Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
33538380
PubMed Central
PMC8596683
DOI
10.1111/1462-2920.15423
Knihovny.cz E-zdroje
- MeSH
- Basidiomycota * genetika MeSH
- dřevo mikrobiologie MeSH
- fungální proteiny genetika metabolismus MeSH
- fylogeneze MeSH
- genom fungální MeSH
- Polyporales * genetika metabolismus MeSH
- transkriptom genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- fungální proteiny MeSH
Because they comprise some of the most efficient wood-decayers, Polyporales fungi impact carbon cycling in forest environment. Despite continuous discoveries on the enzymatic machinery involved in wood decomposition, the vision on their evolutionary adaptation to wood decay and genome diversity remains incomplete. We combined the genome sequence information from 50 Polyporales species, including 26 newly sequenced genomes and sought for genomic and functional adaptations to wood decay through the analysis of genome composition and transcriptome responses to different carbon sources. The genomes of Polyporales from different phylogenetic clades showed poor conservation in macrosynteny, indicative of genome rearrangements. We observed different gene family expansion/contraction histories for plant cell wall degrading enzymes in core polyporoids and phlebioids and captured expansions for genes involved in signalling and regulation in the lineages of white rotters. Furthermore, we identified conserved cupredoxins, thaumatin-like proteins and lytic polysaccharide monooxygenases with a yet uncharacterized appended module as new candidate players in wood decomposition. Given the current need for enzymatic toolkits dedicated to the transformation of renewable carbon sources, the observed genomic diversity among Polyporales strengthens the relevance of mining Polyporales biodiversity to understand the molecular mechanisms of wood decay.
Centro de Investigaciones Biológicas Margarita Salas CIB CSIC Madrid 28040 Spain
Department of Biological Sciences King Abdulaziz University Jeddah Saudi Arabia
Department of Botany and Plant Pathology Oregon State University Corvallis OR 97331 USA
Department of Plant Anatomy Institute of Biology Eötvös Loránd University Budapest 1117 Hungary
Department of Plant and Microbial Biology University of California Berkeley Berkeley CA USA
INRAE Aix Marseille Univ CIRM CF UMR1163 Marseille 13009 France
INRAE Aix Marseille Univ UMR1163 Biodiversité et Biotechnologie Fongiques Marseille 13009 France
INRAE USC1408 AFMB Marseille 13009 France
Institute of Microbiology of the Czech Academy of Sciences Praha 4 142 20 Czech Republic
Pacific Northwest National Laboratory Richland WA 99352 USA
Section for Genetics and Evolutionary Biology University of Oslo Oslo 0316 Norway
Université de Lorraine INRAE UMR1136 Interactions Arbres Microorganismes Champenoux 54280 France
Zobrazit více v PubMed
Aksoy, S. , and Haralick, R.M. (2001) Feature normalization and likelihood‐based similarity measures for image retrieval. Pattern Recogn Lett 22: 563–582.
