Selenium Biofortification: Roles, Mechanisms, Responses and Prospects
Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
VEGA 1/0589/19 and VEGA 1/0683/20
This is an international collaborative work. Financial support for APC of the review was funded by projects: VEGA 1/0589/19 and VEGA 1/0683/20
PubMed
33562416
PubMed Central
PMC7914768
DOI
10.3390/molecules26040881
PII: molecules26040881
Knihovny.cz E-resources
- Keywords
- animals, biofortification, humans, nutrition, plants, selenium, trace element,
- MeSH
- Antioxidants chemistry metabolism MeSH
- Biofortification * MeSH
- Selenic Acid chemistry metabolism MeSH
- Humans MeSH
- Soil chemistry MeSH
- Plants metabolism MeSH
- Selenium chemistry metabolism MeSH
- Selenocysteine chemistry metabolism MeSH
- Selenomethionine chemistry metabolism MeSH
- Selenoproteins biosynthesis metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Antioxidants MeSH
- Selenic Acid MeSH
- Soil MeSH
- Selenium MeSH
- Selenocysteine MeSH
- Selenomethionine MeSH
- Selenoproteins MeSH
The trace element selenium (Se) is a crucial element for many living organisms, including soil microorganisms, plants and animals, including humans. Generally, in Nature Se is taken up in the living cells of microorganisms, plants, animals and humans in several inorganic forms such as selenate, selenite, elemental Se and selenide. These forms are converted to organic forms by biological process, mostly as the two selenoamino acids selenocysteine (SeCys) and selenomethionine (SeMet). The biological systems of plants, animals and humans can fix these amino acids into Se-containing proteins by a modest replacement of methionine with SeMet. While the form SeCys is usually present in the active site of enzymes, which is essential for catalytic activity. Within human cells, organic forms of Se are significant for the accurate functioning of the immune and reproductive systems, the thyroid and the brain, and to enzyme activity within cells. Humans ingest Se through plant and animal foods rich in the element. The concentration of Se in foodstuffs depends on the presence of available forms of Se in soils and its uptake and accumulation by plants and herbivorous animals. Therefore, improving the availability of Se to plants is, therefore, a potential pathway to overcoming human Se deficiencies. Among these prospective pathways, the Se-biofortification of plants has already been established as a pioneering approach for producing Se-enriched agricultural products. To achieve this desirable aim of Se-biofortification, molecular breeding and genetic engineering in combination with novel agronomic and edaphic management approaches should be combined. This current review summarizes the roles, responses, prospects and mechanisms of Se in human nutrition. It also elaborates how biofortification is a plausible approach to resolving Se-deficiency in humans and other animals.
Bangladesh Wheat and Maize Research Institute Dinajpur 5200 Bangladesh
CSIRO Agriculture and Food 4067 Brisbane Australia
Department of Agronomy Bidhan Chandra Krishi Viswavidyalaya Nadia West Bengal 741252 India
Department of Agronomy Centurion University of Technology and Management Paralakhemundi 761211 India
Department of Life Sciences The Islamia University of Bahawalpur Bahawalpur 58421 Pakistan
International Maize and Wheat Improvement Center Patancheru Hyderabad 502324 India
Regional Research Station Kapurthala Punjab Agricultural University Ludhiana Punjab 144601 India
See more in PubMed
Kieliszek M. Selenium–fascinating microelement, properties and sources in food. Molecules. 2019;24:1298. doi: 10.3390/molecules24071298. PubMed DOI PMC
Galan-Chilet I., Tellez-Plaza M., Guallar E., De Marco G., Lopez-Izquierdo R., Gonzalez-Manzano I., Carmen Tormos M., Martin-Nuñez G.M., Rojo-Martinez G., Saez G.T., et al. Plasma selenium levels and oxidative stress biomarkers: A gene–environment interaction population-based study. Free Radic. Biol. Med. 2014;74:229–236. doi: 10.1016/j.freeradbiomed.2014.07.005. PubMed DOI
Duntas L.H., Benvenga S. Selenium: An element for life. Endocrine. 2015;48:756–775. doi: 10.1007/s12020-014-0477-6. PubMed DOI
Kieliszek M., Błazejak S. Current knowledge on the importance of selenium in food for living organisms: A review. Molecules. 2016;21:609. doi: 10.3390/molecules21050609. PubMed DOI PMC
Nothstein A.K., Eiche E., Riemann M., Nick P., Winkel L.H.E., Göttlicher J., Steininger R., Brendel R., Brasch M.V., Konrad G., et al. Tracking se assimilation and speciation through the rice plant–nutrient competition, toxicity and distribution. PLoS ONE. 2016;26:e0152081. doi: 10.1371/journal.pone.0152081. PubMed DOI PMC
Pilon-Smits E.A., Le Duc D.L. Phytoremediation of selenium using transgenic plants. Curr. Opin. Biotechnol. 2009;20:207–212. doi: 10.1016/j.copbio.2009.02.001. PubMed DOI
Ullah H., Liu G., Yousaf B., Ali M.U., Abbas Q., Munir M.A.M., Mian M.M. Developmental selenium exposure and health risk in daily foodstuffs: A systematic review and meta-analysis. Ecotoxicol. Environ. Saf. 2018;149:291–306. doi: 10.1016/j.ecoenv.2017.11.056. PubMed DOI
McCann J.C., Ames B.N. Adaptive dysfunction of selenoproteins from the perspective of the triage theory: Why modest selenium deficiency may increase risk of diseases of aging. FASEB J. 2011;25:1793–1814. doi: 10.1096/fj.11-180885. PubMed DOI
Shreenath A.P., Ameer M.A., Dooley J. Selenium Deficiency. [(accessed on 30 January 2021)];Treasure Island (FL): StatPearls Publishing. 2020 Available online: https://www.ncbi.nlm.nih.gov/books/NBK482260/
Longchamp M., Angeli N., Castrec-Rouelle M. Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant Soil. 2013;362:107–117. doi: 10.1007/s11104-012-1259-7. DOI
Khanam A., Platel K. Bioaccessibility of selenium, selenomethionine and selenocysteine from foods and influence of heat processing on the same. Food Chem. 2016;194:1293–1299. doi: 10.1016/j.foodchem.2015.09.005. PubMed DOI
Reich H.J., Hondal R.J. Why nature chose selenium? ACS Chem. Biol. 2016;11:821–841. doi: 10.1021/acschembio.6b00031. PubMed DOI
Mason R.P., Soerensen A.L., DiMento B.P., Balcom P.H. The global marine selenium cycle: Insights from measurements and modeling. Glob. Biogeochem. Cycles. 2018;32:1720–1737. doi: 10.1029/2018GB006029. DOI
Fordyce F.M. Selenium deficiency and toxicity in the environment. In: Selinus O., editor. Essentials of Medical Geology. Springer; Berlin/Heidelberg, Germany: 2013. pp. 375–416.
Winkel L.H., Trang P.T.K., Lan V.M., Stengel C., Amini M., Ha N.T., Viet P.H., Berg M. Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc. Natl. Acad. Sci. USA. 2011;108:1246–1251. doi: 10.1073/pnas.1011915108. PubMed DOI PMC
Shahid M., Niazi N.K., Khalid S., Murtaza B., Bibi I., Rashid M.I. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ. Pollut. 2018;234:915–934. PubMed
Söderlund M., Virkanen J., Holgersson S., Lehto J. Sorption and speciation of selenium in boreal forest soil. J. Environ. Radioact. 2016;164:220–231. doi: 10.1016/j.jenvrad.2016.08.006. PubMed DOI
He Y., Xiang Y., Zhou Y., Yang Y., Zhang J., Huang H., Shang C., Luo L., Gao J., Tang L. Selenium contamination, consequences and remediation techniques in water and soils: A review. Environ. Res. 2018;164:288–301. doi: 10.1016/j.envres.2018.02.037. PubMed DOI
Tomza-Marciniak A., Bąkowska M., Pilarczyk B., Semeniuk M., Hendzel D., Udała J., Balicka-Ramisz A., Tylkowska A. Concentration of selenium in the soil and in selected organs of roe deer (Capreolus capreolus) from the Greater Poland Voivodeship. Acta Sci. Pol. Zootech. 2010;9:251–260.
Chilimba A.D., Young S.D., Black C.R., Meacham M.C., Lammel J., Broadley M.R. Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crop. Res. 2012;125:118–128. doi: 10.1016/j.fcr.2011.08.014. DOI
Lopes G., Ávila F.W., Guilherme L.R.G. Selenium behavior in the soil environment and its implication for human health. Ciência Agrotecnologia. 2017;41:605–615. doi: 10.1590/1413-70542017416000517. DOI
Stroud J., Broadley M., Foot I., Fairweather-Tait S., Hart D., Hurst R., Knott P., Mowat H., Norman K., Scott P. Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant Soil. 2010;332:19–30. doi: 10.1007/s11104-009-0229-1. DOI
Paikaray S. Origin, mobilization and distribution of selenium in a soil/water/air system: A global perspective with special reference to the Indian scenario. Clean. 2016;44:474–487. doi: 10.1002/clen.201300454. DOI
WHO . Background Document for Preparation of WHO Guidelines for Drinking-Water Quality. World Health Organization (WHO/SDE/WSH/03.04/13); Geneva, Switzerland: 2003. Selenium in Drinking-Water.
