900471. doi: 10.1002/advs.201900471. PubMed DOI PMC
Mayer KM, Hafner JH. Localized surface plasmon resonance sensors. Chem. Rev. 2011;111:3828–3857. doi: 10.1021/cr100313v. PubMed DOI
Xue C, Mirkin CA. pH-switchable silver nanoprism growth pathways. Angew. Chem. - Int. Ed. 2007;46:2036–2038. doi: 10.1002/anie.200604637. PubMed DOI
Haes AJ, Stuart DA, Nie S, Van Duyne RP. Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J. Fluoresc. 2004;14:355–367. doi: 10.1023/B:JOFL.0000031817.35049.1f. PubMed DOI
Jiang K, Smith DA, Pinchuk A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold nanoparticles. J. Phys. Chem. C. 2013;117:27073–27080. doi: 10.1021/jp409067h. DOI
Plech A, Kotaidis V, Grésillon S, Dahmen C, von Plessen G. Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering. Phys. Rev. B. 2004;70:195423. doi: 10.1103/PhysRevB.70.195423. DOI
Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nano Today. 2007;2:30–38. doi: 10.1016/S1748-0132(07)70017-8. DOI
Zhao S, Zhang K, An J, Sun Y, Sun C. Synthesis and layer-by-layer self-assembly of silver nanoparticles capped by mercaptosulfonic acid. Mater. Lett. 2006;60:1215–1218. doi: 10.1016/j.matlet.2005.11.007. DOI
Mistrik M, et al. Cells and stripes: a novel quantitative photo-manipulation technique. Sci. Rep. 2016;6:19567. doi: 10.1038/srep19567. PubMed DOI PMC
Lukas C, Falck J, Bartkova J, Bartek J, Lukas J. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat. Cell Biol. 2003;5:255–260. doi: 10.1038/ncb945. PubMed DOI
Morgner N, et al. Hsp70 forms antiparallel dimers stabilized by post-translational modifications to position clients for transfer to Hsp90. Cell Rep. 2015;11:759–769. doi: 10.1016/j.celrep.2015.03.063. PubMed DOI PMC
Mayer MP, Gierasch LM. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J. Biol. Chem. 2019;294:2085–2097. doi: 10.1074/jbc.REV118.002810. PubMed DOI PMC
Trcka F, et al. Human stress-inducible Hsp70 has a high propensity to form ATP-dependent antiparallel dimers that are differentially regulated by cochaperone binding. Mol. Cell. Proteom. 2019;18:320–337. doi: 10.1074/mcp.RA118.001044. PubMed DOI PMC
Vandova V, et al. HSPA1A conformational mutants reveal a conserved structural unit in Hsp70 proteins. Biochim. Biophys. Acta - Gen. Subj. 2020;1864:129458. doi: 10.1016/j.bbagen.2019.129458. PubMed DOI
Komander D, Rape M. The ubiquitin code. Annu. Rev. Biochem. 2012;81:203–229. doi: 10.1146/annurev-biochem-060310-170328. PubMed DOI
Audas TE, et al. Adaptation to stressors by systemic protein amyloidogenesis. Dev. Cell. 2016;39:155–168. doi: 10.1016/j.devcel.2016.09.002. PubMed DOI PMC
Frottin F, et al. The nucleolus functions as a phase-separated protein quality control compartment. Science. 2019;365:342–347. doi: 10.1126/science.aaw9157. PubMed DOI
Meyer H, Bug M, Bremer S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 2012;14:117–123. doi: 10.1038/ncb2407. PubMed DOI
Hyer ML, et al. A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment. Nat. Med. 2018;24:186–193. doi: 10.1038/nm.4474. PubMed DOI
Anderson DJ, et al. Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis. Cancer Cell. 2015;28:653–665. doi: 10.1016/j.ccell.2015.10.002. PubMed DOI PMC
Schlecht R, et al. Functional analysis of Hsp70 inhibitors. PLoS ONE. 2013;8:e78443. doi: 10.1371/journal.pone.0078443. PubMed DOI PMC
Mogk A, Bukau B, Kampinga HH. Cellular handling of protein aggregates by disaggregation machines. Mol. Cell. 2018;69:214–226. doi: 10.1016/j.molcel.2018.01.004. PubMed DOI
Tang, W. K. & Xia, D. Mutations in the human AAA+ chaperone p97 and related diseases. Front. Mol. Biosci. 3, 79 (2016). PubMed PMC
Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461:1071–1078. doi: 10.1038/nature08467. PubMed DOI PMC
Sies H, Berndt C, Jones DP. Oxidative Stress. Annu. Rev. Biochem. 2017;86:715–748. doi: 10.1146/annurev-biochem-061516-045037. PubMed DOI
Mistrik, M. et al. Protocol for subcellular targeted microthermal protein damage in cells cultivated on plasmonic nanosilver-modified surfaces. Protoc. Exch.10.21203/rs.3.pex-1314/v1 (2021). PubMed PMC
Skrott Z, et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature. 2017;552:194–199. doi: 10.1038/nature25016. PubMed DOI PMC