Development of versatile and potent monoquaternary reactivators of acetylcholinesterase
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33517499
DOI
10.1007/s00204-021-02981-w
PII: 10.1007/s00204-021-02981-w
Knihovny.cz E-zdroje
- Klíčová slova
- Acetylcholinesterase, Butyrylcholinesterase, Insecticides, Nerve agents, Organophosphates, Organophosphorus compounds, Oxime reactivator,
- MeSH
- acetylcholinesterasa účinky léků metabolismus MeSH
- antidota chemická syntéza chemie farmakologie MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- oximy chemická syntéza chemie farmakologie MeSH
- reaktivátory cholinesterázy chemická syntéza chemie farmakologie MeSH
- simulace molekulární dynamiky MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- antidota MeSH
- oximy MeSH
- reaktivátory cholinesterázy MeSH
To date, the only treatments developed for poisoning by organophosphorus compounds, the most toxic chemical weapons of mass destruction, have exhibited limited efficacy and versatility. The available causal antidotes are based on reactivation of the enzyme acetylcholinesterase (AChE), which is rapidly and pseudo-irreversibly inhibited by these agents. In this study, we developed a novel series of monoquaternary reactivators combining permanently charged moieties tethered to position 6- of 3-hydroxypyridine-2-aldoxime reactivating subunit. Highlighted representatives (21, 24, and 27; also coded as K1371, K1374, and K1375, respectively) that contained 1-phenylisoquinolinium, 7-amino-1-phenylisoquinolinium and 4-carbamoylpyridinium moieties as peripheral anionic site ligands, respectively, showed efficacy superior or comparable to that of the clinically used standards. More importantly, these reactivators exhibited wide-spectrum efficacy and were minutely investigated via determination of their reactivation kinetics in parallel with molecular dynamics simulations to study their mechanisms of reactivation of the tabun-inhibited AChE conjugate. To further confirm the potential applicability of these candidates, a mouse in vivo assay was conducted. While K1375 had the lowest acute toxicity and the most suitable pharmacokinetic profile, the oxime K1374 with delayed elimination half-life was the most effective in ameliorating the signs of tabun toxicity. Moreover, both in vitro and in vivo, the versatility of the agents was substantially superior to that of clinically used standards. Their high efficacy and broad-spectrum capability make K1374 and K1375 promising candidates that should be further investigated for their potential as nerve agents and insecticide antidotes.
Zobrazit více v PubMed
Allgardsson A, Berg L, Akfur C et al (2016) Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6. Proc Natl Acad Sci USA 113:5514–5519. https://doi.org/10.1073/pnas.1523362113 PubMed DOI
Bajgar J, Fusek J, Kuca K et al (2007) Treatment of organophosphate intoxication using cholinesterase reactivators: facts and fiction. Mini Rev Med Chem 7:461–466 DOI
Bartosova L, Kuca K, Kunesova G, Jun D (2006) The acute toxicity of acetylcholinesterase reactivators in mice in relation to their structure. Neurotox Res 9:291–296. https://doi.org/10.1007/BF03033319 PubMed DOI
Black RM, Harrison JM (2009) The Chemistry of Organophosphorus Chemical Warfare Agents. PATAI’S Chemistry of Functional Groups John Wiley Sons Ltd, New Jersey DOI
Bourne Y, Kolb HC, Radić Z et al (2004) Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation. Proc Natl Acad Sci USA 101:1449–1454. https://doi.org/10.1073/pnas.0308206100 PubMed DOI
Broomfield CA, Maxwell DM, Solana RP et al (1991) Protection by butyrylcholinesterase against organophosphorus poisoning in nonhuman primates. J Pharmacol Exp Ther 259:633–638 PubMed
Calas A-G, Hanak A-S, Jaffré N et al (2020) Efficacy assessment of an uncharged reactivator of NOP-inhibited acetylcholinesterase based on tetrahydroacridine pyridine-aldoxime hybrid in mouse compared to pralidoxime. Biomolecules 10:858. https://doi.org/10.3390/biom10060858 DOI PMC