Oropeza-Moe M., Wisløff H., Bernhoft A. Selenium deficiency associated porcine and human cardiomyopathies. J. Trace Elem. Med. Biol. 2015;31:148–156. doi: 10.1016/j.jtemb.2014.09.011. PubMed DOI
Steinbrenner H., Sies H. Selenium homeostasis and antioxidant selenoproteins in brain: Implications for disorders in the central nervous system. Arch. Biochem. Biophys. 2013;536:152–157. doi: 10.1016/j.abb.2013.02.021. PubMed DOI
Pillai R., Uyehara-Lock J.H., Bellinger F.P. Selenium and selenoprotein function in brain disorders. IUBMB Life. 2014;66:229–239. doi: 10.1002/iub.1262. PubMed DOI
Lipinski B. Rationale for the treatment of cancer with sodium selenite. Med. Hypotheses. 2005;64:806–810. doi: 10.1016/j.mehy.2004.10.012. PubMed DOI
Okunade K.S., Olowoselu O.F., Osanyin G.E., John-Olabode S., Akanmu S.A., Anorlu R.I. Selenium deficiency and pregnancy outcome in pregnant women with HIV in Lagos, Nigeria. Int. J. Gynecol. Obstet. 2018;142:207–213. doi: 10.1002/ijgo.12508. PubMed DOI PMC
Ventura M., Melo M., Carrilho F. Selenium and thyroid disease: From pathophysiology to treatment. Int. J. Endocrinol. 2017:1297658. doi: 10.1155/2017/1297658. PubMed DOI PMC
Yim S.H., Clish C.B., Gladyshev V.N. Selenium deficiency is associated with pro-longevity mechanisms. Cell Rep. 2019;27:2785–2797. doi: 10.1016/j.celrep.2019.05.001. PubMed DOI PMC
Gupta M., Gupta S. An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant Sci. 2017;7:2074. doi: 10.3389/fpls.2016.02074. PubMed DOI PMC
Underwood E.J., Suttle N.F. The mineral nutrition of livestock. In: Underwood E.J., Suttle N.F., editors. Selenium. CABI Publishing; New York, NY, USA: 1999. pp. 421–475.
Whanger P.D., Weswig P.H., Oldfield J.E., Cheeke P.R., Muth O.H. Factors influencing selenium and white muscle disease: Forage types, salts, amino acids and dimethyl sulfoxide. Nutr. Rep. Int. 1972;6:21–37.
Turner R.J., Finch J.M. Selenium and the immune response. Proc. Nutr. Soc. 1991;50:275–285. doi: 10.1079/PNS19910037. PubMed DOI
Combs G.F., Jr., Combs S.B. The Role of Selenium in Nutrition. Academic Press; Cambridge, MA, USA: 1986. p. 532.
Andrews E.D., Hartley W.J., Grant A.B. Selenium- responsive diseases of animals in New Zealand. New Zealand Vet. J. 1968;16:3–17. doi: 10.1080/00480169.1968.33738. PubMed DOI
Navarro-Alarcon M., Cabrera-Vique C. Selenium in food and the human body: A review. Sci. Total. Environ. 2008;400:115–141. doi: 10.1016/j.scitotenv.2008.06.024. PubMed DOI
Vinceti M., Mandrioli J., Borella P., Michalke B., Tsatsakis A., Finkelstein Y. Selenium neurotoxicity in humans: Bridging laboratory and epidemiologic studies. Toxicol. Lett. 2014;230:295–303. doi: 10.1016/j.toxlet.2013.11.016. PubMed DOI
Franke K.W. A new toxicant occurring naturally in certain samples of plant foodstuffs. 1. Results obtained in preliminary feeding trials. J. Nutr. 1934;8:597–609. doi: 10.1093/jn/8.5.597. DOI
IMFNB . Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academy Press; Cambridge, MA, USA: 2000. pp. 1–20. PubMed
Silva Junior E.C., Wadt L.H.O., Silva K.E., Lima R.M.B., Batista K.D., Guedes M.C., Carvalho G.S., Carvalho T.S., Reis A.R., Lopes G., et al. Natural variation of selenium in Brazil nuts and soils from the Amazon region. Chemosphere. 2017;188:650–658. doi: 10.1016/j.chemosphere.2017.08.158. PubMed DOI
Post M., Lubiński W., Lubiński J., Krzystolik K., Baszuk P., Muszyńska M., Marciniak W. Serum selenium levels are associated with age-related cataract. Ann. Agric. Environ. Med. 2018;25:443–448. doi: 10.26444/aaem/90886. PubMed DOI
Pophaly S.D., Singh P., Kumar H., Tomar S.K., Singh R. Selenium enrichment of lactic acid bacteria and bifidobacteria: A functional food perspective. Trends Food Sci. Tech. 2014;39:135–145. doi: 10.1016/j.tifs.2014.07.006. DOI
USDA-ARS . USDA National Nutrient Database for Standard Reference. USDA-ARS; Washington, DC, USA: 2002. [(accessed on 30 January 2021)]. Release 25. Available online: http://www.nal.usda.gov/fnic/selenium.
WHO Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. [(accessed on 28 January 2021)];2009 Available online: http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_reportannex.pdf.
Ríos J.J., Rosales M.A., Blasco B., Cervilla L.M., Romero L., Ruiz J.M. Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hortic. 2008;116:248–255. doi: 10.1016/j.scienta.2008.01.008. DOI
Hawrylak-Nowak B. Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant. Growth Regul. 2013;70:149–157. doi: 10.1007/s10725-013-9788-5. DOI
Ríos J.J., Blasco B., Leyva R., Sanchez-Rodriguez E., Rubio-Wilhelmi M.M., Romero L., Ruiz J.M. Nutritional balance changes in lettuce plant grown under different doses and forms of selenium. J. Plant. Nutr. 2013;36:1344–1354. doi: 10.1080/01904167.2013.790427. DOI
Reilly C. Selenium in Food and Health. Blackie; London, UK: 1996.