Altschul, S.F. , Gish, W. , Miller, W. , Myers, E.W. , and Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215: 403–410. PubMed
Arantes, V. , Jellison, J. , and Goodell, B. (2012) Peculiarities of brown‐rot fungi and biochemical Fenton reaction with regard to their potential as a model for bioprocessing biomass. Appl Microbiol Biotechnol 94: 323–338. PubMed
Arnesano, F. , Banci, L. , Bertini, I. , and Thompsett, A.R. (2002) Solution structure of CopC: a cupredoxin‐like protein involved in copper homeostasis. Structure 10: 1337–1347. PubMed
Ayuso‐Fernández, I. , Ruiz‐Dueñas, F.J. , and Martínez, A.T. (2018) Evolutionary convergence in lignin‐degrading enzymes. Proc Natl Acad Sci 115: 6428–6433. PubMed PMC
Bennati‐Granier, C. , Garajova, S. , Champion, C. , Grisel, S. , Haon, M. , Zhou, S. , et al. (2015) Substrate specificity and regioselectivity of fungal AA9 lytic polysaccharide monooxygenases secreted by Podospora anserina . Biotechnol Biofuels 8: 90. PubMed PMC
Berrin, J.‐G. , Navarro, D. , Couturier, M. , Olivé, C. , Grisel, S. , Haon, M. , et al. (2012) Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion. Appl Environ Microbiol 78: 6483–6490. PubMed PMC
Berrin, J.‐G. , Rosso, M.‐N. , and Abou, H.M. (2017) Fungal secretomics to probe the biological functions of lytic polysaccharide monooxygenases. Carbohydr Res 448: 155–160. PubMed
Blanchette, R.A. (1984) Screening wood decayed by white rot fungi for preferential lignin degradation. Appl Environ Microbiol 48: 647–653. PubMed PMC
Blanchette, R.A. , Krueger, E.W. , Haight, J.E. , Akhtar, M. , and Akin, D.E. (1997) Cell wall alterations in loblolly pine wood decayed by the white‐rot fungus, Ceriporiopsis subvermispora . J Biotechnol 53: 203–213.
Boberg, J.B. , Finlay, R.D. , Stenlid, J. , Ekblad, A. , and Lindahl, B.D. (2014) Nitrogen and carbon reallocation in fungal mycelia during decomposition of boreal forest litter (RA Wilson, Ed.). PLoS ONE 9: e92897. PubMed PMC
Capella‐Gutiérrez, S. , Silla‐Martínez, J.M. , and Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large‐scale phylogenetic analyses. Bioinformatics (Oxford, England) 25: 1972–1973. PubMed PMC
Chalak, A. , Villares, A. , Moreau, C. , Haon, M. , Grisel, S. , d'Orlando, A. , et al. (2019) Influence of the carbohydrate‐binding module on the activity of a fungal AA9 lytic polysaccharide monooxygenase on cellulosic substrates. Biotechnol Biofuels 12: 206. PubMed PMC
Chen, K. , Durand, D. , and Farach‐Colton, M. (2000) NOTUNG: a program for dating gene duplications and optimizing gene family trees. J Comput Biol 7: 429–447. PubMed
Chen, J. , Heikkinen, J. , Hobbie, E.A. , Rinne‐Garmston, K.T. , Penttilä, R. , and Mäkipää, R. (2019) Strategies of carbon and nitrogen acquisition by saprotrophic and ectomycorrhizal fungi in Finnish boreal Picea abies‐dominated forests. Fungal Biol 123: 456–464. PubMed
Chin, C.‐S. , Alexander, D.H. , Marks, P. , Klammer, A.A. , Drake, J. , Heiner, C. , et al. (2013) Nonhybrid, finished microbial genome assemblies from long‐read SMRT sequencing data. Nat Methods 10: 563–569. PubMed
Couturier, M. , Ladevèze, S. , Sulzenbacher, G. , Ciano, L. , Fanuel, M. , Moreau, C. , et al. (2018) Lytic xylan oxidases from wood‐decay fungi unlock biomass degradation. Nat Chem Biol 14: 306–310. PubMed
