• This record comes from PubMed

Selenium Biofortification: Roles, Mechanisms, Responses and Prospects

. 2021 Feb 07 ; 26 (4) : . [epub] 20210207

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
VEGA 1/0589/19 and VEGA 1/0683/20 This is an international collaborative work. Financial support for APC of the review was funded by projects: VEGA 1/0589/19 and VEGA 1/0683/20

Links

PubMed 33562416
PubMed Central PMC7914768
DOI 10.3390/molecules26040881
PII: molecules26040881
Knihovny.cz E-resources

The trace element selenium (Se) is a crucial element for many living organisms, including soil microorganisms, plants and animals, including humans. Generally, in Nature Se is taken up in the living cells of microorganisms, plants, animals and humans in several inorganic forms such as selenate, selenite, elemental Se and selenide. These forms are converted to organic forms by biological process, mostly as the two selenoamino acids selenocysteine (SeCys) and selenomethionine (SeMet). The biological systems of plants, animals and humans can fix these amino acids into Se-containing proteins by a modest replacement of methionine with SeMet. While the form SeCys is usually present in the active site of enzymes, which is essential for catalytic activity. Within human cells, organic forms of Se are significant for the accurate functioning of the immune and reproductive systems, the thyroid and the brain, and to enzyme activity within cells. Humans ingest Se through plant and animal foods rich in the element. The concentration of Se in foodstuffs depends on the presence of available forms of Se in soils and its uptake and accumulation by plants and herbivorous animals. Therefore, improving the availability of Se to plants is, therefore, a potential pathway to overcoming human Se deficiencies. Among these prospective pathways, the Se-biofortification of plants has already been established as a pioneering approach for producing Se-enriched agricultural products. To achieve this desirable aim of Se-biofortification, molecular breeding and genetic engineering in combination with novel agronomic and edaphic management approaches should be combined. This current review summarizes the roles, responses, prospects and mechanisms of Se in human nutrition. It also elaborates how biofortification is a plausible approach to resolving Se-deficiency in humans and other animals.

See more in PubMed

Kieliszek M. Selenium–fascinating microelement, properties and sources in food. Molecules. 2019;24:1298. doi: 10.3390/molecules24071298. PubMed DOI PMC

Galan-Chilet I., Tellez-Plaza M., Guallar E., De Marco G., Lopez-Izquierdo R., Gonzalez-Manzano I., Carmen Tormos M., Martin-Nuñez G.M., Rojo-Martinez G., Saez G.T., et al. Plasma selenium levels and oxidative stress biomarkers: A gene–environment interaction population-based study. Free Radic. Biol. Med. 2014;74:229–236. doi: 10.1016/j.freeradbiomed.2014.07.005. PubMed DOI

Duntas L.H., Benvenga S. Selenium: An element for life. Endocrine. 2015;48:756–775. doi: 10.1007/s12020-014-0477-6. PubMed DOI

Kieliszek M., Błazejak S. Current knowledge on the importance of selenium in food for living organisms: A review. Molecules. 2016;21:609. doi: 10.3390/molecules21050609. PubMed DOI PMC

Nothstein A.K., Eiche E., Riemann M., Nick P., Winkel L.H.E., Göttlicher J., Steininger R., Brendel R., Brasch M.V., Konrad G., et al. Tracking se assimilation and speciation through the rice plant–nutrient competition, toxicity and distribution. PLoS ONE. 2016;26:e0152081. doi: 10.1371/journal.pone.0152081. PubMed DOI PMC

Pilon-Smits E.A., Le Duc D.L. Phytoremediation of selenium using transgenic plants. Curr. Opin. Biotechnol. 2009;20:207–212. doi: 10.1016/j.copbio.2009.02.001. PubMed DOI

Ullah H., Liu G., Yousaf B., Ali M.U., Abbas Q., Munir M.A.M., Mian M.M. Developmental selenium exposure and health risk in daily foodstuffs: A systematic review and meta-analysis. Ecotoxicol. Environ. Saf. 2018;149:291–306. doi: 10.1016/j.ecoenv.2017.11.056. PubMed DOI

McCann J.C., Ames B.N. Adaptive dysfunction of selenoproteins from the perspective of the triage theory: Why modest selenium deficiency may increase risk of diseases of aging. FASEB J. 2011;25:1793–1814. doi: 10.1096/fj.11-180885. PubMed DOI

Shreenath A.P., Ameer M.A., Dooley J. Selenium Deficiency. [(accessed on 30 January 2021)];Treasure Island (FL): StatPearls Publishing. 2020 Available online: https://www.ncbi.nlm.nih.gov/books/NBK482260/

Longchamp M., Angeli N., Castrec-Rouelle M. Selenium uptake in Zea mays supplied with selenate or selenite under hydroponic conditions. Plant Soil. 2013;362:107–117. doi: 10.1007/s11104-012-1259-7. DOI

Khanam A., Platel K. Bioaccessibility of selenium, selenomethionine and selenocysteine from foods and influence of heat processing on the same. Food Chem. 2016;194:1293–1299. doi: 10.1016/j.foodchem.2015.09.005. PubMed DOI

Reich H.J., Hondal R.J. Why nature chose selenium? ACS Chem. Biol. 2016;11:821–841. doi: 10.1021/acschembio.6b00031. PubMed DOI

Mason R.P., Soerensen A.L., DiMento B.P., Balcom P.H. The global marine selenium cycle: Insights from measurements and modeling. Glob. Biogeochem. Cycles. 2018;32:1720–1737. doi: 10.1029/2018GB006029. DOI

Fordyce F.M. Selenium deficiency and toxicity in the environment. In: Selinus O., editor. Essentials of Medical Geology. Springer; Berlin/Heidelberg, Germany: 2013. pp. 375–416.

Winkel L.H., Trang P.T.K., Lan V.M., Stengel C., Amini M., Ha N.T., Viet P.H., Berg M. Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proc. Natl. Acad. Sci. USA. 2011;108:1246–1251. doi: 10.1073/pnas.1011915108. PubMed DOI PMC

Shahid M., Niazi N.K., Khalid S., Murtaza B., Bibi I., Rashid M.I. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ. Pollut. 2018;234:915–934. PubMed

Söderlund M., Virkanen J., Holgersson S., Lehto J. Sorption and speciation of selenium in boreal forest soil. J. Environ. Radioact. 2016;164:220–231. doi: 10.1016/j.jenvrad.2016.08.006. PubMed DOI

He Y., Xiang Y., Zhou Y., Yang Y., Zhang J., Huang H., Shang C., Luo L., Gao J., Tang L. Selenium contamination, consequences and remediation techniques in water and soils: A review. Environ. Res. 2018;164:288–301. doi: 10.1016/j.envres.2018.02.037. PubMed DOI

Tomza-Marciniak A., Bąkowska M., Pilarczyk B., Semeniuk M., Hendzel D., Udała J., Balicka-Ramisz A., Tylkowska A. Concentration of selenium in the soil and in selected organs of roe deer (Capreolus capreolus) from the Greater Poland Voivodeship. Acta Sci. Pol. Zootech. 2010;9:251–260.