Shrift A. Aspects of selenium metabolism in higher plants. Ann. Rev. Plant Physiol. 1969;20:475–494. doi: 10.1146/annurev.pp.20.060169.002355. DOI
Lyons G.H., Stangoulis J.C.R., Graham R.D. High-selenium wheat: Biofortification for better health. Nutr. Res. Rev. 2003;16:45–60. doi: 10.1079/NRR200255. PubMed DOI
Huang S., Wang P., Yamaji N., Ma J.F. Plant nutrition for human nutrition: Hints from rice research and future perspectives. Mol. Plant. 2020;13:825–835. doi: 10.1016/j.molp.2020.05.007. PubMed DOI
Lyons M.P., Papazyan T.T., Surai P.F. Selenium in food chain and animal nutrition: Lessons from nature. Asian-Australas. J. Anim. Sci. 2007;20:1135–1155. doi: 10.5713/ajas.2007.1135. DOI
Kipp A.P., Strohm D., Brigelius-Flohé R., Schomburg L., Bechthold A., Leschik-Bonnet E., Heseker H., DGE G.N.S. Revised reference values for selenium intake. J. Trace Elem. Med. Biol. 2015;32:195–199. doi: 10.1016/j.jtemb.2015.07.005. PubMed DOI
Tamari Y., Kim E.S. Longitudinal study of the dietary selenium intake of exclusively breast-fed infants during early lactation in Korea and Japan. J. Trace Elem. Med. Biol. 1999;13:129–133. doi: 10.1016/S0946-672X(99)80002-9. PubMed DOI
Hsueh Y.M., Su C.T., Shiue H.S., Chen W.J., Pu Y.S., Lin Y.C., Tsai C.S., Huang C.Y. Levels of plasma selenium and urinary total arsenic interact to affect the risk for prostate cancer. Food Chem. Toxicol. 2017;107:167–175. doi: 10.1016/j.fct.2017.06.031. PubMed DOI
Bampidis V., Azimonti G., Bastos M.D.L., Christensen H., Dusemund B., Kouba M., Durjava M.K., López-Alonso M., Puente S.L., Marcon F., et al. Assessment of the application for renewal of authorisation of selenomethionine produced by Saccharomyces cerevisiae CNCM I-3060 (selenised yeast inactivated) for all animal species. EFSA J. 2018;16:e05386. PubMed PMC
Fraczek A., Pasternak K. Selenium in medicine and treatment. J. Elem. 2013;18:145–163. doi: 10.5601/jelem.2013.18.1.13. DOI
Kieliszek M., Błażejak S., Kurek E. Binding and conversion of selenium in Candida utilis ATCC 9950 yeasts in bioreactor culture. Molecules. 2017;22:352. doi: 10.3390/molecules22030352. PubMed DOI PMC
Zwolak I., Zaporowska H. Selenium interactions and toxicity: A review. Selenium interactions and toxicity. Cell Biol. Toxicol. 2012;28:31–46. doi: 10.1007/s10565-011-9203-9. PubMed DOI
Stoffaneller R., Morse N.L. A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients. 2015;7:1494–1537. doi: 10.3390/nu7031494. PubMed DOI PMC
Kieliszek M., Błażejak S. Selenium: Significance, and outlook for supplementation. Nutrition. 2013;29:713–718. doi: 10.1016/j.nut.2012.11.012. PubMed DOI
Fairweather-Tait S.J., Bao Y., Broadley M.R., Collings R., Ford D., Hesketh J.E., Hurst R. Selenium in human health and disease. Antioxid. Redox Signal. 2011;14:1337–1383. doi: 10.1089/ars.2010.3275. PubMed DOI
Rayman M.P. Food-chain selenium and human health: Emphasis on intake. Br. J. Nutr. 2008;100:254–268. doi: 10.1017/S0007114508939830. PubMed DOI
Rayman M.P. The argument for increasing Se intake. Proc. Nutr. Soc. 2002;61:203–215. doi: 10.1079/PNS2002153. PubMed DOI
Combs G.F., Lü J. Selenium as a cancer preventive agent. In: Hatfield D.L., Berry M.J., Gladyshev V.N., editors. Selenium. Springer; Berlin/Heidelberg, Germany: 2006. DOI
Zoidis E., Seremelis I., Kontopoulos N., Danezis G.P. Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants. 2018;7:66. doi: 10.3390/antiox7050066. PubMed DOI PMC
Shen Q., Zhang B., Xu R., Wang Y., Ding X., Li P. Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis 01. Anaerobe. 2010;16:380–386. doi: 10.1016/j.anaerobe.2010.06.006. PubMed DOI
Elahi M.M., Kong Y.X., Matata B.M. Oxidative stress as a mediator of cardiovascular disease. Oxidative Med. Cell. Longev. 2009;5:259–269. doi: 10.4161/oxim.2.5.9441. PubMed DOI PMC
Lippman S.M., Klein E.A., Goodman P.J., Lucia M.S., Thompson I.M., Ford L.G., Parnes H.L., Minasian L.M., Gaziano J.M., Hartline J.A., et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT) Jama. 2009;301:39–51. doi: 10.1001/jama.2008.864. PubMed DOI PMC
Klein E.A., Thompson I.M., Tangen C.M., Crowley J.J., Lucia M.S., Goodman P.J., Minasian L.M., Ford L.G., Parnes H.L., Gaziano J.M., et al. Vitamin E and the risk of prostate cancer: The Selenium and Vitamin E Cancer Prevention Trial (SELECT) Jama. 2011;306:1549–1556. doi: 10.1001/jama.2011.1437. PubMed DOI PMC
Dennert G., Horneber M. Selenium for alleviating the side effects of chemotherapy, radiotherapy and surgery in cancer patients. Cochrane Database Syst. Rev. 2006;3:CD005037. doi: 10.1002/14651858.CD005037.pub2. PubMed DOI PMC
Rees K., Hartley L., Day C., Flowers N., Clarke A., Stranges S. Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2013 doi: 10.1002/14651858.CD009671.pub2. PubMed DOI PMC
Farrokhian A., Bahmani F., Taghizadeh M., Mirhashemi S.M., Aarabi M.H., Raygan F., Aghadavod E., Asemi Z. Selenium supplementation affects insulin resistance and serum hs-CRP in patients with type 2 diabetes and coronary heart disease. Horm. Metab. Res. 2016;48:263–268. doi: 10.1055/s-0035-1569276. PubMed DOI
Albuquerque R.G., Tufik S., Andersen M.L. Benefits of selenium in the treatment of depression and sleep disorders. Sleep Breath. 2019;23:933–934. doi: 10.1007/s11325-019-01816-4. PubMed DOI
Triggiani V., Tafaro E., Giagulli V.A., Sabbà C., Resta F., Licchelli B., Guastamacchia E. Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr. Metab. Immune Disord. Drug Targets. 2009;9:277–294. doi: 10.2174/187153009789044392. PubMed DOI
Schomburg L. Selenium, selenoproteins and the thyroid gland: Interactions in health and disease. Nat. Rev. Endocrinol. 2012;8:160–171. doi: 10.1038/nrendo.2011.174. PubMed DOI
Köhrle J. Selenium and the thyroid. Curr. Opin. Endocrinol. Diabetes Obes. 2015;22:392–401. doi: 10.1097/MED.0000000000000190. PubMed DOI
Drutel A., Archambeaud F., Caron P. Selenium and the thyroid gland: More good news for clinicians. Clin. Endocrinol. 2013;78:155–164. doi: 10.1111/cen.12066. PubMed DOI
Stuss M., Michalska-Kasiczak M., Sewerynek E. The role of selenium in thyroid gland pathophysiology. Endokrynol. Pol. 2017;68:440–465. doi: 10.5603/EP.2017.0051. PubMed DOI
Rayman M.P. Selenium and human health. Lancet. 2012;379:1256–1268. doi: 10.1016/S0140-6736(11)61452-9. PubMed DOI
Riaz M., Mehmood K.T. Selenium in human health and disease: A review. J. Postgrad. Med Inst. 2012;26:120–133.
Brigelius-Flohé R. Selenium. Springer; Berlin/Heidelberg, Germany: 2018. Selenium in human health and disease: An overview; pp. 3–26.
Shaheen S.O., Newson R.B., Rayman M.P., Wong A.P., Tumilty M.K., Phillips J.M., Potts J.F., Kelly F.J., White P.T., Burney P.G. Randomised, double blind, placebo-controlled trial of selenium supplementation in adult asthma. Thorax. 2007;62:483–490. doi: 10.1136/thx.2006.071563. PubMed DOI PMC
Norton G., Duan G.-L., Lei M., Zhu Y.G., Meharg A., Price A. Identification of quantitative trait loci for rice grain element composition on an arsenic impacted soil: Influence of flowering time on genetic loci. Ann. Appl. Biol. 2012;161:46–56. doi: 10.1111/j.1744-7348.2012.00549.x. DOI
Broadley M.R., White P.J., Bryson R.J., Meacham M.C., Bowen H.C., Johnson S.E., Hawkesford M.J., McGrath S.P., Zhao F.J., Breward N., et al. Biofortification of UK food crops with selenium. Proc. Nutr. Soc. 2006;65:169–181. doi: 10.1079/PNS2006490. PubMed DOI
Broadley M.R., Alcock J., Alford J., Cartwright P., Foot I., Fairweather-Tait S.J., Hart D.J., Hurst R., Knott P., McGrath S.P., et al. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil. 2010;332:5–18. doi: 10.1007/s11104-009-0234-4. DOI
Aro A., Alfthan G., Varo P. Effects of supplementation of fertilizers on human selenium status in Finland. Analyst. 1995;120:841–843. doi: 10.1039/an9952000841. PubMed DOI
Eurola M., Ekholm P., Ylinen M., Koivistoinen P., Varo P. Effects of Selenium Fertilization on the Selenium Content of Selected Finnish Fruits and Vegetables. Acta Agric. Scand. 1989;39:345–350. doi: 10.1080/00015128909438526. DOI
Mäkelä A.L., Wang W.C., Hämäläinen M., Näntö V., Laihonen P., Kotilainen H., Meng L.X., Mäkelä P. Environmental effects of nationwide selenium fertilization in Finland. Biol. Trace Elem. Res. 1995;47:289–298. doi: 10.1007/BF02790129. PubMed DOI
Varo P., Alfthan G., Huttunen J.K., Aro A. Nationwide selenium supplementation in Finland: Effects on diet, blood and tissue levels, and health. In: Burk R.F., editor. Selenium in Biology and Human Health. Springer; Berlin/Heidelberg, Germany: 1994. pp. 197–218.