Deroy, A. , Saiag, F. , Kebbi‐Benkeder, Z. , Touahri, N. , Hecker, A. , Morel‐Rouhier, M. , et al. (2015) The GSTome reflects the chemical environment of white‐rot fungi. PLoS one 10: e0137083. PubMed PMC
Eastwood, D.C. , Floudas, D. , Binder, M. , Majcherczyk, A. , Schneider, P. , Aerts, A. , et al. (2011) The plant cell wall‐decomposing machinery underlies the functional diversity of forest fungi. Science (New York, N.Y.) 333: 762–765. PubMed
Feldman, D. , Yarden, O. , and Hadar, Y. (2020) Seeking the roles for fungal small‐secreted proteins in affecting saprophytic lifestyles. Front Microbiol 11: 455. PubMed PMC
Fernandez‐Fueyo, E. , Ruiz‐Dueñas, F.J. , Ferreira, P. , Floudas, D. , Hibbett, D.S. , Canessa, P. , et al. (2012) Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc Natl Acad Sci U S A 109: 5458–5463. PubMed PMC
Floudas, D. , Binder, M. , Riley, R. , Barry, K. , Blanchette, R.A. , Henrissat, B. , et al. (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336: 1715–1719. PubMed
Garcia‐Santamarina, S. , Probst, C. , Festa, R.A. , Ding, C. , Smith, A.D. , Conklin, S.E. , et al. (2020) A lytic polysaccharide monooxygenase‐like protein functions in fungal copper import and meningitis. Nat Chem Biol 16: 337–344. PubMed PMC
Gnerre, S. , MacCallum, I. , Przybylski, D. , Ribeiro, F.J. , Burton, J.N. , Walker, B.J. , et al. (2011) High‐quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108: 1513–1518. PubMed PMC
Grigoriev, I.V. , Nikitin, R. , Haridas, S. , Kuo, A. , Ohm, R. , Otillar, R. , et al. (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res 42: D699–D704. PubMed PMC
Gu, Z. , Gu, L. , Eils, R. , Schlesner, M. , and Brors, B. (2014) Circlize implements and enhances circular visualization in R. Bioinformatics 30: 2811–2812. PubMed
Gutiérrez, A. , del Río, J.C. , Martínez‐Íñigo, M.J. , Martínez, M.J. , and Martínez, Á.T. (2002) Production of new unsaturated lipids during wood decay by ligninolytic basidiomycetes. Appl Environ Microbiol 68: 1344–1350. PubMed PMC
Hori, C. , Gaskell, J. , Igarashi, K. , Kersten, P. , Mozuch, M. , Samejima, M. , and Cullen, D. (2014) Temporal alterations in the secretome of the selective ligninolytic fungus Ceriporiopsis subvermispora during growth on aspen wood reveal this organism's strategy for degrading lignocellulose. Appl Environ Microbiol 80: 2062–2070. PubMed PMC
Justo, A. , Miettinen, O. , Floudas, D. , Ortiz‐Santana, B. , Sjökvist, E. , Lindner, D. , et al. (2017) A revised family‐level classification of the Polyporales (Basidiomycota). Fungal Biol 121: 798–824. PubMed
Kadimaliev, D.A. , Nadezhina, O.S. , Atykyan, N.A. , Revin, V.V. , and Samuilov, V.D. (2006) Interrelation between the composition of lipids and their peroxidation products and the secretion of ligninolytic enzymes during growth of Lentinus (Panus) tigrinus . Microbiology 75: 563–567. PubMed
Kim, K.‐T. , Jeon, J. , Choi, J. , Cheong, K. , Song, H. , Choi, G. , et al. (2016) Kingdom‐wide analysis of fungal small secreted proteins (SSPs) reveals their potential role in host association. Front Plant Sci 7: 186. PubMed PMC
Kirk, P. , Cannon, P. , Minter, D. , and Stalpers, J. (2009) Dictionary of the fungi. Mycol Res 113: 908–910.
Knobloch, E. , and Kotlaba, F. (1994) Trametites eocenicus, a new fossil polypore from the Bohemian Eocene. Czech Mycol 47: 207–214.