Chilimba A.D., Young S.D., Black C.R., Meacham M.C., Lammel J., Broadley M.R. Agronomic biofortification of maize with selenium (Se) in Malawi. Field Crop. Res. 2012;125:118–128. doi: 10.1016/j.fcr.2011.08.014. DOI

Lopes G., Ávila F.W., Guilherme L.R.G. Selenium behavior in the soil environment and its implication for human health. Ciência Agrotecnologia. 2017;41:605–615. doi: 10.1590/1413-70542017416000517. DOI

Stroud J., Broadley M., Foot I., Fairweather-Tait S., Hart D., Hurst R., Knott P., Mowat H., Norman K., Scott P. Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant Soil. 2010;332:19–30. doi: 10.1007/s11104-009-0229-1. DOI

Paikaray S. Origin, mobilization and distribution of selenium in a soil/water/air system: A global perspective with special reference to the Indian scenario. Clean. 2016;44:474–487. doi: 10.1002/clen.201300454. DOI

WHO . Background Document for Preparation of WHO Guidelines for Drinking-Water Quality. World Health Organization (WHO/SDE/WSH/03.04/13); Geneva, Switzerland: 2003. Selenium in Drinking-Water.

Oropeza-Moe M., Wisløff H., Bernhoft A. Selenium deficiency associated porcine and human cardiomyopathies. J. Trace Elem. Med. Biol. 2015;31:148–156. doi: 10.1016/j.jtemb.2014.09.011. PubMed DOI

Steinbrenner H., Sies H. Selenium homeostasis and antioxidant selenoproteins in brain: Implications for disorders in the central nervous system. Arch. Biochem. Biophys. 2013;536:152–157. doi: 10.1016/j.abb.2013.02.021. PubMed DOI

Pillai R., Uyehara-Lock J.H., Bellinger F.P. Selenium and selenoprotein function in brain disorders. IUBMB Life. 2014;66:229–239. doi: 10.1002/iub.1262. PubMed DOI

Lipinski B. Rationale for the treatment of cancer with sodium selenite. Med. Hypotheses. 2005;64:806–810. doi: 10.1016/j.mehy.2004.10.012. PubMed DOI

Okunade K.S., Olowoselu O.F., Osanyin G.E., John-Olabode S., Akanmu S.A., Anorlu R.I. Selenium deficiency and pregnancy outcome in pregnant women with HIV in Lagos, Nigeria. Int. J. Gynecol. Obstet. 2018;142:207–213. doi: 10.1002/ijgo.12508. PubMed DOI PMC

Ventura M., Melo M., Carrilho F. Selenium and thyroid disease: From pathophysiology to treatment. Int. J. Endocrinol. 2017:1297658. doi: 10.1155/2017/1297658. PubMed DOI PMC

Yim S.H., Clish C.B., Gladyshev V.N. Selenium deficiency is associated with pro-longevity mechanisms. Cell Rep. 2019;27:2785–2797. doi: 10.1016/j.celrep.2019.05.001. PubMed DOI PMC

Gupta M., Gupta S. An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant Sci. 2017;7:2074. doi: 10.3389/fpls.2016.02074. PubMed DOI PMC

Underwood E.J., Suttle N.F. The mineral nutrition of livestock. In: Underwood E.J., Suttle N.F., editors. Selenium. CABI Publishing; New York, NY, USA: 1999. pp. 421–475.

Whanger P.D., Weswig P.H., Oldfield J.E., Cheeke P.R., Muth O.H. Factors influencing selenium and white muscle disease: Forage types, salts, amino acids and dimethyl sulfoxide. Nutr. Rep. Int. 1972;6:21–37.

Turner R.J., Finch J.M. Selenium and the immune response. Proc. Nutr. Soc. 1991;50:275–285. doi: 10.1079/PNS19910037. PubMed DOI

Combs G.F., Jr., Combs S.B. The Role of Selenium in Nutrition. Academic Press; Cambridge, MA, USA: 1986. p. 532.

Andrews E.D., Hartley W.J., Grant A.B. Selenium- responsive diseases of animals in New Zealand. New Zealand Vet. J. 1968;16:3–17. doi: 10.1080/00480169.1968.33738. PubMed DOI

Navarro-Alarcon M., Cabrera-Vique C. Selenium in food and the human body: A review. Sci. Total. Environ. 2008;400:115–141. doi: 10.1016/j.scitotenv.2008.06.024. PubMed DOI

Vinceti M., Mandrioli J., Borella P., Michalke B., Tsatsakis A., Finkelstein Y. Selenium neurotoxicity in humans: Bridging laboratory and epidemiologic studies. Toxicol. Lett. 2014;230:295–303. doi: 10.1016/j.toxlet.2013.11.016. PubMed DOI

Franke K.W. A new toxicant occurring naturally in certain samples of plant foodstuffs. 1. Results obtained in preliminary feeding trials. J. Nutr. 1934;8:597–609. doi: 10.1093/jn/8.5.597. DOI

IMFNB . Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academy Press; Cambridge, MA, USA: 2000. pp. 1–20. PubMed

Silva Junior E.C., Wadt L.H.O., Silva K.E., Lima R.M.B., Batista K.D., Guedes M.C., Carvalho G.S., Carvalho T.S., Reis A.R., Lopes G., et al. Natural variation of selenium in Brazil nuts and soils from the Amazon region. Chemosphere. 2017;188:650–658. doi: 10.1016/j.chemosphere.2017.08.158. PubMed DOI

Post M., Lubiński W., Lubiński J., Krzystolik K., Baszuk P., Muszyńska M., Marciniak W. Serum selenium levels are associated with age-related cataract. Ann. Agric. Environ. Med. 2018;25:443–448. doi: 10.26444/aaem/90886. PubMed DOI

Pophaly S.D., Singh P., Kumar H., Tomar S.K., Singh R. Selenium enrichment of lactic acid bacteria and bifidobacteria: A functional food perspective. Trends Food Sci. Tech. 2014;39:135–145. doi: 10.1016/j.tifs.2014.07.006. DOI

USDA-ARS . USDA National Nutrient Database for Standard Reference. USDA-ARS; Washington, DC, USA: 2002. [(accessed on 30 January 2021)]. Release 25. Available online: http://www.nal.usda.gov/fnic/selenium.

WHO Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. [(accessed on 28 January 2021)];2009 Available online: http://www.who.int/healthinfo/global_burden_disease/GlobalHealthRisks_reportannex.pdf.

Ríos J.J., Rosales M.A., Blasco B., Cervilla L.M., Romero L., Ruiz J.M. Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Sci. Hortic. 2008;116:248–255. doi: 10.1016/j.scienta.2008.01.008. DOI

Hawrylak-Nowak B. Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant. Growth Regul. 2013;70:149–157. doi: 10.1007/s10725-013-9788-5. DOI

Ríos J.J., Blasco B., Leyva R., Sanchez-Rodriguez E., Rubio-Wilhelmi M.M., Romero L., Ruiz J.M. Nutritional balance changes in lettuce plant grown under different doses and forms of selenium. J. Plant. Nutr. 2013;36:1344–1354. doi: 10.1080/01904167.2013.790427. DOI

Reilly C. Selenium in Food and Health. Blackie; London, UK: 1996.