Hart D., Fairweather-Tait S., Broadley M., Dickinson S., Foot I., Knott P., McGrath S., Mowat H., Norman K., Scott P. Selenium concentration and speciation in biofortified flour and bread: Retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chem. 2011;126:1771–1778. doi: 10.1016/j.foodchem.2010.12.079. PubMed DOI
Hasanuzzaman M., Hossain M.A., Fujita M. Selenium in higher plants: Physiological role, antioxidant metabolism and abiotic stress tolerance. J. Plant. Sci. 2010;5:354–375. doi: 10.3923/jps.2010.354.375. DOI
Feng R., Wei C., Tu S. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 2013;87:58–68. doi: 10.1016/j.envexpbot.2012.09.002. DOI
Hladun K.R., Parker D.R., Tran K.D., Trumble J.T. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.) Environ. Pollut. 2013;172:70–75. doi: 10.1016/j.envpol.2012.08.009. PubMed DOI
D’Amato R., Proietti P., Nasini L., Del Buono D., Tedeschini E., Businelli D. Increase in the selenium content of extra virgin olive oil: Quantitative and qualitative implications. Grasas Aceites. 2014;65:e025. doi: 10.3989/gya.097313. DOI
Pezzarossa B., Remorini D., Gentile M.L., Massai R. Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J. Sci. Food Agric. 2012;92:781–786. doi: 10.1002/jsfa.4644. PubMed DOI
Hsu F.C., Wirtz M., Heppel S.C., Bogs J., Krämer U., Khan M.S., Bub A., Hell R., Rausch T. Generation of Se-fortified broccoli as functional food: Impact of Se fertilization on S metabolism. Plant Cell Environ. 2011;34:192–207. doi: 10.1111/j.1365-3040.2010.02235.x. PubMed DOI
Moulick D., Ghosh D., Chandra Santra S. Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant. Physiol. Biochem. 2016;109:571–578. doi: 10.1016/j.plaphy.2016.11.004. PubMed DOI
Moulick D., Santra S.C., Ghosh D. Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicol. Environ. Saf. 2018;152:67–77. doi: 10.1016/j.ecoenv.2018.01.037. PubMed DOI
Moulick D., Santra S.C., Ghosh D. Seed priming with Se mitigates As-induced phytotoxicity in rice seedlings by enhancing essential micronutrient uptake and translocation and reducing As translocation. Environ. Sci. Pollut. Res. 2018;25:26978. doi: 10.1007/s11356-018-2711-x. PubMed DOI
Moulick D., Santra S.C., Ghosh D. Seed priming with Se alleviate As induced phytotoxicity during germination and seedling growth by restricting As translocation in rice (Oryza sativa L c.v. IET-4094) Ecotoxicol. Environ. Saf. 2017;145:449–456. doi: 10.1016/j.ecoenv.2017.07.060. PubMed DOI
Qin S., Gao J., Huang K. Effects of different selenium sources on tissue selenium concentrations, blood GSH-Px activities and plasma interleukin levels in finishing lambs. Biol. Trace Elem. Res. 2007;116:91–102. doi: 10.1007/BF02685922. PubMed DOI
Shiobara Y., Yoshida T., Suzuki K.T. Effects of dietary selenium species on Se concentrations in hair, blood, and urine. Toxicol. Appl. Pharmacol. 1998;152:309–314. doi: 10.1006/taap.1998.8537. PubMed DOI
Swanson C., Patterson B., Levander O., Veillon C., Taylor P., Helzlsouer K., McAdam P., Zech L. Human [74Se] selenomethionine metabolism: A kinetic model. Am. J. Clin. Nutr. 1991;54:917–926. doi: 10.1093/ajcn/54.5.917. PubMed DOI
Hall J.A., Bobe G., Hunter J.K., Vorachek W.R., Stewart W.C., Vanegas J.A., Estill C.T., Mosher W.D., Pirelli G.J. Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. PLoS ONE. 2013;8:e58188. doi: 10.1371/journal.pone.0058188. PubMed DOI PMC
Benes S.E., Robinson P.H., Cun G.S. Depletion of selenium in blood, liver and muscle from beef heifers previously fed forages containing high levels of selenium. Sci. Total Environ. 2015;536:603–608. doi: 10.1016/j.scitotenv.2015.07.096. PubMed DOI
Quijano M., Moreno P., Gutiérrez A.M., Pérez-Conde M.C., Camara C. Selenium speciation in animal tissues after enzymatic digestion by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. J. Mass Spectrom. 2000;35:878–884. doi: 10.1002/1096-9888(200007)35:7<878::AID-JMS12>3.0.CO;2-2. PubMed DOI
Ralston N.V., Ralston C.R., Blackwell J.L., Raymond L.J. Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology. 2008;29:802–811. doi: 10.1016/j.neuro.2008.07.007. PubMed DOI
Combs G.F., Jr. Selenium in global food systems. Brit. J. Nutr. 2001;85:517–547. doi: 10.1079/BJN2000280. PubMed DOI
Lin Z.Q. Uptake and accumulation of selenium in plants in relation to chemical soeciationa nd biotransformation. In: Banuelos G., Lin Z.-Q., editors. Development and Uses of Biofortified Agricultural Products. CRC; Boca Raton, FL, USA: 2008. pp. 45–56.
Lyons G.H., Genc Y., Graham R. Biofortication in the food chain, and use of selenium and phyto-compounds in risk reduction and control of prostate cancer. In: Banuelos G., Lin Z.-Q., editors. Development and Uses of Biofortified Agricultural Products. CRC Press; Boca Raton, FL, USA: 2008. pp. 17–44.
ODS . Selenium: Dietary Supplement Fact Sheet. Health Information. US Department of Health and Human Services, National Institutes of Health. Office of Dietary Supplements; Washington, DC, USA: 2016.
Saltzman A., Birol E., Bouis H.E., Boy E., De Moura F.F., Islam Y., Pfeiffer W.H. Biofortification: Progress toward a more nourishing future. Glob. Food Secur. 2013;2:9–17. doi: 10.1016/j.gfs.2012.12.003. DOI
Zhu J., Wang N., Li S., Li L., Su H., Liu C. Distribution and transport of selenium in Yutangba, China: Impact of human activities. Sci. Total Environ. 2008;392:252–261. doi: 10.1016/j.scitotenv.2007.12.019. PubMed DOI
Williams P.N., Lombi E., Sun G.X., Scheckel K., Zhu Y.G., Feng X., Zhu J., Carey A.M., Adomako E., Lawgali Y., et al. Selenium characterization in the global rice supply chain. Environ. Sci. Technol. 2009;43:6024–6030. doi: 10.1021/es900671m. PubMed DOI
Thavarajah P., Sarker A., Materne M., Vandemark G., Shrestha R., Idrissi O., Hacikamiloglu O., Bucak B., Vandenberg A. A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): Implications for nutritional fortification strategies. Food Chem. 2011;125:72–76. doi: 10.1016/j.foodchem.2010.08.038. DOI
Winkel L.H., Johnson C.A., Lenz M., Grundl T., Leupin O.X., Amini M., Charlet L. Environmental selenium research: From microscopic processes to global understanding. Environ. Sci. Technol. 2012;46:571–579. doi: 10.1021/es203434d. PubMed DOI
Fordyce F.M., Brereton N., Hughes J., Luo W., Lewis J. An initial study to assess the use of geological parent materials to predict the Se concentration in overlying soils and in five staple foodstuffs produced on them in Scotland. Sci. Total Environ. 2010;408:5295–5305. doi: 10.1016/j.scitotenv.2010.08.007. PubMed DOI
Goicoechea N., Garmendia I., Fabbrin E.G., Bettoni M.M., Palop J.A., Sanmartín C. Selenium fertilization and mycorrhizal technology may interfere in enhancing bioactive compounds in edible tissues of lettuces. Sci. Hortic. 2015;195:163–172. doi: 10.1016/j.scienta.2015.09.007. DOI
Mahn A. Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads. Food Chem. 2017;233:492–499. doi: 10.1016/j.foodchem.2017.04.144. PubMed DOI
Germ M., Stibilj V. Selenium and plants. Acta Agric. Slov. 2008;89 doi: 10.2478/v10014-007-0008-8. DOI
Haug A., Graham R., Christophersen O., Lyons G. How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb. Ecol. Health Dis. 2007;19:209–228. PubMed PMC
Sillanpaeae M., Jansson H. Status of cadmium, lead, cobalt and selenium in soils and plants of thirty countries. FAO Soils Bull. 1992:195.