Korripally, P. , Hunt, C.G. , Houtman, C.J. , Jones, D.C. , Kitin, P.J. , Cullen, D. , and Hammel, K.E. (2015) Regulation of gene expression during the onset of ligninolytic oxidation by Phanerochaete chrysosporium on spruce wood. Appl Environ Microbiol 81: 7802–7812. PubMed PMC
Kuroyama, H. , Tsutsui, N. , Hashimoto, Y. , and Tsumuraya, Y. (2001) Purification and characterization of a beta‐glucuronidase from Aspergillus niger . Carbohydr Res 333: 27–39. PubMed
Kuuskeri, J. , Häkkinen, M. , Laine, P. , Smolander, O.‐P. , Tamene, F. , Miettinen, S. , et al. (2016) Time‐scale dynamics of proteome and transcriptome of the white‐rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. Biotechnol Biofuels 9: 192. PubMed PMC
Labourel, A. , Frandsen, K.E.H. , Zhang, F. , Brouilly, N. , Grisel, S. , Haon, M. , et al. (2020) A fungal family of lytic polysaccharide monooxygenase‐like copper proteins. Nat Chem Biol 16: 345–350. PubMed
Lam, K.‐K. , LaButti, K. , Khalak, A. , and Tse, D. (2015) FinisherSC: a repeat‐aware tool for upgrading de novo assembly using long reads. Bioinformatics 31: 3207–3209. PubMed
Lenfant, N. , Hainaut, M. , Terrapon, N. , Drula, E. , Lombard, V. , and Henrissat, B. (2017) A bioinformatics analysis of 3400 lytic polysaccharide oxidases from family AA9. Carbohydr Res 448: 166–174. PubMed
Lombard, V. , Golaconda Ramulu, H. , Drula, E. , Coutinho, P.M. , and Henrissat, B. (2014) The carbohydrate‐active enzymes database (CAZy) in 2013. Nucleic Acids Res 42: D490–D495. PubMed PMC
Love, M.I. , Huber, W. , and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol 15: 550. PubMed PMC
Lundell, T.K. , Mäkelä, M.R. , de Vries, R.P. , and Hildén, K.S. (2014) Chapter eleven ‐ genomics, lifestyles and future prospects of wood‐decay and litter‐decomposing Basidiomycota. In Advances in Botanical Research: Fungi, Vol. 70, Martin, F.M. (ed). London: Academic Press, pp. 329–370.
Martin, R. , Gazis, R. , Skaltsas, D. , Chaverri, P. , and Hibbett, D. (2015) Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea. Mycologia 107: 284–297. PubMed
Martínez, A.T. , Ruiz‐Dueñas, F.J. , Camarero, S. , Serrano, A. , Linde, D. , Lund, H. , et al. (2017) Oxidoreductases on their way to industrial biotransformations. Biotechnol Adv 35: 815–831. PubMed
Martínez, A.T. , Speranza, M. , Ruiz‐Dueñas, F.J. , Ferreira, P. , Camarero, S. , Guillén, F. , et al. (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8: 195–204. PubMed
Martins, I. , Hartmann, D.O. , Alves, P.C. , Martins, C. , Garcia, H. , Leclercq, C.C. , et al. (2014) Elucidating how the saprophytic fungus Aspergillus nidulans uses the plant polyester suberin as carbon source. BMC Genomics 15: 613. PubMed PMC
Maeder H. (2018) FALCON: experimental PacBio diploid assembler. [WWW document] URL https://github.com/PacificBiosciences/FALCON.
Maeder H. (2019) PacBio® variant and consensus caller [WWW document]. URL https://github.com/PacificBiosciences/GenomicConsensus
Mattila, H.K. , Mäkinen, M. , and Lundell, T. (2020) Hypoxia is regulating enzymatic wood decomposition and intracellular carbohydrate metabolism in filamentous white rot fungus. Biotechnol Biofuels 13: 26. PubMed PMC
Maxim H. (2018) RVAideMemoire: testing and plotting procedures for biostatistics. R Package Version 0.9–69.