Shrift A. Aspects of selenium metabolism in higher plants. Ann. Rev. Plant Physiol. 1969;20:475–494. doi: 10.1146/annurev.pp.20.060169.002355. DOI

Lyons G.H., Stangoulis J.C.R., Graham R.D. High-selenium wheat: Biofortification for better health. Nutr. Res. Rev. 2003;16:45–60. doi: 10.1079/NRR200255. PubMed DOI

Huang S., Wang P., Yamaji N., Ma J.F. Plant nutrition for human nutrition: Hints from rice research and future perspectives. Mol. Plant. 2020;13:825–835. doi: 10.1016/j.molp.2020.05.007. PubMed DOI

Lyons M.P., Papazyan T.T., Surai P.F. Selenium in food chain and animal nutrition: Lessons from nature. Asian-Australas. J. Anim. Sci. 2007;20:1135–1155. doi: 10.5713/ajas.2007.1135. DOI

Kipp A.P., Strohm D., Brigelius-Flohé R., Schomburg L., Bechthold A., Leschik-Bonnet E., Heseker H., DGE G.N.S. Revised reference values for selenium intake. J. Trace Elem. Med. Biol. 2015;32:195–199. doi: 10.1016/j.jtemb.2015.07.005. PubMed DOI

Tamari Y., Kim E.S. Longitudinal study of the dietary selenium intake of exclusively breast-fed infants during early lactation in Korea and Japan. J. Trace Elem. Med. Biol. 1999;13:129–133. doi: 10.1016/S0946-672X(99)80002-9. PubMed DOI

Hsueh Y.M., Su C.T., Shiue H.S., Chen W.J., Pu Y.S., Lin Y.C., Tsai C.S., Huang C.Y. Levels of plasma selenium and urinary total arsenic interact to affect the risk for prostate cancer. Food Chem. Toxicol. 2017;107:167–175. doi: 10.1016/j.fct.2017.06.031. PubMed DOI

Bampidis V., Azimonti G., Bastos M.D.L., Christensen H., Dusemund B., Kouba M., Durjava M.K., López-Alonso M., Puente S.L., Marcon F., et al. Assessment of the application for renewal of authorisation of selenomethionine produced by Saccharomyces cerevisiae CNCM I-3060 (selenised yeast inactivated) for all animal species. EFSA J. 2018;16:e05386. PubMed PMC

Fraczek A., Pasternak K. Selenium in medicine and treatment. J. Elem. 2013;18:145–163. doi: 10.5601/jelem.2013.18.1.13. DOI

Kieliszek M., Błażejak S., Kurek E. Binding and conversion of selenium in Candida utilis ATCC 9950 yeasts in bioreactor culture. Molecules. 2017;22:352. doi: 10.3390/molecules22030352. PubMed DOI PMC

Zwolak I., Zaporowska H. Selenium interactions and toxicity: A review. Selenium interactions and toxicity. Cell Biol. Toxicol. 2012;28:31–46. doi: 10.1007/s10565-011-9203-9. PubMed DOI

Stoffaneller R., Morse N.L. A review of dietary selenium intake and selenium status in Europe and the Middle East. Nutrients. 2015;7:1494–1537. doi: 10.3390/nu7031494. PubMed DOI PMC

Kieliszek M., Błażejak S. Selenium: Significance, and outlook for supplementation. Nutrition. 2013;29:713–718. doi: 10.1016/j.nut.2012.11.012. PubMed DOI

Fairweather-Tait S.J., Bao Y., Broadley M.R., Collings R., Ford D., Hesketh J.E., Hurst R. Selenium in human health and disease. Antioxid. Redox Signal. 2011;14:1337–1383. doi: 10.1089/ars.2010.3275. PubMed DOI

Rayman M.P. Food-chain selenium and human health: Emphasis on intake. Br. J. Nutr. 2008;100:254–268. doi: 10.1017/S0007114508939830. PubMed DOI

Rayman M.P. The argument for increasing Se intake. Proc. Nutr. Soc. 2002;61:203–215. doi: 10.1079/PNS2002153. PubMed DOI

Combs G.F., Lü J. Selenium as a cancer preventive agent. In: Hatfield D.L., Berry M.J., Gladyshev V.N., editors. Selenium. Springer; Berlin/Heidelberg, Germany: 2006. DOI

Zoidis E., Seremelis I., Kontopoulos N., Danezis G.P. Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants. 2018;7:66. doi: 10.3390/antiox7050066. PubMed DOI PMC

Shen Q., Zhang B., Xu R., Wang Y., Ding X., Li P. Antioxidant activity in vitro of the selenium-contained protein from the Se-enriched Bifidobacterium animalis 01. Anaerobe. 2010;16:380–386. doi: 10.1016/j.anaerobe.2010.06.006. PubMed DOI

Elahi M.M., Kong Y.X., Matata B.M. Oxidative stress as a mediator of cardiovascular disease. Oxidative Med. Cell. Longev. 2009;5:259–269. doi: 10.4161/oxim.2.5.9441. PubMed DOI PMC

Lippman S.M., Klein E.A., Goodman P.J., Lucia M.S., Thompson I.M., Ford L.G., Parnes H.L., Minasian L.M., Gaziano J.M., Hartline J.A., et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT) Jama. 2009;301:39–51. doi: 10.1001/jama.2008.864. PubMed DOI PMC

Klein E.A., Thompson I.M., Tangen C.M., Crowley J.J., Lucia M.S., Goodman P.J., Minasian L.M., Ford L.G., Parnes H.L., Gaziano J.M., et al. Vitamin E and the risk of prostate cancer: The Selenium and Vitamin E Cancer Prevention Trial (SELECT) Jama. 2011;306:1549–1556. doi: 10.1001/jama.2011.1437. PubMed DOI PMC

Dennert G., Horneber M. Selenium for alleviating the side effects of chemotherapy, radiotherapy and surgery in cancer patients. Cochrane Database Syst. Rev. 2006;3:CD005037. doi: 10.1002/14651858.CD005037.pub2. PubMed DOI PMC

Rees K., Hartley L., Day C., Flowers N., Clarke A., Stranges S. Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2013 doi: 10.1002/14651858.CD009671.pub2. PubMed DOI PMC

Farrokhian A., Bahmani F., Taghizadeh M., Mirhashemi S.M., Aarabi M.H., Raygan F., Aghadavod E., Asemi Z. Selenium supplementation affects insulin resistance and serum hs-CRP in patients with type 2 diabetes and coronary heart disease. Horm. Metab. Res. 2016;48:263–268. doi: 10.1055/s-0035-1569276. PubMed DOI

Albuquerque R.G., Tufik S., Andersen M.L. Benefits of selenium in the treatment of depression and sleep disorders. Sleep Breath. 2019;23:933–934. doi: 10.1007/s11325-019-01816-4. PubMed DOI

Triggiani V., Tafaro E., Giagulli V.A., Sabbà C., Resta F., Licchelli B., Guastamacchia E. Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr. Metab. Immune Disord. Drug Targets. 2009;9:277–294. doi: 10.2174/187153009789044392. PubMed DOI

Schomburg L. Selenium, selenoproteins and the thyroid gland: Interactions in health and disease. Nat. Rev. Endocrinol. 2012;8:160–171. doi: 10.1038/nrendo.2011.174. PubMed DOI

Köhrle J. Selenium and the thyroid. Curr. Opin. Endocrinol. Diabetes Obes. 2015;22:392–401. doi: 10.1097/MED.0000000000000190. PubMed DOI

Drutel A., Archambeaud F., Caron P. Selenium and the thyroid gland: More good news for clinicians. Clin. Endocrinol. 2013;78:155–164. doi: 10.1111/cen.12066. PubMed DOI

Stuss M., Michalska-Kasiczak M., Sewerynek E. The role of selenium in thyroid gland pathophysiology. Endokrynol. Pol. 2017;68:440–465. doi: 10.5603/EP.2017.0051. PubMed DOI

Rayman M.P. Selenium and human health. Lancet. 2012;379:1256–1268. doi: 10.1016/S0140-6736(11)61452-9. PubMed DOI

Riaz M., Mehmood K.T. Selenium in human health and disease: A review. J. Postgrad. Med Inst. 2012;26:120–133.