Ros G.H., van Rotterdam A.M.D., Bussink D.W., Bindraban P.S. Selenium fertilization strategies for bio-fortification of food: An agro-ecosystem approach. Plant Soil. 2016;404:99–112. doi: 10.1007/s11104-016-2830-4. DOI
Wen H., Carignan J. Reviews on atmospheric selenium: Emissions, speciation and fate. Atmos. Environ. 2007;41:7151–7165. doi: 10.1016/j.atmosenv.2007.07.035. DOI
Chasteen T.G., Bentley R. Biomethylation of selenium and tellurium: Microorganisms and plants. Chem. Rev. 2003;103:1–26. doi: 10.1021/cr010210+. PubMed DOI
Bañuelos G.S., Ajwa H.A., Wu L., Guo X., Akohoue S., Zambrzuski S. Selenium-induced growth reduction in Brassica land races considered for phytoremediation. Ecotoxicol. Environ. Saf. 1997;36:282–287. doi: 10.1006/eesa.1996.1517. PubMed DOI
Poblaciones M.J., Rodrigo S., Santamaria O., Chen Y., McGrath S.P. Selenium accumulation and speciation in biofortified chickpea (Cicer arietinum L.) under Mediterranean Plant Soil conditions. J. Sci. Food Agric. 2014;94:1101–1106. doi: 10.1002/jsfa.6372. PubMed DOI
Premarathna L., McLaughlin M.J., Kirby J.K., Hettiarachchi G.M., Stacey S., Chittleborough D.J. Selenate-enriched urea granules are a highly Effective fertilizer for selenium biofortification of paddy rice grain. J. Agric. Food Chem. 2012;60:6037–6044. doi: 10.1021/jf3005788. PubMed DOI
Schiavon M., dall’Acqua S., Mietto A., Pilon-Smits E.A.H., Sambo P., Masi A., Malagoli M. Impact of selenium fertilization on chemical composition and Antioxidant constituents of tomato (Solanum lycopersicon L.) J. Agric. Food Chem. 2013;61:10542–10554. doi: 10.1021/jf4031822. PubMed DOI
Ramos S.J., Faquin V., Guilherme L.R.G., Castro E.M., Avila F.W., Carvalho G.S., Bastos C.E.A., Oliveira C. Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ. 2010;56:584–588. doi: 10.17221/113/2010-PSE. DOI
Alfthan G., Aspila P., Ekholm P., Eurola M., Hartikainen H., Hero H., Hietaniemi V., Root T., Salminen P., Venäläinen E.-R., et al. Nationwide Supplementation of Sodium Selenate to Commercial Fertilizers: History and 25-Year Results from the Finnish Selenium Monitoring Programme. CAB International and Food and Agriculture Organization of the United Nations (FAO); Rome, Italy: 2011.
Winkler J. Biofortification: Improving the nutritional quality of staple crops. In: Pasternak C., editor. Access not Excess. Smith-Gordon Publishing; London, UK: 2011. pp. 100–112.
Dhillon S.K., Hundal B.K., Dhillon K.S. Bioavailability of selenium to forage crops in a sandy loam soil amended with Se-rich plant materials. Chemosphere. 2007;66:1734–1743. doi: 10.1016/j.chemosphere.2006.07.006. PubMed DOI
Bruulsema T.W., Heffer P., Welch R.M., Cakmak I., Moran K. Fertilizing Crops to Improve Human Health: A Scientific Review Volume 1 Food and Nutrition Security Editorial Committee. Better Crop. Plant Food. 2012;96:29–31.
Ramkissoon C., Degryse F., da Silva R.C., Baird R., Young S.D., Bailey E.H., McLaughlin M.J. Improving the efficacy of selenium fertilizers for wheat biofortification. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-55914-0. PubMed DOI PMC
Xu G.L., Wang S.C., Gu B.Q., Yang Y.X., Song H.B., Xue W.L., Liang W.S., Zhang P.Y. Further investigation on the role of selenium deficiency in the aetiology and pathogenesis of Keshan disease. Biomed. Environ. Sci. 1997;10:316–326. PubMed
Lyons G. Selenium in cereals: Improving the efficiency of agronomic biofortification in the UK. Plant Soil. 2010;332:1–4. doi: 10.1007/s11104-010-0282-9. DOI
Boldrin P.F., de Figueiredo M.A., Yang Y., Luo H., Giri S., Hart J.J., Faquin V., Guilherme L.R.G., Thannhauser T.W., Li L. Selenium promotes sulfur accumulation and plant growth in wheat ( Triticum aestivum ) Physiol. Plant. 2016;158:80–91. doi: 10.1111/ppl.12465. PubMed DOI
Pilon-Smits E.A., Winkel L.H., Lin Z.Q. Selenium in Plants: Molecular, Physiological, Ecological and Evolutionary Aspects. Volume 11. Springer; Berlin/Heidelberg, Germany: 2017. p. 324.
Thavarajah D., Abare A., Mapa I., Coyne C.J., Thavarajah P., Kumar S. Selecting lentil accessions for global selenium biofortification. Plants. 2017;6:34. doi: 10.3390/plants6030034. PubMed DOI PMC
Ekanayake L.J., Thavarajah D., Vial E., Schatz B., McGee R., Thavarajah P. Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity. Field Crop. Res. 2015;177:9–14. doi: 10.1016/j.fcr.2015.03.002. DOI
Eich-Greatorex A., Sogn T.A., Øgaard A.F., Aasen I. Plant availability of inorganic and organic selenium fertilizer as influenced by soil organic matter content and pH. Nutr. Cycl. Agroecosystems. 2007;79:221–231. doi: 10.1007/s10705-007-9109-3. DOI
Christophersen O.A., Lyons G., Haug A., Steinnes E. Selenium. Springer; Berlin/Heidelberg, Germany: 2013. pp. 429–463.
Hartfiel W., Bahners N. Selenium deficiency in the Federal Republic of Germany. Biol. Trace Elem. 1988;15:1–12. doi: 10.1007/BF02990123. PubMed DOI
Hu Q., Chen L., Xu J., Zhang Y., Pan G. Determination of selenium concentration in rice and the effect of foliar application of Se-enriched fertiliser or sodium selenite on the selenium content of rice. J. Sci. Food Agric. 2002;82:869–872. doi: 10.1002/jsfa.1115. DOI
Smrkolj P., Stibilj V., Kreft I., Germ M. Selenium species in buckwheat cultivated with foliar addition of Se (VI) and various levels of UV-B radiation. Food Chem. 2006;96:675–681. doi: 10.1016/j.foodchem.2005.05.002. DOI
Poggi V., Arcioni A., Filippini P., Pifferi P.G. Foliar application of selenite and selenate to potato (Solanum tuberosum): Effect of a ligand agent on selenium content of tubers. J. Agric. Food Chem. 2000;48:4749–4751. doi: 10.1021/jf000368f. PubMed DOI
Yang F., Chen L., Hu Q., Pan G. Effect of the application of selenium on selenium content of soybean and its products. Biol. Trace Elem. Res. 2003;93:249–256. doi: 10.1385/BTER:93:1-3:249. PubMed DOI
Xia Q., Yang Z., Shui Y., Liu X., Chen J., Khan S., Wang J., Gao Z. Methods of Selenium Application Differentially Modulate Plant Growth, Selenium Accumulation and Speciation, Protein, Anthocyanins and Concentrations of Mineral Elements in Purple-Grained Wheat. Front. Plant. Sci. 2020;11:1114. doi: 10.3389/fpls.2020.01114. PubMed DOI PMC
Mao H., Wang J., Wang Z., Zan Y., Lyons G., Zou C. Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J. Soil Sci. Plant. Nutr. 2014;14:459–470. doi: 10.4067/S0718-95162014005000036. DOI
Tveitnes S., Singh B.R., Ruud L. Selenium concentration in spring wheat as influenced by basal application and top dressing of selenium-enriched fertilizers. Fertil. Res. 1995;45:163–167. doi: 10.1007/BF00790666. DOI
Fernández-Martínez A., Charlet L. Selenium environmental cycling and bioavailability: A structural chemist point of view. Rev. Environ. Sci. Biotechnol. 2009;8:81–110. doi: 10.1007/s11157-009-9145-3. DOI
Freeman J.L., Bañuelos G.S. Selection of salt and boron tolerant selenium hyperaccumulator Stanleya pinnata genotypes and characterization of Se phytoremediation from agricultural drainage sediments. Environ. Sci. Technol. 2011;45:9703–9710. doi: 10.1021/es201600f. PubMed DOI
Bañuelos G.S., Arroyo I., Pickering I.J., Yang S.I., Freeman J.L. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem. 2015;166:603–608. doi: 10.1016/j.foodchem.2014.06.071. PubMed DOI
Kikkert J., Berkelaar E. Plant uptake and translocation of inorganic and organic forms of selenium. Arch. Environ. Contam. Toxicol. 2013;65:458–465. doi: 10.1007/s00244-013-9926-0. PubMed DOI
Bhatia P., Aureli F., D’Amato M., Prakash R., Cameotra S.S., Nagaraja T.P., Cubadda F. Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chem. 2013;140:225–230. doi: 10.1016/j.foodchem.2013.02.054. PubMed DOI