Mesny F. (2020) Detecting the effect of biological categories on genomes composition [WWW document]. URL https://github.com/fantin-mesny/Effect-Of-Biological-Categories-On-Genomes-Composition
Miettinen, O. , Riley, R. , Barry, K. , Cullen, D. , de Vries, R.P. , Hainaut, M. , et al. (2016) Draft genome sequence of the white‐rot fungus Obba rivulosa 3A‐2. Genome Announc 4: e00976–e00916. PubMed PMC
Miyauchi, S. , Hage, H. , Drula, E. , Lesage‐Meessen, L. , Berrin, J.‐G. , Navarro, D. , et al. (2020) Conserved white‐rot enzymatic mechanism for wood decay in the Basidiomycota genus Pycnoporus . DNA Res 27: dsaa011. PubMed PMC
Miyauchi, S. , Navarro, D. , Grisel, S. , Chevret, D. , Berrin, J.‐G. , and Rosso, M.‐N. (2017) The integrative omics of white‐rot fungus Pycnoporus coccineus reveals co‐regulated CAZymes for orchestrated lignocellulose breakdown. PLOS One 12: e0175528. PubMed PMC
Miyauchi, S. , Rancon, A. , Drula, E. , Hage, H. , Chaduli, D. , Favel, A. , et al. (2018) Integrative visual omics of the white‐rot fungus Polyporus brumalis exposes the biotechnological potential of its oxidative enzymes for delignifying raw plant biomass. Biotechnol Biofuels 11: 201. PubMed PMC
Morin, E. , Miyauchi, S. , San Clemente, H. , Chen, E.C.H. , Pelin, A. , de la Providencia, I. , et al. (2019) Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. New Phytol 222: 1584–1598. PubMed
Moudy, M. , and Stites, W. (2017) Investigation of methionine sulfoxide formation as a regulator of proteolysis. Biophys J 112: 202a.
Nagy, L.G. , Ohm, R.A. , Kovács, G.M. , Floudas, D. , Riley, R. , Gácser, A. , et al. (2014) Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat Commun 5: 4471. PubMed
Nagy, L.G. , Riley, R. , Bergmann, P.J. , Krizsán, K. , Martin, F.M. , Grigoriev, I.V. , et al. (2016) Genetic bases of fungal white rot wood decay predicted by phylogenomic analysis of correlated gene‐phenotype evolution. Mol Biol Evol 34: 35–44. PubMed
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O'Hara RB, et al. (2012) Vegan: Community Ecology Package. R package version 2.0‐2.
Paradis, E. , Claude, J. , and Strimmer, K. (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290. PubMed
Payen, T. , Murat, C. , and Martin, F. (2016) Reconstructing the evolutionary history of gypsy retrotransposons in the Périgord black truffle (Tuber melanosporum Vittad.). Mycorrhiza 26: 553–563. PubMed
Pellegrin, C. , Morin, E. , Martin, F.M. , and Veneault‐Fourrey, C. (2015) Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small‐secreted proteins. Front Microbiol 6: 1278. PubMed PMC
Presley, G.N. , and Schilling, J.S. (2017) Distinct growth and secretome strategies for two taxonomically divergent brown rot fungi. Appl Environ Microbiol 83: e02987–e02916. PubMed PMC
Price, A.L. , Jones, N.C. , and Pevzner, P.A. (2005) De novo identification of repeat families in large genomes. Bioinformatics 21: i351–i358. PubMed
Puttick, M.N. (2019) MCMCtreeR: functions to prepare MCMCtree analyses and visualize posterior ages on trees. Bioinformatics 35: 5321–5322. PubMed
Qhanya, L.B. , Matowane, G. , Chen, W. , Sun, Y. , Letsimo, E.M. , Parvez, M. , et al. (2015) Genome‐wide annotation and comparative analysis of cytochrome P450 monooxygenases in Basidiomycete biotrophic plant pathogens. PLOS One 10: e0142100. PubMed PMC
Rayner, A.D.M. , Boddy, L. , and Dowson, C.G. (1987) Temporary parasitism of Coriolus spp. by Lenzites betulina: a strategy for domain capture in wood decay fungi. FEMS Microbiol Lett 45: 53–58.