Brigelius-Flohé R. Selenium. Springer; Berlin/Heidelberg, Germany: 2018. Selenium in human health and disease: An overview; pp. 3–26.

Shaheen S.O., Newson R.B., Rayman M.P., Wong A.P., Tumilty M.K., Phillips J.M., Potts J.F., Kelly F.J., White P.T., Burney P.G. Randomised, double blind, placebo-controlled trial of selenium supplementation in adult asthma. Thorax. 2007;62:483–490. doi: 10.1136/thx.2006.071563. PubMed DOI PMC

Norton G., Duan G.-L., Lei M., Zhu Y.G., Meharg A., Price A. Identification of quantitative trait loci for rice grain element composition on an arsenic impacted soil: Influence of flowering time on genetic loci. Ann. Appl. Biol. 2012;161:46–56. doi: 10.1111/j.1744-7348.2012.00549.x. DOI

Broadley M.R., White P.J., Bryson R.J., Meacham M.C., Bowen H.C., Johnson S.E., Hawkesford M.J., McGrath S.P., Zhao F.J., Breward N., et al. Biofortification of UK food crops with selenium. Proc. Nutr. Soc. 2006;65:169–181. doi: 10.1079/PNS2006490. PubMed DOI

Broadley M.R., Alcock J., Alford J., Cartwright P., Foot I., Fairweather-Tait S.J., Hart D.J., Hurst R., Knott P., McGrath S.P., et al. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilisation. Plant Soil. 2010;332:5–18. doi: 10.1007/s11104-009-0234-4. DOI

Aro A., Alfthan G., Varo P. Effects of supplementation of fertilizers on human selenium status in Finland. Analyst. 1995;120:841–843. doi: 10.1039/an9952000841. PubMed DOI

Eurola M., Ekholm P., Ylinen M., Koivistoinen P., Varo P. Effects of Selenium Fertilization on the Selenium Content of Selected Finnish Fruits and Vegetables. Acta Agric. Scand. 1989;39:345–350. doi: 10.1080/00015128909438526. DOI

Mäkelä A.L., Wang W.C., Hämäläinen M., Näntö V., Laihonen P., Kotilainen H., Meng L.X., Mäkelä P. Environmental effects of nationwide selenium fertilization in Finland. Biol. Trace Elem. Res. 1995;47:289–298. doi: 10.1007/BF02790129. PubMed DOI

Varo P., Alfthan G., Huttunen J.K., Aro A. Nationwide selenium supplementation in Finland: Effects on diet, blood and tissue levels, and health. In: Burk R.F., editor. Selenium in Biology and Human Health. Springer; Berlin/Heidelberg, Germany: 1994. pp. 197–218.

Hart D., Fairweather-Tait S., Broadley M., Dickinson S., Foot I., Knott P., McGrath S., Mowat H., Norman K., Scott P. Selenium concentration and speciation in biofortified flour and bread: Retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chem. 2011;126:1771–1778. doi: 10.1016/j.foodchem.2010.12.079. PubMed DOI

Hasanuzzaman M., Hossain M.A., Fujita M. Selenium in higher plants: Physiological role, antioxidant metabolism and abiotic stress tolerance. J. Plant. Sci. 2010;5:354–375. doi: 10.3923/jps.2010.354.375. DOI

Feng R., Wei C., Tu S. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 2013;87:58–68. doi: 10.1016/j.envexpbot.2012.09.002. DOI

Hladun K.R., Parker D.R., Tran K.D., Trumble J.T. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.) Environ. Pollut. 2013;172:70–75. doi: 10.1016/j.envpol.2012.08.009. PubMed DOI

D’Amato R., Proietti P., Nasini L., Del Buono D., Tedeschini E., Businelli D. Increase in the selenium content of extra virgin olive oil: Quantitative and qualitative implications. Grasas Aceites. 2014;65:e025. doi: 10.3989/gya.097313. DOI

Pezzarossa B., Remorini D., Gentile M.L., Massai R. Effects of foliar and fruit addition of sodium selenate on selenium accumulation and fruit quality. J. Sci. Food Agric. 2012;92:781–786. doi: 10.1002/jsfa.4644. PubMed DOI

Hsu F.C., Wirtz M., Heppel S.C., Bogs J., Krämer U., Khan M.S., Bub A., Hell R., Rausch T. Generation of Se-fortified broccoli as functional food: Impact of Se fertilization on S metabolism. Plant Cell Environ. 2011;34:192–207. doi: 10.1111/j.1365-3040.2010.02235.x. PubMed DOI

Moulick D., Ghosh D., Chandra Santra S. Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant. Physiol. Biochem. 2016;109:571–578. doi: 10.1016/j.plaphy.2016.11.004. PubMed DOI

Moulick D., Santra S.C., Ghosh D. Effect of selenium induced seed priming on arsenic accumulation in rice plant and subsequent transmission in human food chain. Ecotoxicol. Environ. Saf. 2018;152:67–77. doi: 10.1016/j.ecoenv.2018.01.037. PubMed DOI

Moulick D., Santra S.C., Ghosh D. Seed priming with Se mitigates As-induced phytotoxicity in rice seedlings by enhancing essential micronutrient uptake and translocation and reducing As translocation. Environ. Sci. Pollut. Res. 2018;25:26978. doi: 10.1007/s11356-018-2711-x. PubMed DOI

Moulick D., Santra S.C., Ghosh D. Seed priming with Se alleviate As induced phytotoxicity during germination and seedling growth by restricting As translocation in rice (Oryza sativa L c.v. IET-4094) Ecotoxicol. Environ. Saf. 2017;145:449–456. doi: 10.1016/j.ecoenv.2017.07.060. PubMed DOI

Qin S., Gao J., Huang K. Effects of different selenium sources on tissue selenium concentrations, blood GSH-Px activities and plasma interleukin levels in finishing lambs. Biol. Trace Elem. Res. 2007;116:91–102. doi: 10.1007/BF02685922. PubMed DOI

Shiobara Y., Yoshida T., Suzuki K.T. Effects of dietary selenium species on Se concentrations in hair, blood, and urine. Toxicol. Appl. Pharmacol. 1998;152:309–314. doi: 10.1006/taap.1998.8537. PubMed DOI

Swanson C., Patterson B., Levander O., Veillon C., Taylor P., Helzlsouer K., McAdam P., Zech L. Human [74Se] selenomethionine metabolism: A kinetic model. Am. J. Clin. Nutr. 1991;54:917–926. doi: 10.1093/ajcn/54.5.917. PubMed DOI