Bañuelos G.S., Lin Z.Q., Broadley M. Selenium in Plants. Springer; Berlin/Heidelberg, Germany: 2017. Selenium biofortification; pp. 231–255. DOI
Li Z., Liang D., Peng Q., Cui Z., Huang J., Lin Z. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma. 2017;295:69–79. doi: 10.1016/j.geoderma.2017.02.019. DOI
Serafin Muñoz A.H., Kubachka K., Wrobel K., Gutierrez Corona J.F., Yathavakilla S.K., Caruso J.A., Wrobel K. Se-enriched mycelia of Pleurotus ostreatus: Distribution of selenium in cell walls and cell membranes/cytosol. J. Agric. Food Chem. 2006;54:3440–3444. doi: 10.1021/jf052973u. PubMed DOI
Kang Y., Yamada H., Kyuma K., Hattori T., Kigasawa S. Selenium in soil humic acid. Soil Sci. Plant. Nutr. 1991;37:241–248. doi: 10.1080/00380768.1991.10415034. DOI
Park J.H., Lamb D., Paneerselvam P., Choppala G., Bolan N., Chung J.W. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 2011;185:549–574. doi: 10.1016/j.jhazmat.2010.09.082. PubMed DOI
Dhillon K.S., Dhillon S.K., Dogra R. Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials. Chemosphere. 2010;78:548–556. doi: 10.1016/j.chemosphere.2009.11.015. PubMed DOI
Sharma S., Bansal A., Dogra R., Dhillon S.K., Dhillon K.S. Effect of organic amendments on uptake of selenium and biochemical grain composition of wheat and rape grown on seleniferous soils in northwestern India. J. Plant. Nutr. Soil Sci. 2011;174:269–275. doi: 10.1002/jpln.200900265. DOI
Bhatia P., Prakash R., Prakash N.T. Enhanced antioxidant properties as a function of selenium uptake by edible mushrooms cultivated on selenium-accumulated waste post-harvest wheat and paddy residues. Int. J. Recycl. Org. Waste Agric. 2014;3:127–132. doi: 10.1007/s40093-014-0074-y. DOI
Wu Z., Bañuelos G.S., Lin Z.Q., Liu Y., Yuan L., Yin X., Li M. Biofortification and phytoremediation of selenium in China. Front. Plant. Sci. 2015;6:136. doi: 10.3389/fpls.2015.00136. PubMed DOI PMC
Bañuelos G.S., Lin Z.-Q. Cultivation of the Indian fig Opuntia in selenium-rich drainage sediments under field conditions. Soil Use Manag. 2010;26:167–175. doi: 10.1111/j.1475-2743.2010.00258.x. DOI
De Feudis M., D’Amato R., Businelli D., Guiducci M. Fate of selenium in soil: A case study in a maize (Zea mays L.) field under two irrigation regimes and fertilized with sodium selenite. Sci. Total Environ. 2019;659:131–139. doi: 10.1016/j.scitotenv.2018.12.200. PubMed DOI
El-Ramady H.R., Domokos-Szabolcsy É., Shalaby T.A., Prokisch J., Fári M. CO2 Sequestration, Biofuels and Depollution. Springer; Berlin/Heidelberg, Germany: 2015. Selenium in agriculture: Water, air, soil, plants, food, animals and nanoselenium; pp. 153–232.
Kaur S., Kaur N., Siddique K.H., Nayyar H. Beneficial elements for agricultural crops and their functional relevance in defence against stresses. Arch. Agron. Soil Sci. 2016;62:905–920. doi: 10.1080/03650340.2015.1101070. DOI
Sogn L., Skorge P., Frøslie A., Aasen I., Stabbetorp H., Ruud L. Human and Animal Health in Relation to Circulation Processes of Selenium and Cadmium. The Norwegian Academy of Science and Letters; Oslo, Norway: 1991. Effects of selenium enriched complex fertilizers on selenium concentration of small grains; pp. 199–211.
White P.J., Broadley M.R. Biofortification of crops with seven mineral Elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, Se and iodine. New Phytol. 2009;182:49–84. doi: 10.1111/j.1469-8137.2008.02738.x. PubMed DOI
Harris J., Schneberg K.A., Pilon-Smits E.A. Sulfur–selenium–molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae) Planta. 2014;239:479–491. doi: 10.1007/s00425-013-1996-8. PubMed DOI
Barberon M., Berthomieu P., Clairotte M., Shibagaki N., Davidian J.C., Gosti F. Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2. New Phytol. 2008;180:608–619. doi: 10.1111/j.1469-8137.2008.02604.x. PubMed DOI
Pu Z.E., Yu M., He Q.Y., Chen G.Y., Wang J.R., Liu Y.X., Jiang Q., Li W., Dai S., Wei Y., et al. Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J. Integr. Agric. 2014;13:2322–2329. doi: 10.1016/S2095-3119(13)60640-1. DOI
BuN M., Hui L., Lashari M.S., Shah A.N., Licao C., Weining S. Nutritional characteristics and starch properties of Tibetan barley. Int. J. Agric. Policy Res. 2015;3:293–299.
Eurola M., Hietaniemi V., Kontturi M. Selenium content of Finnish oats in 1997–1999, effect of cultivars and cultivation techniques. Agric. Food Sci. 2004;13:46–53. doi: 10.2137/1239099041837941. DOI
Jha A.B., Warkentin T.D. Biofortification of pulse crops: Status and future perspectives. Plants. 2020;9:73. doi: 10.3390/plants9010073. PubMed DOI PMC
Ray H., Bett K., Tar’an B., Vandenberg A., Thavarajah D., Warkentin T. Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. Crop. Sci. 2014;54:1698–1708. doi: 10.2135/cropsci2013.08.0568. DOI
Nair R.M., Thavarajah P., Giri R.R., Ledesma D., Yang R.Y., Hanson P., Easdown W., Hughes J.A. Mineral and phenolic concentrations of mungbean [Vigna radiata (L.) R. Wilczek var. radiata] grown in semi-arid tropical India. J. Food Compos. Anal. 2015;39:23–32. doi: 10.1016/j.jfca.2014.10.009. DOI
Ramamurthy R.K., Jedlicka J., Graef G.L., Waters B.M. Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L.) Merr.] Mol. Breed. 2014;34:431–445. doi: 10.1007/s11032-014-0045-z. DOI
Kopsell D.A., Randle W.M. Short-day onion cultivars differ in bulb selenium and sulphur accumulation which can affect bulb pungency. Euphytica. 1997;96:385–390. doi: 10.1023/A:1003065618315. DOI
Kopsell D.A., Randle W.M. Genetic variances and selection potential for selenium accumulation in a rapid-cycling Brassica oleracea population. J. Am. Soc. Hortic. Sci. 2001;126:329–335. doi: 10.21273/JASHS.126.3.329. DOI
Meenakshi J.V., Johnson N.L., Manyong V.M., DeGroote H., Javelosa J. How cost effective is biofortification in combating micronutrient malnutrition? World Dev. 2010;38:64–75. doi: 10.1016/j.worlddev.2009.03.014. DOI
Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil. 2008;302:1–17. doi: 10.1007/s11104-007-9466-3. DOI
Pilon-Smits E.A.H. Selenium in Plants. In: Lüttge U., Beyschlag W., editors. Progress in Botany. Progress in Botany (Genetics—Physiology—Systematics—Ecology) Volume 76. Springer; Berlin/Heidelberg, Germany: 2015. DOI
White P.J. Selenium accumulation by plants. Ann. Bot. 2015;117:217–235. doi: 10.1093/aob/mcv180. PubMed DOI PMC
Sors T.G., Ellis D.R., Na G.N., Lahner B., Lee S., Leustek T., Pickering I.J., Salt D.E. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J. 2005;42:785–797. doi: 10.1111/j.1365-313X.2005.02413.x. PubMed DOI
Bañuelos G.S., Terry N., Leduc D.L., Pilon-Smits E.A.H., Mackey B. Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ. Sci. Technol. 2005;39:1771–1777. doi: 10.1021/es049035f. PubMed DOI
Zhang L., Byrne P.F., Pilon-Smits E.A. Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana. New Phytol. 2006;170:33–42. doi: 10.1111/j.1469-8137.2006.01635.x. PubMed DOI
Ates D., Sever T., Aldemir S., Yagmur B., Temel H.Y., Kaya H.B., Alsaleh A., Kahraman A., Ozkan H., Vandenberg A., et al. Identification QTLs Controlling Genes for Se Uptake in Lentil Seeds. PLoS ONE. 2016;11:e0149210. PubMed PMC
Wang J., Zhou C., Xiao X., Xie Y., Zhu L., Ma Z. Enhanced Iron and Selenium Uptake in Plants by Volatile Emissions of Bacillus amyloliquefaciens (BF06) Appl. Sci. 2017;7:85. doi: 10.3390/app7010085. DOI
Huang Y., Sun C., Min J., Chen Y., Tong C., Bao J. Association mapping of quantitative trait loci for mineral element contents in whole grain rice (Oryza sativa L.) J. Agric. Food Chem. 2015;63:10885–10892. doi: 10.1021/acs.jafc.5b04932. PubMed DOI
Yang R., Wang R., Xue W., Yan J., Zhao G., Fahima T., Cheng J. QTL location and analysis of selenium content in tetraploid wheat grain. Guizhou Agric. Sci. 2013;10:1–4.