Carletti E, Li H, Li B et al (2008) Aging of cholinesterases phosphylated by tabun proceeds through o-dealkylation. J Am Chem Soc 130:16011–16020. https://doi.org/10.1021/ja804941z PubMed DOI
Carletti E, Colletier J-P, Schopfer LM et al (2013) Inhibition pathways of the potent organophosphate CBDP with cholinesterases revealed by X-ray crystallographic snapshots and mass spectrometry. Chem Res Toxicol 26:280–289. https://doi.org/10.1021/tx3004505 PubMed DOI
Darden T, Perera L, Li L (1993) Pedersen L (1999) New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. Struct Lond Engl 7:R55-60. https://doi.org/10.1016/s0969-2126(99)80033-1 DOI
Dolgin E (2013) Syrian gas attack reinforces need for better anti-sarin drugs. Nat Med 19:1194–1195. https://doi.org/10.1038/nm1013-1194 PubMed DOI
Driant T, Nachon F, Ollivier C et al (2017) On the influence of the protonation states of active site residues on AChE reactivation: a QM/MM approach. Chembiochem Eur J Chem Biol 18:666–675. https://doi.org/10.1002/cbic.201600646 DOI
Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95 DOI
Elsinghorst PW, Worek F, Thiermann H, Wille T (2013) Drug development for the management of organophosphorus poisoning. Expert Opin Drug Discov 8:1467–1477. https://doi.org/10.1517/17460441.2013.847920 PubMed DOI
Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501. https://doi.org/10.1107/S0907444910007493 PubMed DOI PMC
Gorecki L, Korabecny J, Musilek K et al (2016) SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch Toxicol 90:2831–2859. https://doi.org/10.1007/s00204-016-1827-3 PubMed DOI
Gorecki L, Korabecny J, Musilek K et al (2017) Progress in acetylcholinesterase reactivators and in the treatment of organophosphorus intoxication: a patent review (2006–2016). Expert Opin Ther Pat 27:971–985. https://doi.org/10.1080/13543776.2017.1338275 PubMed DOI
Gorecki L, Soukup O, Kucera T et al (2019) Oxime K203: a drug candidate for the treatment of tabun intoxication. Arch Toxicol 93:673–691. https://doi.org/10.1007/s00204-018-2377-7 PubMed DOI
Gowda RR, Chakraborty D (2011) FeIII-catalyzed synthesis of primary amides from aldehydes. Eur J Org Chem 2011:2226–2229. https://doi.org/10.1002/ejoc.201001738 DOI
Gunnell D, Eddleston M, Phillips MR, Konradsen F (2007) The global distribution of fatal pesticide self-poisoning: systematic review. BMC Public Health 7:357. https://doi.org/10.1186/1471-2458-7-357 PubMed DOI PMC
Gunnell D, Knipe D, Chang S-S et al (2017) Prevention of suicide with regulations aimed at restricting access to highly hazardous pesticides: a systematic review of the international evidence. Lancet Glob Health 5:e1026–e1037. https://doi.org/10.1016/S2214-109X(17)30299-1 PubMed DOI
Hepnarova V, Muckova L, Ring A et al (2019) Pharmacological and toxicological in vitro and in vivo effect of higher doses of oxime reactivators. Toxicol Appl Pharmacol 383:114776. https://doi.org/10.1016/j.taap.2019.114776 PubMed DOI
Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5 PubMed DOI
Karasova JZ, Zemek F, Musilek K, Kuca K (2013) Time-dependent changes of oxime K027 concentrations in different parts of rat central nervous system. Neurotox Res 23:63–68. https://doi.org/10.1007/s12640-012-9329-4 PubMed DOI
Kassa J, Žďárová Karasová J, Šepsová V, Bajgar J (2011) A comparison of the reactivating and therapeutic efficacy of the newly developed bispyridinium oxime K203 with currently available oximes, in sarin poisoned rats and mice. J Appl Biomed 9:225–230. https://doi.org/10.2478/v10136-011-0011-6 DOI
King AM, Aaron CK (2015) Organophosphate and carbamate poisoning. Emerg Med Clin North Am 33:133–151. https://doi.org/10.1016/j.emc.2014.09.010 PubMed DOI
Kloske M, Witkiewicz Z (2019) Novichoks - the A group of organophosphorus chemical warfare agents. Chemosphere 221:672–682. https://doi.org/10.1016/j.chemosphere.2019.01.054 PubMed DOI
Kobrlova T, Korabecny J, Soukup O (2019) Current approaches to enhancing oxime reactivator delivery into the brain. Toxicology 423:75–83. https://doi.org/10.1016/j.tox.2019.05.006 PubMed DOI