Hall J.A., Bobe G., Hunter J.K., Vorachek W.R., Stewart W.C., Vanegas J.A., Estill C.T., Mosher W.D., Pirelli G.J. Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. PLoS ONE. 2013;8:e58188. doi: 10.1371/journal.pone.0058188. PubMed DOI PMC

Benes S.E., Robinson P.H., Cun G.S. Depletion of selenium in blood, liver and muscle from beef heifers previously fed forages containing high levels of selenium. Sci. Total Environ. 2015;536:603–608. doi: 10.1016/j.scitotenv.2015.07.096. PubMed DOI

Quijano M., Moreno P., Gutiérrez A.M., Pérez-Conde M.C., Camara C. Selenium speciation in animal tissues after enzymatic digestion by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. J. Mass Spectrom. 2000;35:878–884. doi: 10.1002/1096-9888(200007)35:7<878::AID-JMS12>3.0.CO;2-2. PubMed DOI

Ralston N.V., Ralston C.R., Blackwell J.L., Raymond L.J. Dietary and tissue selenium in relation to methylmercury toxicity. Neurotoxicology. 2008;29:802–811. doi: 10.1016/j.neuro.2008.07.007. PubMed DOI

Combs G.F., Jr. Selenium in global food systems. Brit. J. Nutr. 2001;85:517–547. doi: 10.1079/BJN2000280. PubMed DOI

Lin Z.Q. Uptake and accumulation of selenium in plants in relation to chemical soeciationa nd biotransformation. In: Banuelos G., Lin Z.-Q., editors. Development and Uses of Biofortified Agricultural Products. CRC; Boca Raton, FL, USA: 2008. pp. 45–56.

Lyons G.H., Genc Y., Graham R. Biofortication in the food chain, and use of selenium and phyto-compounds in risk reduction and control of prostate cancer. In: Banuelos G., Lin Z.-Q., editors. Development and Uses of Biofortified Agricultural Products. CRC Press; Boca Raton, FL, USA: 2008. pp. 17–44.

ODS . Selenium: Dietary Supplement Fact Sheet. Health Information. US Department of Health and Human Services, National Institutes of Health. Office of Dietary Supplements; Washington, DC, USA: 2016.

Saltzman A., Birol E., Bouis H.E., Boy E., De Moura F.F., Islam Y., Pfeiffer W.H. Biofortification: Progress toward a more nourishing future. Glob. Food Secur. 2013;2:9–17. doi: 10.1016/j.gfs.2012.12.003. DOI

Zhu J., Wang N., Li S., Li L., Su H., Liu C. Distribution and transport of selenium in Yutangba, China: Impact of human activities. Sci. Total Environ. 2008;392:252–261. doi: 10.1016/j.scitotenv.2007.12.019. PubMed DOI

Williams P.N., Lombi E., Sun G.X., Scheckel K., Zhu Y.G., Feng X., Zhu J., Carey A.M., Adomako E., Lawgali Y., et al. Selenium characterization in the global rice supply chain. Environ. Sci. Technol. 2009;43:6024–6030. doi: 10.1021/es900671m. PubMed DOI

Thavarajah P., Sarker A., Materne M., Vandemark G., Shrestha R., Idrissi O., Hacikamiloglu O., Bucak B., Vandenberg A. A global survey of effects of genotype and environment on selenium concentration in lentils (Lens culinaris L.): Implications for nutritional fortification strategies. Food Chem. 2011;125:72–76. doi: 10.1016/j.foodchem.2010.08.038. DOI

Winkel L.H., Johnson C.A., Lenz M., Grundl T., Leupin O.X., Amini M., Charlet L. Environmental selenium research: From microscopic processes to global understanding. Environ. Sci. Technol. 2012;46:571–579. doi: 10.1021/es203434d. PubMed DOI

Fordyce F.M., Brereton N., Hughes J., Luo W., Lewis J. An initial study to assess the use of geological parent materials to predict the Se concentration in overlying soils and in five staple foodstuffs produced on them in Scotland. Sci. Total Environ. 2010;408:5295–5305. doi: 10.1016/j.scitotenv.2010.08.007. PubMed DOI

Goicoechea N., Garmendia I., Fabbrin E.G., Bettoni M.M., Palop J.A., Sanmartín C. Selenium fertilization and mycorrhizal technology may interfere in enhancing bioactive compounds in edible tissues of lettuces. Sci. Hortic. 2015;195:163–172. doi: 10.1016/j.scienta.2015.09.007. DOI

Mahn A. Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads. Food Chem. 2017;233:492–499. doi: 10.1016/j.foodchem.2017.04.144. PubMed DOI

Germ M., Stibilj V. Selenium and plants. Acta Agric. Slov. 2008;89 doi: 10.2478/v10014-007-0008-8. DOI

Haug A., Graham R., Christophersen O., Lyons G. How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb. Ecol. Health Dis. 2007;19:209–228. PubMed PMC

Sillanpaeae M., Jansson H. Status of cadmium, lead, cobalt and selenium in soils and plants of thirty countries. FAO Soils Bull. 1992:195.

Ros G.H., van Rotterdam A.M.D., Bussink D.W., Bindraban P.S. Selenium fertilization strategies for bio-fortification of food: An agro-ecosystem approach. Plant Soil. 2016;404:99–112. doi: 10.1007/s11104-016-2830-4. DOI

Wen H., Carignan J. Reviews on atmospheric selenium: Emissions, speciation and fate. Atmos. Environ. 2007;41:7151–7165. doi: 10.1016/j.atmosenv.2007.07.035. DOI

Chasteen T.G., Bentley R. Biomethylation of selenium and tellurium: Microorganisms and plants. Chem. Rev. 2003;103:1–26. doi: 10.1021/cr010210+. PubMed DOI

Bañuelos G.S., Ajwa H.A., Wu L., Guo X., Akohoue S., Zambrzuski S. Selenium-induced growth reduction in Brassica land races considered for phytoremediation. Ecotoxicol. Environ. Saf. 1997;36:282–287. doi: 10.1006/eesa.1996.1517. PubMed DOI

Poblaciones M.J., Rodrigo S., Santamaria O., Chen Y., McGrath S.P. Selenium accumulation and speciation in biofortified chickpea (Cicer arietinum L.) under Mediterranean Plant Soil conditions. J. Sci. Food Agric. 2014;94:1101–1106. doi: 10.1002/jsfa.6372. PubMed DOI

Premarathna L., McLaughlin M.J., Kirby J.K., Hettiarachchi G.M., Stacey S., Chittleborough D.J. Selenate-enriched urea granules are a highly Effective fertilizer for selenium biofortification of paddy rice grain. J. Agric. Food Chem. 2012;60:6037–6044. doi: 10.1021/jf3005788. PubMed DOI

Schiavon M., dall’Acqua S., Mietto A., Pilon-Smits E.A.H., Sambo P., Masi A., Malagoli M. Impact of selenium fertilization on chemical composition and Antioxidant constituents of tomato (Solanum lycopersicon L.) J. Agric. Food Chem. 2013;61:10542–10554. doi: 10.1021/jf4031822. PubMed DOI

Ramos S.J., Faquin V., Guilherme L.R.G., Castro E.M., Avila F.W., Carvalho G.S., Bastos C.E.A., Oliveira C. Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ. 2010;56:584–588. doi: 10.17221/113/2010-PSE. DOI

Alfthan G., Aspila P., Ekholm P., Eurola M., Hartikainen H., Hero H., Hietaniemi V., Root T., Salminen P., Venäläinen E.-R., et al. Nationwide Supplementation of Sodium Selenate to Commercial Fertilizers: History and 25-Year Results from the Finnish Selenium Monitoring Programme. CAB International and Food and Agriculture Organization of the United Nations (FAO); Rome, Italy: 2011.