Terry N., Zayed A.M., de Souza M.P., Tarun A.S. Selenium in greater plants. Annu. Rev. Plant. Physiol. 2000;51:401–432. doi: 10.1146/annurev.arplant.51.1.401. PubMed DOI
Raina M., Sharma A., Nazir M., Kumari P., Rustagi A., Hami A., Bhau B.S., Zargar S.M., Kumar D. Exploring the new dimensions of selenium research to understand the underlying mechanism of its uptake, translocation, and accumulation. Physiol. Plant. 2020 doi: 10.1111/ppl.13275. PubMed DOI
Agalou A., Roussis A., Spaink H.P. The Arabidopsis selenium-binding protein confers tolerance to toxic levels of selenium. Funct Plant Biol. 2005;32:881–890. doi: 10.1071/FP05090. PubMed DOI
Jiang C., Zu C., Lu D., Zheng Q., Shen J., Wang H., Li D. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci. Rep. 2017;7:42039. doi: 10.1038/srep42039. PubMed DOI PMC
Jiang L., Yang J., Liu C., Chen Z., Yao Z., Cao S. Overexpression of ethylene response factor ERF96 gene enhances selenium tolerance in Arabidopsis. Plant Physiol Plant Soil with accelerated HIV disease progression among HIV-1-infected pregnant women in Tanzania. J. Nutr. 2020;134:2556–2560.
Chen M., Zeng L., Luo X., Mehboob M.Z., Ao T., Lang M. Identification and functional characterization of a novel selenocysteine methyltransferase from Brassica juncea L. J. Exp. Bot. 2019;70:6401–6416. doi: 10.1093/jxb/erz390. PubMed DOI
Zhang L., Hu B., Deng K., Gao X., Sun G., Zhang Z., Li P., Wang W., Li H., Zhang Z., et al. NRT1.1B improves selenium concentrations in rice grains by facilitating selenomethinone translocation. Plant Biotechnol. J. 2019;17:1058–1068. doi: 10.1111/pbi.13037. PubMed DOI PMC
Poletti S., Sautter C. Biofortification of the crops with micronutrients using plant breeding and/or transgenic strategies. Minerva Biotecnol. 2005;17:1–11.
Carvalho S.M.P., Vasconcelos M.W. Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Res. Int. 2013;54:961–971. doi: 10.1016/j.foodres.2012.12.021. DOI
Ye Y., Qu J., Pu Y., Rao S., Xu F., Wu C. Selenium Biofortification of Crop Food by Beneficial Microorganisms. J. Fungi. 2020;6:59. doi: 10.3390/jof6020059. PubMed DOI PMC
Yasin M., El-Mehdawi A.F., Anwar A., Pilon Smits E.A.H., Faisal M. Microbial enhanced selenium and iron biofortification of wheat (Triticum aestivum L.) Applications in Phytoremediation and Biofortification. Int. J. Phytoremed. 2015;17:341–347. doi: 10.1080/15226514.2014.922920. PubMed DOI
De Souza M.P., Chu D., Zhao M., Zayed A.M., Ruzin S.E., Schichnes D., Terry N. Rhizosphere bacteria enhance selenium accumulation and volatilization by indian mustard. Plant. Physiol. 1999;119:565–574. doi: 10.1104/pp.119.2.565. PubMed DOI PMC
Zhang D., Dong T., Ye J., Hou Z. Selenium accumulation in wheat (Triticum aestivum L) as affected by coapplication of either selenite or selenate with phosphorus. Soil Sci. Plant Nutr. 2017;63:37–44. doi: 10.1080/00380768.2017.1280377. DOI
Cabannes E., Buchner P., Broadley M.R., Hawkesford M.J. A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus species. Plant Physiol. 2011;157:2227–2239. doi: 10.1104/pp.111.183897. PubMed DOI PMC
Lindblom S.D., Valdez-Barillas J.R., Fakra S.C., Marcus M.A., Wangeline A.L., Pilon-Smits E.A.H. Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ. Exp. Bot. 2013;88:33–42. doi: 10.1016/j.envexpbot.2011.12.011. DOI
Patharajan S., Raaman N. Influence of arbuscular mycorrhizal fungi on growth and selenium uptake by garlic plants. Arch. Phytopathol. Plant. Prot. 2012;45:138–151. doi: 10.1080/03235408.2010.501166. DOI
Larsen E.H., Lobinski R., Burger-Meÿer K., Hansen M., Ruzik R., Mazurowska L., Kik C. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Anal. Bioanal. Chem. 2006;385:1098–1108. doi: 10.1007/s00216-006-0535-x. PubMed DOI
Yu Y., Zhang S., Wen B., Huang H., Luo L. Accumulation and Speciation of Selenium in Plants as Affected by Arbuscular Mycorrhizal Fungus Glomus mosseae. Biol. Trace Elem. Res. 2011;143:1789–1798. doi: 10.1007/s12011-011-8973-5. PubMed DOI
Luo W., Li J., Ma X., Niu H., Hou S., Wu F. Effect of arbuscular mycorrhizal fungi on uptake of selenate, selenite, and selenomethionine by roots of winter wheat. Plant Soil. 2019;438:71–83. doi: 10.1007/s11104-019-04001-4. DOI
Sanmartín P., DeAraujo A., Vasanthakumar A. Melding the old with the new: Trends in methods used to identify, monitor, and control microorganisms on cultural heritage materials. Microb. Ecol. 2018;76:64–80. doi: 10.1007/s00248-016-0770-4. PubMed DOI
Fordyce F., Masara D., Appleton J. Final Report on Stream Sediment, Soil and Forage Chemistry as Indicators of Cattle Mineral Status in North-East Zimbabwe. British Geological Survey; Nottingham, UK: 1994. [(accessed on 24 January 2021)]. 70p. (WC/94/003) Available online: http://nora.nerc.ac.uk/id/eprint/8350/1/WC94003.pdf.
Patel P.J., Trivedi G.R., Shah R.K., Saraf M. Selenorhizobacteria: As biofortification tool in sustainable agriculture. Biocatal. Agric. Biotechnol. 2018;14:198–203. doi: 10.1016/j.bcab.2018.03.013. DOI
Kloepper J.W. Effects of Rhizosphere Colonization by Plant Growth-Promoting Rhizobacteria on Potato Plant Development and Yield. Phytopathology. 1980;70:1078. doi: 10.1094/Phyto-70-1078. DOI
Kumar A., Maurya B.R., Raghuwanshi R., Meena V.S., Islam M.T. Co-inoculation with Enterobacter and Rhizobacteria on Yield and Nutrient Uptake by Wheat (Triticum aestivum L.) in the Alluvial Soil under Indo-Gangetic Plain of India. J. Plant Growth Regul. 2017;36:608–617. doi: 10.1007/s00344-016-9663-5. DOI
Raghavendra M.P., Nayaka S.C., Nuthan B.R. Role of Rhizosphere Microflora in Potassium Solubilization. Potassium Solubilizing Microorg. Sustain. Agric. 2016:43–59. doi: 10.1007/978-81-322-2776-2_4. DOI
Durán P., Acuña J.J., Jorquera M.A., Azcón R., Paredes C., Rengel Z., de la Luz Mora M. Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol. Fertil. Soils. 2014;50:983–990. doi: 10.1007/s00374-014-0920-0. DOI
Abera Tuffa Y. Ph.D. Thesis. Addis Ababa University; Addis Ababa, Ethiopia: 2019. Phenotypic, Symbiotic and Plant Growth Promoting Properties of Soybean Nodulating Rhizobia under Greenhouse and Field Conditions in Ethiopia.