Kovarik Z, Katalinić M, Sinko G et al (2010) Pseudo-catalytic scavenging: searching for a suitable reactivator of phosphorylated butyrylcholinesterase. Chem Biol Interact 187:167–171. https://doi.org/10.1016/j.cbi.2010.02.023 PubMed DOI
Kuca K, Pohanka M (2010) Chemical warfare agents. EXS 100:543–558 PubMed
Lockridge O (2015) Review of human butyrylcholinesterase structure, function, genetic variants, history of use in the clinic, and potential therapeutic uses. Pharmacol Ther 148:34–46. https://doi.org/10.1016/j.pharmthera.2014.11.011 PubMed DOI
Mahoney MW, Jorgensen WL (2000) A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J Chem Phys 112:8910–8922. https://doi.org/10.1063/1.481505 DOI
Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11:3696–3713. https://doi.org/10.1021/acs.jctc.5b00255 PubMed DOI PMC
Malinak D, Dolezal R, Hepnarova V et al (2020) Synthesis, in vitro screening and molecular docking of isoquinolinium-5-carbaldoximes as acetylcholinesterase and butyrylcholinesterase reactivators. J Enzyme Inhib Med Chem 35:478–488. https://doi.org/10.1080/14756366.2019.1710501 PubMed DOI PMC
Marrs TC (1993) Organophosphate poisoning. Pharmacol Ther 58:51–66 DOI
Mercey G, Verdelet T, Saint-André G et al (2011) First efficient uncharged reactivators for the dephosphylation of poisoned human acetylcholinesterase. Chem Commun Camb Engl 47:5295–5297. https://doi.org/10.1039/c1cc10787a DOI
Mercey G, Renou J, Verdelet T et al (2012) Phenyltetrahydroisoquinoline-pyridinaldoxime conjugates as efficient uncharged reactivators for the dephosphylation of inhibited human acetylcholinesterase. J Med Chem 55:10791–10795. https://doi.org/10.1021/jm3015519 PubMed DOI
Mew EJ, Padmanathan P, Konradsen F et al (2017) The global burden of fatal self-poisoning with pesticides 2006–15: systematic review. J Affect Disord 219:93–104. https://doi.org/10.1016/j.jad.2017.05.002 PubMed DOI
Moriarty NW, Grosse-Kunstleve RW, Adams PD (2009) electronic ligand builder and optimization workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr D Biol Crystallogr 65:1074–1080. https://doi.org/10.1107/S0907444909029436 PubMed DOI PMC
Musilek K, Komloova M, Holas O et al (2011) Mono-oxime bisquaternary acetylcholinesterase reactivators with prop-1,3-diyl linkage-Preparation, in vitro screening and molecular docking. Bioorg Med Chem 19:754–762. https://doi.org/10.1016/j.bmc.2010.12.021 PubMed DOI
Nachon F, Carletti E, Worek F, Masson P (2010) Aging mechanism of butyrylcholinesterase inhibited by an N-methyl analogue of tabun: Implications of the trigonal–bipyramidal transition state rearrangement for the phosphylation or reactivation of cholinesterases. Chem Biol Interact 187:44–48. https://doi.org/10.1016/j.cbi.2010.03.053 PubMed DOI
Paddock RC, Sang-Hun C (2017) Kim Jong-nam Was Killed by VX Nerve Agent. Malaysians Say, NY
Petroianu GA, Arafat K, Nurulain SM et al (2007) In vitro oxime reactivation of red blood cell acetylcholinesterase inhibited by methyl-paraoxon. J Appl Toxicol JAT 27:168–175. https://doi.org/10.1002/jat.1189 PubMed DOI
Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084 PubMed DOI PMC
Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29:845–854. https://doi.org/10.1093/bioinformatics/btt055 PubMed DOI PMC
Rosenberg YJ, Mao L, Jiang X et al (2017) Post-exposure treatment with the oxime RS194B rapidly reverses early and advanced symptoms in macaques exposed to sarin vapor. Chem Biol Interact 274:50–57. https://doi.org/10.1016/j.cbi.2017.07.003 PubMed DOI PMC
Rosenberg YJ, Wang J, Ooms T et al (2018) Post-exposure treatment with the oxime RS194B rapidly reactivates and reverses advanced symptoms of lethal inhaled paraoxon in macaques. Toxicol Lett 293:229–234. https://doi.org/10.1016/j.toxlet.2017.10.025 PubMed DOI
Saint-André G, Kliachyna M, Kodepelly S et al (2011) Design, synthesis and evaluation of new α-nucleophiles for the hydrolysis of organophosphorus nerve agents: application to the reactivation of phosphorylated acetylcholinesterase. Tetrahedron 67:6352–6361. https://doi.org/10.1016/j.tet.2011.05.130 DOI