Winkler J. Biofortification: Improving the nutritional quality of staple crops. In: Pasternak C., editor. Access not Excess. Smith-Gordon Publishing; London, UK: 2011. pp. 100–112.

Dhillon S.K., Hundal B.K., Dhillon K.S. Bioavailability of selenium to forage crops in a sandy loam soil amended with Se-rich plant materials. Chemosphere. 2007;66:1734–1743. doi: 10.1016/j.chemosphere.2006.07.006. PubMed DOI

Bruulsema T.W., Heffer P., Welch R.M., Cakmak I., Moran K. Fertilizing Crops to Improve Human Health: A Scientific Review Volume 1 Food and Nutrition Security Editorial Committee. Better Crop. Plant Food. 2012;96:29–31.

Ramkissoon C., Degryse F., da Silva R.C., Baird R., Young S.D., Bailey E.H., McLaughlin M.J. Improving the efficacy of selenium fertilizers for wheat biofortification. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-55914-0. PubMed DOI PMC

Xu G.L., Wang S.C., Gu B.Q., Yang Y.X., Song H.B., Xue W.L., Liang W.S., Zhang P.Y. Further investigation on the role of selenium deficiency in the aetiology and pathogenesis of Keshan disease. Biomed. Environ. Sci. 1997;10:316–326. PubMed

Lyons G. Selenium in cereals: Improving the efficiency of agronomic biofortification in the UK. Plant Soil. 2010;332:1–4. doi: 10.1007/s11104-010-0282-9. DOI

Boldrin P.F., de Figueiredo M.A., Yang Y., Luo H., Giri S., Hart J.J., Faquin V., Guilherme L.R.G., Thannhauser T.W., Li L. Selenium promotes sulfur accumulation and plant growth in wheat ( Triticum aestivum ) Physiol. Plant. 2016;158:80–91. doi: 10.1111/ppl.12465. PubMed DOI

Pilon-Smits E.A., Winkel L.H., Lin Z.Q. Selenium in Plants: Molecular, Physiological, Ecological and Evolutionary Aspects. Volume 11. Springer; Berlin/Heidelberg, Germany: 2017. p. 324.

Thavarajah D., Abare A., Mapa I., Coyne C.J., Thavarajah P., Kumar S. Selecting lentil accessions for global selenium biofortification. Plants. 2017;6:34. doi: 10.3390/plants6030034. PubMed DOI PMC

Ekanayake L.J., Thavarajah D., Vial E., Schatz B., McGee R., Thavarajah P. Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity. Field Crop. Res. 2015;177:9–14. doi: 10.1016/j.fcr.2015.03.002. DOI

Eich-Greatorex A., Sogn T.A., Øgaard A.F., Aasen I. Plant availability of inorganic and organic selenium fertilizer as influenced by soil organic matter content and pH. Nutr. Cycl. Agroecosystems. 2007;79:221–231. doi: 10.1007/s10705-007-9109-3. DOI

Christophersen O.A., Lyons G., Haug A., Steinnes E. Selenium. Springer; Berlin/Heidelberg, Germany: 2013. pp. 429–463.

Hartfiel W., Bahners N. Selenium deficiency in the Federal Republic of Germany. Biol. Trace Elem. 1988;15:1–12. doi: 10.1007/BF02990123. PubMed DOI

Hu Q., Chen L., Xu J., Zhang Y., Pan G. Determination of selenium concentration in rice and the effect of foliar application of Se-enriched fertiliser or sodium selenite on the selenium content of rice. J. Sci. Food Agric. 2002;82:869–872. doi: 10.1002/jsfa.1115. DOI

Smrkolj P., Stibilj V., Kreft I., Germ M. Selenium species in buckwheat cultivated with foliar addition of Se (VI) and various levels of UV-B radiation. Food Chem. 2006;96:675–681. doi: 10.1016/j.foodchem.2005.05.002. DOI

Poggi V., Arcioni A., Filippini P., Pifferi P.G. Foliar application of selenite and selenate to potato (Solanum tuberosum): Effect of a ligand agent on selenium content of tubers. J. Agric. Food Chem. 2000;48:4749–4751. doi: 10.1021/jf000368f. PubMed DOI

Yang F., Chen L., Hu Q., Pan G. Effect of the application of selenium on selenium content of soybean and its products. Biol. Trace Elem. Res. 2003;93:249–256. doi: 10.1385/BTER:93:1-3:249. PubMed DOI

Xia Q., Yang Z., Shui Y., Liu X., Chen J., Khan S., Wang J., Gao Z. Methods of Selenium Application Differentially Modulate Plant Growth, Selenium Accumulation and Speciation, Protein, Anthocyanins and Concentrations of Mineral Elements in Purple-Grained Wheat. Front. Plant. Sci. 2020;11:1114. doi: 10.3389/fpls.2020.01114. PubMed DOI PMC

Mao H., Wang J., Wang Z., Zan Y., Lyons G., Zou C. Using agronomic biofortification to boost zinc, selenium, and iodine concentrations of food crops grown on the loess plateau in China. J. Soil Sci. Plant. Nutr. 2014;14:459–470. doi: 10.4067/S0718-95162014005000036. DOI

Tveitnes S., Singh B.R., Ruud L. Selenium concentration in spring wheat as influenced by basal application and top dressing of selenium-enriched fertilizers. Fertil. Res. 1995;45:163–167. doi: 10.1007/BF00790666. DOI

Fernández-Martínez A., Charlet L. Selenium environmental cycling and bioavailability: A structural chemist point of view. Rev. Environ. Sci. Biotechnol. 2009;8:81–110. doi: 10.1007/s11157-009-9145-3. DOI

Freeman J.L., Bañuelos G.S. Selection of salt and boron tolerant selenium hyperaccumulator Stanleya pinnata genotypes and characterization of Se phytoremediation from agricultural drainage sediments. Environ. Sci. Technol. 2011;45:9703–9710. doi: 10.1021/es201600f. PubMed DOI

Bañuelos G.S., Arroyo I., Pickering I.J., Yang S.I., Freeman J.L. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem. 2015;166:603–608. doi: 10.1016/j.foodchem.2014.06.071. PubMed DOI

Kikkert J., Berkelaar E. Plant uptake and translocation of inorganic and organic forms of selenium. Arch. Environ. Contam. Toxicol. 2013;65:458–465. doi: 10.1007/s00244-013-9926-0. PubMed DOI

Bhatia P., Aureli F., D’Amato M., Prakash R., Cameotra S.S., Nagaraja T.P., Cubadda F. Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chem. 2013;140:225–230. doi: 10.1016/j.foodchem.2013.02.054. PubMed DOI

Bañuelos G.S., Lin Z.Q., Broadley M. Selenium in Plants. Springer; Berlin/Heidelberg, Germany: 2017. Selenium biofortification; pp. 231–255. DOI

Li Z., Liang D., Peng Q., Cui Z., Huang J., Lin Z. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma. 2017;295:69–79. doi: 10.1016/j.geoderma.2017.02.019. DOI

