Comparison of Metal Nanoparticles (Au, Ag, Eu, Cd) Used for Immunoanalysis Using LA-ICP-MS Detection

. 2021 Jan 26 ; 26 (3) : . [epub] 20210126

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33530345

Grantová podpora
CEITEC 2020 (LQ1601) Ministry of Education, Youth and Sports of the Czech Republic
No. 17-12774S Czech Science Foundation
MMCI, 00209805 MH CZ - DRO
MUNI/C/0003/2019 Grant Agency of Masaryk University

Immunochemical methods are used not only in clinical practice for the diagnosis of a wide range of diseases but also in basic and advanced research. Based on the unique reaction between the antibody and its respective antigens, it serves to specifically recognize target molecules in biological complex samples. Current methods of labelling antibodies with elemental labels followed by detection by inductively coupled plasma mass spectrometry (ICP-MS) allow detection of multiple antigens in parallel in a single analysis. Using the laser ablation (LA) modality (LA-ICP-MS), it is also possible to monitor the spatial distribution of biogenic elements. Moreover, the employment of metal nanoparticle-labeled antibodies expands the applicability also to molecular imaging by LA-ICP-MS. In this work, conjugates of model monoclonal antibody (DO-1, recognizing p53 protein) with various metal nanoparticles-based labels were created and utilized in dot-blot analysis in order to compare their benefits and disadvantages. Based on experiments with the p53 protein standard, commercial kits of gold nanoparticles proved to be the most suitable for the preparation of conjugates. The LA-ICP-MS demonstrated very good repeatability, wide linear dynamic range (0.1-14 ng), and limit of detection was calculated as a 1.3 pg of p53 protein.

Zobrazit více v PubMed

Tanner S.D., Baranov V.I., Ornatsky O.I., Bandura D.R., George T.C. An introduction to mass cytometry: Fundamentals and applications. Cancer Immunol. Immun. 2013;62:955–965. doi: 10.1007/s00262-013-1416-8. PubMed DOI PMC

Lou X.D., Zhang G.H., Herrera I., Kinach R., Ornatsky O., Baranov V., Nitz M., Winnik M.A. Polymer-based elemental tags for sensitive bioassays. Angew. Chem. Int. Edit. 2007;46:6111–6114. doi: 10.1002/anie.200700796. PubMed DOI PMC

Giesen C., Mairinger T., Khoury L., Waentig L., Jakubowski N., Panne U. Multiplexed immunohistochemical detection of tumor markers in breast cancer tissue using laser ablation inductively coupled plasma mass spectrometry. Anal. Chem. 2011;83:8177–8183. doi: 10.1021/ac2016823. PubMed DOI

Waentig L., Techritz S., Jakubowski N., Roos P.H. A multi-parametric microarray for protein profiling: Simultaneous analysis of 8 different cytochromes via differentially element tagged antibodies and laser ablation icp-ms. Analyst. 2013;138:6309–6315. doi: 10.1039/c3an00468f. PubMed DOI

Yin X., Chen B.B., He M., Hu B. Simultaneous determination of two phosphorylated p53 proteins in scc-7 cells by an icp-ms immunoassay using apoferritin-templated europium(iii) and lutetium(iii) phosphate nanoparticles as labels. Microchim. Acta. 2019;186:424. doi: 10.1007/s00604-019-3540-4. PubMed DOI

Cruz-Alonso M., Fernandez B., Navarro A., Junceda S., Astudillo A., Pereiro R. Laser ablation icp-ms for simultaneous quantitative imaging of iron and ferroportin in hippocampus of human brain tissues with alzheimer’s disease. Talanta. 2019;197:413–421. doi: 10.1016/j.talanta.2019.01.056. PubMed DOI

Gonzalez de Vega R., Clases D., Luisa Fernandez-Sanchez M., Eiro N., Gonzalez L.O., Vizoso F.J., Doble P.A., Sanz-Medel A. Mmp-11 as a biomarker for metastatic breast cancer by immunohistochemical-assisted imaging mass spectrometry. Anal. Bioanal. Chem. 2019;411:639–646. doi: 10.1007/s00216-018-1365-3. PubMed DOI

Tvrdonova M., Vlcnovska M., Vanickova L.P., Kanicky V., Adam V., Ascher L., Jakubowski N., Vaculovicova M., Vaculovic T. Gold nanoparticles as labels for immunochemical analysis using laser ablation inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 2019;411:559–564. doi: 10.1007/s00216-018-1300-7. PubMed DOI

[(accessed on 20 December 2020)]; Available online: https://www.pipety.cz/data/machines/flyer_101-7301-a1_hyperion_imaging_system.pdf.

[(accessed on 20 December 2020)]; Available online: https://www.fluidigm.com/applications/imaging-mass-cytometry#Products.

[(accessed on 20 December 2020)]; Available online: https://www.abcam.com/human-p53-elisa-kit-pser15-ab156027.html.

Baldacchini C., Montanarella A.F., Francioso L., Signore M.A., Cannistraro S., Bizzarri A.R. A reliable biofet immunosensor for detection of p53 tumour suppressor in physiological-like environment. Sensors. 2020;20:6364. doi: 10.3390/s20216364. PubMed DOI PMC

Attallah A.M., Abdel-Aziz M.M., El-Sayed A.M., Tabll A.A. Detection of serum p53 protein in patients with different gastrointestinal cancers. Cancer Detect. Prev. 2003;27:127–131. doi: 10.1016/S0361-090X(03)00024-2. PubMed DOI

Thomas M.D., McIntosh G.G., Anderson J.J., McKenna D.M., Parr A.H., Johnstone R., Lennard T.W.J., Horne C.H.W., Angus B. A novel quantitative immunoassay system for p53 using antibodies selected for optimum designation of p53 status. J. Clin. Pathol. 1997;50:143–147. doi: 10.1136/jcp.50.2.143. PubMed DOI PMC

Shwetha N., Selvakumar L.S., Thakur M.S. Aptamer-nanoparticle-based chemiluminescence for p53 protein. Anal. Biochem. 2013;441:73–79. doi: 10.1016/j.ab.2013.06.006. PubMed DOI

[(accessed on 20 December 2020)]; Available online: https://www.abcam.com/human-p53-elisa-kit-ab171571.html.

Sabapathy K., Lane D.P. Understanding p53 functions through p53 antibodies. J. Mol. Cell Biol. 2019;11:317–329. doi: 10.1093/jmcb/mjz010. PubMed DOI PMC

Hwang L.A., Phang B.H., Liew O.W., Iqbal J., Koh X.H., Koh X.Y., Othman R., Xue Y.Z., Richards A.M., Lane D.P., et al. Monoclonal antibodies against specific p53 hotspot mutants as potential tools for precision medicine. Cell Rep. 2018;22:299–312. doi: 10.1016/j.celrep.2017.11.112. PubMed DOI

Marques A.C., Costa P.J., Velho S., Amaral M.H. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J. Control. Release. 2020;320:180–200. doi: 10.1016/j.jconrel.2020.01.035. PubMed DOI

Richards D.A., Maruani A., Chudasama V. Antibody fragments as nanoparticle targeting ligands: A step in the right direction. Chem. Sci. 2017;8:63–77. doi: 10.1039/C6SC02403C. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...