Riley, R. , Salamov, A.A. , Brown, D.W. , Nagy, L.G. , Floudas, D. , Held, B.W. , et al. (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white‐rot/brown‐rot paradigm for wood decay fungi. Proc Natl Acad Sci 111: 9923–9928. PubMed PMC
Rivera‐Hoyos, C.M. , Morales‐Álvarez, E.D. , Poutou‐Piñales, R.A. , Pedroza‐Rodríguez, A.M. , RodrÍguez‐Vázquez, R. , and Delgado‐Boada, J.M. (2013) Fungal laccases. Fungal Biol Rev 27: 67–82.
Ruiz‐Dueñas, F.J. , Lundell, T. , Floudas, D. , Nagy, L.G. , Barrasa, J.M. , Hibbett, D.S. , and Martínez, A.T. (2013) Lignin‐degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes. Mycologia 105: 1428–1444. PubMed
Ruiz‐Dueñas, F.J. , Barrasa, J.M. , Sánchez‐García, M. , Camarero, S. , Miyauchi, S. , Serrano, A. , et al. (2020) Genomic analysis enlightens Agaricales lifestyle evolution and increasing peroxidase diversity. Mol Biol Evol. PubMed PMC
Schilling, J.S. , Kaffenberger, J.T. , Held, B.W. , Ortiz, R. , and Blanchette, R.A. (2020) Using wood rot phenotypes to illuminate the “gray” among decomposer fungi. Front Microbiol 11: 1288. PubMed PMC
Sokolski, S. , Bernier‐Cardou, M. , Piché, Y. , and Bérubé, J.A. (2007) Black spruce (Picea mariana) foliage hosts numerous and potentially endemic fungal endophytes. Can J For Res 37: 1737–1747.
Song, J. , and Cui, B.‐K. (2017) Phylogeny, divergence time and historical biogeography of Laetiporus (Basidiomycota, Polyporales). BMC Evol Biol 17: 102. PubMed PMC
Suzuki, H. , MacDonald, J. , Syed, K. , Salamov, A. , Hori, C. , Aerts, A. , et al. (2012) Comparative genomics of the white‐rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. BMC Genomics 13: 444. PubMed PMC
Syed, K. , Shale, K. , Pagadala, N.S. , and Tuszynski, J. (2014) Systematic identification and evolutionary analysis of catalytically versatile cytochrome p450 monooxygenase families enriched in model basidiomycete fungi. PLOS ONE 9: e86683. PubMed PMC
Varga, T. , Krizsán, K. , Földi, C. , Dima, B. , Sánchez‐García, M. , Sánchez‐Ramírez, S. , et al. (2019) Megaphylogeny resolves global patterns of mushroom evolution. Nat Ecol Evol 3: 668–678. PubMed PMC
Wattam, A.R. , Abraham, D. , Dalay, O. , Disz, T.L. , Driscoll, T. , Gabbard, J.L. , et al. (2014) PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 42: D581–D591. PubMed PMC
Wright, E.S. (2015) DECIPHER: harnessing local sequence context to improve protein multiple sequence alignment. BMC Bioinformatics 16: 322. PubMed PMC
Wu, B. , Gaskell, J. , Held, B.W. , Toapanta, C. , Vuong, T. , Ahrendt, S. , et al. (2018) Substrate‐specific differential gene expression and RNA editing in the brown rot fungus Fomitopsis pinicola . Appl Environ Microbiol 84: e00991–e00918. PubMed PMC
Zhang, J. , Silverstein, K.A.T. , Castaño, J.D. , Figueroa, M. , and Schilling, J.S. (2019) Gene regulation shifts shed light on fungal adaption in plant biomass decomposers. mBio 10: e02176–e02119. PubMed PMC
Zhou, S. , Raouche, S. , Grisel, S. , Navarro, D. , Sigoillot, J.‐C. , and Herpoël‐Gimbert, I. (2015) Solid‐state fermentation in multi‐well plates to assess pretreatment efficiency of rot fungi on lignocellulose biomass. J Microbial Biotechnol 8: 940–949. PubMed PMC