Serafin Muñoz A.H., Kubachka K., Wrobel K., Gutierrez Corona J.F., Yathavakilla S.K., Caruso J.A., Wrobel K. Se-enriched mycelia of Pleurotus ostreatus: Distribution of selenium in cell walls and cell membranes/cytosol. J. Agric. Food Chem. 2006;54:3440–3444. doi: 10.1021/jf052973u. PubMed DOI

Kang Y., Yamada H., Kyuma K., Hattori T., Kigasawa S. Selenium in soil humic acid. Soil Sci. Plant. Nutr. 1991;37:241–248. doi: 10.1080/00380768.1991.10415034. DOI

Park J.H., Lamb D., Paneerselvam P., Choppala G., Bolan N., Chung J.W. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 2011;185:549–574. doi: 10.1016/j.jhazmat.2010.09.082. PubMed DOI

Dhillon K.S., Dhillon S.K., Dogra R. Selenium accumulation by forage and grain crops and volatilization from seleniferous soils amended with different organic materials. Chemosphere. 2010;78:548–556. doi: 10.1016/j.chemosphere.2009.11.015. PubMed DOI

Sharma S., Bansal A., Dogra R., Dhillon S.K., Dhillon K.S. Effect of organic amendments on uptake of selenium and biochemical grain composition of wheat and rape grown on seleniferous soils in northwestern India. J. Plant. Nutr. Soil Sci. 2011;174:269–275. doi: 10.1002/jpln.200900265. DOI

Bhatia P., Prakash R., Prakash N.T. Enhanced antioxidant properties as a function of selenium uptake by edible mushrooms cultivated on selenium-accumulated waste post-harvest wheat and paddy residues. Int. J. Recycl. Org. Waste Agric. 2014;3:127–132. doi: 10.1007/s40093-014-0074-y. DOI

Wu Z., Bañuelos G.S., Lin Z.Q., Liu Y., Yuan L., Yin X., Li M. Biofortification and phytoremediation of selenium in China. Front. Plant. Sci. 2015;6:136. doi: 10.3389/fpls.2015.00136. PubMed DOI PMC

Bañuelos G.S., Lin Z.-Q. Cultivation of the Indian fig Opuntia in selenium-rich drainage sediments under field conditions. Soil Use Manag. 2010;26:167–175. doi: 10.1111/j.1475-2743.2010.00258.x. DOI

De Feudis M., D’Amato R., Businelli D., Guiducci M. Fate of selenium in soil: A case study in a maize (Zea mays L.) field under two irrigation regimes and fertilized with sodium selenite. Sci. Total Environ. 2019;659:131–139. doi: 10.1016/j.scitotenv.2018.12.200. PubMed DOI

El-Ramady H.R., Domokos-Szabolcsy É., Shalaby T.A., Prokisch J., Fári M. CO2 Sequestration, Biofuels and Depollution. Springer; Berlin/Heidelberg, Germany: 2015. Selenium in agriculture: Water, air, soil, plants, food, animals and nanoselenium; pp. 153–232.

Kaur S., Kaur N., Siddique K.H., Nayyar H. Beneficial elements for agricultural crops and their functional relevance in defence against stresses. Arch. Agron. Soil Sci. 2016;62:905–920. doi: 10.1080/03650340.2015.1101070. DOI

Sogn L., Skorge P., Frøslie A., Aasen I., Stabbetorp H., Ruud L. Human and Animal Health in Relation to Circulation Processes of Selenium and Cadmium. The Norwegian Academy of Science and Letters; Oslo, Norway: 1991. Effects of selenium enriched complex fertilizers on selenium concentration of small grains; pp. 199–211.

White P.J., Broadley M.R. Biofortification of crops with seven mineral Elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, Se and iodine. New Phytol. 2009;182:49–84. doi: 10.1111/j.1469-8137.2008.02738.x. PubMed DOI

Harris J., Schneberg K.A., Pilon-Smits E.A. Sulfur–selenium–molybdenum interactions distinguish selenium hyperaccumulator Stanleya pinnata from non-hyperaccumulator Brassica juncea (Brassicaceae) Planta. 2014;239:479–491. doi: 10.1007/s00425-013-1996-8. PubMed DOI

Barberon M., Berthomieu P., Clairotte M., Shibagaki N., Davidian J.C., Gosti F. Unequal functional redundancy between the two Arabidopsis thaliana high-affinity sulphate transporters SULTR1;1 and SULTR1;2. New Phytol. 2008;180:608–619. doi: 10.1111/j.1469-8137.2008.02604.x. PubMed DOI

Pu Z.E., Yu M., He Q.Y., Chen G.Y., Wang J.R., Liu Y.X., Jiang Q., Li W., Dai S., Wei Y., et al. Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J. Integr. Agric. 2014;13:2322–2329. doi: 10.1016/S2095-3119(13)60640-1. DOI

BuN M., Hui L., Lashari M.S., Shah A.N., Licao C., Weining S. Nutritional characteristics and starch properties of Tibetan barley. Int. J. Agric. Policy Res. 2015;3:293–299.

Eurola M., Hietaniemi V., Kontturi M. Selenium content of Finnish oats in 1997–1999, effect of cultivars and cultivation techniques. Agric. Food Sci. 2004;13:46–53. doi: 10.2137/1239099041837941. DOI

Jha A.B., Warkentin T.D. Biofortification of pulse crops: Status and future perspectives. Plants. 2020;9:73. doi: 10.3390/plants9010073. PubMed DOI PMC

Ray H., Bett K., Tar’an B., Vandenberg A., Thavarajah D., Warkentin T. Mineral micronutrient content of cultivars of field pea, chickpea, common bean, and lentil grown in Saskatchewan, Canada. Crop. Sci. 2014;54:1698–1708. doi: 10.2135/cropsci2013.08.0568. DOI

Nair R.M., Thavarajah P., Giri R.R., Ledesma D., Yang R.Y., Hanson P., Easdown W., Hughes J.A. Mineral and phenolic concentrations of mungbean [Vigna radiata (L.) R. Wilczek var. radiata] grown in semi-arid tropical India. J. Food Compos. Anal. 2015;39:23–32. doi: 10.1016/j.jfca.2014.10.009. DOI

Ramamurthy R.K., Jedlicka J., Graef G.L., Waters B.M. Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L.) Merr.] Mol. Breed. 2014;34:431–445. doi: 10.1007/s11032-014-0045-z. DOI

Kopsell D.A., Randle W.M. Short-day onion cultivars differ in bulb selenium and sulphur accumulation which can affect bulb pungency. Euphytica. 1997;96:385–390. doi: 10.1023/A:1003065618315. DOI

Kopsell D.A., Randle W.M. Genetic variances and selection potential for selenium accumulation in a rapid-cycling Brassica oleracea population. J. Am. Soc. Hortic. Sci. 2001;126:329–335. doi: 10.21273/JASHS.126.3.329. DOI

Meenakshi J.V., Johnson N.L., Manyong V.M., DeGroote H., Javelosa J. How cost effective is biofortification in combating micronutrient malnutrition? World Dev. 2010;38:64–75. doi: 10.1016/j.worlddev.2009.03.014. DOI

Cakmak I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil. 2008;302:1–17. doi: 10.1007/s11104-007-9466-3. DOI