Nakamaru Y.M., Altansuvd J. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review. Chemosphere. 2014;111:366–371. doi: 10.1016/j.chemosphere.2014.04.024. PubMed DOI
Abadin Z.U., Yasin M., Faisal M. Bacterial-Mediated Selenium Biofortification of Triticum aestivum: Strategy for Improvement in Selenium Phytoremediation and Biofortification. Agric. Important Microbes Sustain. Agric. 2017:299–315. doi: 10.1007/978-981-10-5589-8_14. DOI
Trivedi G., Patel P., Saraf M. Synergistic effect of endophytic selenobacteria on biofortification and growth of Glycine max under drought stress. South. Afr. J. Bot. 2019 doi: 10.1016/j.sajb.2019.10.001. DOI
Durán P., Acuña J., Jorquera M., Azcón R., Borie F., Cornejo P., Mora M. Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. J. Cereal Sci. 2013;57:275–280. doi: 10.1016/j.jcs.2012.11.012. DOI
Wang P., Wang H., Liu Q., Tian X., Shi Y., Zhang X. QTL mapping of selenium content using a RIL population in wheat. PLoS ONE. 2017;12:e0184351. doi: 10.1371/journal.pone.0184351. PubMed DOI PMC
Bodnar M., Konieczka P., Namiesnik J. The properties, functions, and use of selenium compounds in living organisms. J. Environ. Sci. Health Part C. 2012;30:225–252. doi: 10.1080/10590501.2012.705164. PubMed DOI
Renkema H., Koopmans A., Kersbergen L., Kikkert J., Hale B., Berkelaar E. The effect of transpiration on selenium uptake and mobility in durum wheat and spring canola. Plant Soil. 2012;354:239–250. doi: 10.1007/s11104-011-1069-3. DOI
Missana T., Alonso U., García-Gutiérrez M. Experimental study and modeling of selenite sorption onto illite and smectite clays. J. Colloid Interface Sci. 2009;334:132–138. doi: 10.1016/j.jcis.2009.02.059. PubMed DOI
Li H.F., McGrath S.P., Zhao F.J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 2008;178:92–102. doi: 10.1111/j.1469-8137.2007.02343.x. PubMed DOI
White P.J., Bowen H.C., Parmaguru P., Fritz M., Spracklen W.P., Spiby R.E., Meacham M.C., Mead A., Harriman M., Trueman L.J., et al. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 2004;55:1927–1937. doi: 10.1093/jxb/erh192. PubMed DOI
El Kassis E., Cathala E., Rouached H., Fourcroy P., Berthomieu P., Terry N., Davidian J.C. Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiol. 2007;143:1231–1241. doi: 10.1104/pp.106.091462. PubMed DOI PMC
Takahashi H., Saito K. Sulfur Metabolism in Phototrophic Organisms. Springer; Berlin/Heidelberg, Germany: 2008. Molecular biology and functional genomics for identification of regulatory networks of plant sulfate uptake and assimilatory metabolism; pp. 149–159.
Shibagaki N., Rose A., McDermott J.P., Fujiwara T., Hayashi H., Yoneyama T., Davies J.P. Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 2002;29:475–486. doi: 10.1046/j.0960-7412.2001.01232.x. PubMed DOI
Ellis D.R., Salt D.E. Plants, selenium, and human health. Curr. Opin. Plant Biol. 2002;6:273–279. doi: 10.1016/S1369-5266(03)00030-X. PubMed DOI
Cappa J.J., Cappa P.J., El Mehdawi A.F., McAleer J.M., Simmons M.P., Pilon-Smits E.A. Characterization of selenium and sulfur accumulation across the genus Stanleya (Brassicaceae): A field survey and common-garden experiment. Am. J. Bot. 2014;101:830–839. doi: 10.3732/ajb.1400041. PubMed DOI
Ximénez-Embún P., Alonso I., Madrid-Albarrán Y., Cámara C. Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. J. Agric. Food Chem. 2004;52:832–838. doi: 10.1021/jf034835f. PubMed DOI
Mazej D., Osvald J., Stibilj V. Selenium species in leaves of chicory, dandelion, lamb’s lettuce and parsley. Food Chem. 2008;107:75–83. doi: 10.1016/j.foodchem.2007.07.036. DOI
Gigolashvili T., Kopriva S. Transporters in plant sulphur metabolism. Front. Plant Sci. 2014;5:422. doi: 10.3389/fpls.2014.00442. PubMed DOI PMC
Galeas M.L., Zhang L.H., Freeman J.L., Wegner M., Pilon-Smits E.A.H. Seasonal fluctuations of selenium and sulfur accumulation in selenium-hyperaccumulators and related non-accumulators. New Phytol. 2007;173:517–525. doi: 10.1111/j.1469-8137.2006.01943.x. PubMed DOI
Jarzyńska G., Falandysz J. Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus)—consequences to human health. Environ. Int. 2011;37:882–888. doi: 10.1016/j.envint.2011.02.017. PubMed DOI
D’Amato R., Regni L., Falcinelli B., Mattioli S., Benincasa P., Dal Bosco A., Pacheco P., Proietti P., Troni E., Santi C., et al. Current knowledge on selenium biofortification to improve the nutraceutical profile of food: A comprehensive review. J. Agric. Food Chem. 2020;68:4075–4097. doi: 10.1021/acs.jafc.0c00172. PubMed DOI PMC
Pezzarossa B., Rosellini I., Borghesi E., Tonutti P., Malorgio F. Effects of Se enrich- ment on yield, fruit composition and ripening of tomato (Solanum lycopersicum) plants grown in hydroponics. Sci. Hortic. 2014;165:106–110. doi: 10.1016/j.scienta.2013.10.029. DOI
Bachiega P., Salgado J.M., de Carvalho J.E., Ruiz A.L.T.G., Schwarz K., Tezotto T., Morzelle M.C. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem. 2016;190:771–776. doi: 10.1016/j.foodchem.2015.06.024. PubMed DOI
Businelli D., D’Amato R., Onofri A., Tedeschin E., Tei F. Se-enrichment of cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.) and tomato (Solanum lycopersicum L.) through fortification in pre-transplanting. Sci. Hortic. 2015;197:697–704. doi: 10.1016/j.scienta.2015.10.039. DOI
Smoleń S., Skoczylas L., Ledwozyw-Smolen I., Rakoczy R., Kopec A., Ewa Piatkowska E., Biezanowska-Kopec R., Koronowicz A., Kapusta-Duch J. Biofortification of carrot (Daucus carota L.) with iodine and selenium in a field experiment. Front. Plant. Sci. 2016;7:1–17. doi: 10.3389/fpls.2016.00730. PubMed DOI PMC
Joy E.J.M., Kalimbira A.A., Gashu D., Ferguson E.L., Sturgess J., Dangour A.D., Banda L., Chiutsi-Phiri G., Bailey E.H. Can selenium deficiency in Malawi be alleviated through consumption of agro-biofortified maize flour? Study protocol for a randomised, double-blind, controlled trial. Trials. 2019;20:795. doi: 10.1186/s13063-019-3894-2. PubMed DOI PMC
Davis C.D. Nutritional interactions: Credentialing of molecular targets for cancer prevention. Exp. Biol. Med. 2007;232:176–183. PubMed
Malagoli M., Schiavon M., Dall’acqua S., Pilon-Smits E.A.H. Effects of selenium biofortification on crop nutritional quality. Front. Plant. Sci. 2015;6:1–5. doi: 10.3389/fpls.2015.00280. PubMed DOI PMC
Chang J.C., Gutenmann W.H., Reid C.M., Lisk D.J. Selenium content of Brazil nuts from two geographic locations in Brazil. Chemosphere. 1995;30:801–802. doi: 10.1016/0045-6535(94)00409-N. PubMed DOI
Whelan R., Barrow N.J. Slow-release selenium fertilizers to correct selenium sheep in Western Australia. Fertil. Res. 1994;38:183–188. doi: 10.1007/BF00749690. DOI
Schiavon M., Pilon-Smits E.A. The fascinating facets of plant selenium accumulation—Biochemistry, physiology, evolution and ecology. New Phytol. 2017;213:1582–1596. doi: 10.1111/nph.14378. PubMed DOI
White P.J. Selenium metabolism in plants. Biochim. Biophys. Acta Gen. Subj. 2018 doi: 10.1016/j.bbagen.2018.05.006. PubMed DOI
Van Hoewyk D. A tale of two toxicities: Malformed selenoproteins and oxidative stress both contribute to seleni- um stress in plants. Ann. Bot. 2013;112:965–972. doi: 10.1093/aob/mct163. PubMed DOI PMC
Malik J.A., Goel S., Kaur N., Sharma S., Singh I., Nayyar H. Selenium antagonizes the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ. Exp. Bot. 2012;77:242–248. doi: 10.1016/j.envexpbot.2011.12.001. DOI
Habibi G. Physiological, photochemical and ionic responses of sunflower seedlings to exogenous selenium sup- ply under salt stress. Acta Physiol. Plant. 2017;39:213. doi: 10.1007/s11738-017-2517-3. DOI
Manojlović M.S., Lončarić Z., Cabilovski R.R., Popović B., Karalić K., Ivezić V., Ademi A., Singh B.R. Biofortification of wheat cultivars with selenium. Soil Plant Sci. 2019;69:715–724. doi: 10.1080/09064710.2019.1645204. DOI
Sarwar N., Akhtar M., Kamran M.A., Imran M., Riaz M.A., Kamran K., Hussain S. Selenium biofortification in food crops: Key mechanisms and future perspectives. J. Food Compos. Anal. 2020:103615. doi: 10.1016/j.jfca.2020.103615. DOI
Mechora Š. Selenium as a protective agent against pests: A review. Plants. 2019;8:262. doi: 10.3390/plants8080262. PubMed DOI PMC
Xu J., Jia W., Hu C., Nie M., Ming J., Cheng Q., Cai M., Sun X., Li X., Zheng X., et al. Selenium as a potential fungicide could protect oilseed rape leaves from Sclerotinia sclerotiorum infection. Environ. Pollut. 2020;257:113495. doi: 10.1016/j.envpol.2019.113495. PubMed DOI