Seiple IB, Su S, Rodriguez RA et al (2010) Direct C−H arylation of electron-deficient heterocycles with arylboronic acids. J Am Chem Soc 132:13194–13196. https://doi.org/10.1021/ja1066459 PubMed DOI PMC
Sit RK, Fokin VV, Amitai G et al (2014) Imidazole aldoximes effective in assisting butyrylcholinesterase catalysis of organophosphate detoxification. J Med Chem 57:1378–1389. https://doi.org/10.1021/jm401650z PubMed DOI PMC
Sit RK, Kovarik Z, Maček Hrvat N et al (2018) Pharmacology, pharmacokinetics, and tissue disposition of zwitterionic hydroxyiminoacetamido alkylamines as reactivating antidotes for organophosphate exposure. J Pharmacol Exp Ther 367:363–372. https://doi.org/10.1124/jpet.118.249383 PubMed DOI PMC
Soukup O, Korabecny J, Malinak D et al (2018) In vitro and in silico evaluation of non-quaternary reactivators of ache as antidotes of organophosphorus poisoning - a new hope or a blind alley? Med Chem Shariqah United Arab Emir 14:281–292. https://doi.org/10.2174/1573406414666180112105657 DOI
Sousa da Silva AW, Vranken WF (2012) ACPYPE - antechamber python parser interface. BMC Res Notes 5:367. https://doi.org/10.1186/1756-0500-5-367 PubMed DOI PMC
Tallarida R, Murray RB (1987) Manual of pharmacologic calculations: with computer programs, 2nd edn. Springer-Verlag, New York
Vanquelef E, Simon S, Marquant G et al (2011) R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res 39:W511–W517. https://doi.org/10.1093/nar/gkr288 PubMed DOI PMC
Wang J, Wolf RM, Caldwell JW et al (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035 PubMed DOI PMC
Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260. https://doi.org/10.1016/j.jmgm.2005.12.005 PubMed DOI PMC
Watson A, Opresko D, Young RA et al (2015) Organophosphate Nerve Agents. Handbook of Toxicology of Chemical Warfare Agents. Elsevier, London, pp 87–109 DOI
Wong L, Radic Z, Brüggemann RJ et al (2000) Mechanism of oxime reactivation of acetylcholinesterase analyzed by chirality and mutagenesis. Biochemistry 39:5750–5757 DOI
Worek F, Mast U, Kiderlen D et al (1999) Improved determination of acetylcholinesterase activity in human whole blood. Clin Chim Acta 288:73–90. https://doi.org/10.1016/S0009-8981(99)00144-8 PubMed DOI
Worek F, Thiermann H, Szinicz L, Eyer P (2004) Kinetic analysis of interactions between human acetylcholinesterase, structurally different organophosphorus compounds and oximes. Biochem Pharmacol 68:2237–2248. https://doi.org/10.1016/j.bcp.2004.07.038 PubMed DOI
Worek F, Wille T, Koller M, Thiermann H (2012) Reactivation kinetics of a series of related bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase—Structure–activity relationships. Biochem Pharmacol 83:1700–1706. https://doi.org/10.1016/j.bcp.2012.03.002 PubMed DOI
Zdarova Karasova J, Hepnarova V, Andrys R et al (2020) Encapsulation of oxime K027 into cucurbit[7]uril: In vivo evaluation of safety, absorption, brain distribution and reactivation effectiveness. Toxicol Lett 320:64–72. https://doi.org/10.1016/j.toxlet.2019.11.021 PubMed DOI
Zhu Z, Furr J, Buolamwini JK (2003) Synthesis and flow cytometric evaluation of novel 1,2,3,4-tetrahydroisoquinoline conformationally constrained analogues of nitrobenzylmercaptopurine riboside (NBMPR) designed for probing its conformation when bound to the es nucleoside transporter. J Med Chem 46:831–837. https://doi.org/10.1021/jm020405p PubMed DOI
Zorbaz T, Malinak D, Maraković N et al (2018) Pyridinium oximes with ortho-positioned chlorine moiety exhibit improved physicochemical properties and efficient reactivation of human acetylcholinesterase inhibited by several nerve agents. J Med Chem 61:10753–10766. https://doi.org/10.1021/acs.jmedchem.8b01398 PubMed DOI
Zorbaz T, Mišetić P, Probst N et al (2020) Pharmacokinetic evaluation of brain penetrating morpholine-3-hydroxy-2-pyridine oxime as an antidote for nerve agent poisoning. ACS Chem Neurosci. https://doi.org/10.1021/acschemneuro.0c00032 PubMed DOI
A-series agent A-234: initial in vitro and in vivo characterization
Strategies for enhanced bioavailability of oxime reactivators in the central nervous system