Pilon-Smits E.A.H. Selenium in Plants. In: Lüttge U., Beyschlag W., editors. Progress in Botany. Progress in Botany (Genetics—Physiology—Systematics—Ecology) Volume 76. Springer; Berlin/Heidelberg, Germany: 2015. DOI

White P.J. Selenium accumulation by plants. Ann. Bot. 2015;117:217–235. doi: 10.1093/aob/mcv180. PubMed DOI PMC

Sors T.G., Ellis D.R., Na G.N., Lahner B., Lee S., Leustek T., Pickering I.J., Salt D.E. Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J. 2005;42:785–797. doi: 10.1111/j.1365-313X.2005.02413.x. PubMed DOI

Bañuelos G.S., Terry N., Leduc D.L., Pilon-Smits E.A.H., Mackey B. Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ. Sci. Technol. 2005;39:1771–1777. doi: 10.1021/es049035f. PubMed DOI

Zhang L., Byrne P.F., Pilon-Smits E.A. Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana. New Phytol. 2006;170:33–42. doi: 10.1111/j.1469-8137.2006.01635.x. PubMed DOI

Ates D., Sever T., Aldemir S., Yagmur B., Temel H.Y., Kaya H.B., Alsaleh A., Kahraman A., Ozkan H., Vandenberg A., et al. Identification QTLs Controlling Genes for Se Uptake in Lentil Seeds. PLoS ONE. 2016;11:e0149210. PubMed PMC

Wang J., Zhou C., Xiao X., Xie Y., Zhu L., Ma Z. Enhanced Iron and Selenium Uptake in Plants by Volatile Emissions of Bacillus amyloliquefaciens (BF06) Appl. Sci. 2017;7:85. doi: 10.3390/app7010085. DOI

Huang Y., Sun C., Min J., Chen Y., Tong C., Bao J. Association mapping of quantitative trait loci for mineral element contents in whole grain rice (Oryza sativa L.) J. Agric. Food Chem. 2015;63:10885–10892. doi: 10.1021/acs.jafc.5b04932. PubMed DOI

Yang R., Wang R., Xue W., Yan J., Zhao G., Fahima T., Cheng J. QTL location and analysis of selenium content in tetraploid wheat grain. Guizhou Agric. Sci. 2013;10:1–4.

Terry N., Zayed A.M., de Souza M.P., Tarun A.S. Selenium in greater plants. Annu. Rev. Plant. Physiol. 2000;51:401–432. doi: 10.1146/annurev.arplant.51.1.401. PubMed DOI

Raina M., Sharma A., Nazir M., Kumari P., Rustagi A., Hami A., Bhau B.S., Zargar S.M., Kumar D. Exploring the new dimensions of selenium research to understand the underlying mechanism of its uptake, translocation, and accumulation. Physiol. Plant. 2020 doi: 10.1111/ppl.13275. PubMed DOI

Agalou A., Roussis A., Spaink H.P. The Arabidopsis selenium-binding protein confers tolerance to toxic levels of selenium. Funct Plant Biol. 2005;32:881–890. doi: 10.1071/FP05090. PubMed DOI

Jiang C., Zu C., Lu D., Zheng Q., Shen J., Wang H., Li D. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci. Rep. 2017;7:42039. doi: 10.1038/srep42039. PubMed DOI PMC

Jiang L., Yang J., Liu C., Chen Z., Yao Z., Cao S. Overexpression of ethylene response factor ERF96 gene enhances selenium tolerance in Arabidopsis. Plant Physiol Plant Soil with accelerated HIV disease progression among HIV-1-infected pregnant women in Tanzania. J. Nutr. 2020;134:2556–2560.

Chen M., Zeng L., Luo X., Mehboob M.Z., Ao T., Lang M. Identification and functional characterization of a novel selenocysteine methyltransferase from Brassica juncea L. J. Exp. Bot. 2019;70:6401–6416. doi: 10.1093/jxb/erz390. PubMed DOI

Zhang L., Hu B., Deng K., Gao X., Sun G., Zhang Z., Li P., Wang W., Li H., Zhang Z., et al. NRT1.1B improves selenium concentrations in rice grains by facilitating selenomethinone translocation. Plant Biotechnol. J. 2019;17:1058–1068. doi: 10.1111/pbi.13037. PubMed DOI PMC

Poletti S., Sautter C. Biofortification of the crops with micronutrients using plant breeding and/or transgenic strategies. Minerva Biotecnol. 2005;17:1–11.

Carvalho S.M.P., Vasconcelos M.W. Producing more with less: Strategies and novel technologies for plant-based food biofortification. Food Res. Int. 2013;54:961–971. doi: 10.1016/j.foodres.2012.12.021. DOI

Ye Y., Qu J., Pu Y., Rao S., Xu F., Wu C. Selenium Biofortification of Crop Food by Beneficial Microorganisms. J. Fungi. 2020;6:59. doi: 10.3390/jof6020059. PubMed DOI PMC

Yasin M., El-Mehdawi A.F., Anwar A., Pilon Smits E.A.H., Faisal M. Microbial enhanced selenium and iron biofortification of wheat (Triticum aestivum L.) Applications in Phytoremediation and Biofortification. Int. J. Phytoremed. 2015;17:341–347. doi: 10.1080/15226514.2014.922920. PubMed DOI

De Souza M.P., Chu D., Zhao M., Zayed A.M., Ruzin S.E., Schichnes D., Terry N. Rhizosphere bacteria enhance selenium accumulation and volatilization by indian mustard. Plant. Physiol. 1999;119:565–574. doi: 10.1104/pp.119.2.565. PubMed DOI PMC

Zhang D., Dong T., Ye J., Hou Z. Selenium accumulation in wheat (Triticum aestivum L) as affected by coapplication of either selenite or selenate with phosphorus. Soil Sci. Plant Nutr. 2017;63:37–44. doi: 10.1080/00380768.2017.1280377. DOI

Cabannes E., Buchner P., Broadley M.R., Hawkesford M.J. A comparison of sulfate and selenium accumulation in relation to the expression of sulfate transporter genes in Astragalus species. Plant Physiol. 2011;157:2227–2239. doi: 10.1104/pp.111.183897. PubMed DOI PMC

Lindblom S.D., Valdez-Barillas J.R., Fakra S.C., Marcus M.A., Wangeline A.L., Pilon-Smits E.A.H. Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ. Exp. Bot. 2013;88:33–42. doi: 10.1016/j.envexpbot.2011.12.011. DOI

Patharajan S., Raaman N. Influence of arbuscular mycorrhizal fungi on growth and selenium uptake by garlic plants. Arch. Phytopathol. Plant. Prot. 2012;45:138–151. doi: 10.1080/03235408.2010.501166. DOI

Larsen E.H., Lobinski R., Burger-Meÿer K., Hansen M., Ruzik R., Mazurowska L., Kik C. Uptake and speciation of selenium in garlic cultivated in soil amended with symbiotic fungi (mycorrhiza) and selenate. Anal. Bioanal. Chem. 2006;385:1098–1108. doi: 10.1007/s00216-006-0535-x. PubMed DOI

Yu Y., Zhang S., Wen B., Huang H., Luo L. Accumulation and Speciation of Selenium in Plants as Affected by Arbuscular Mycorrhizal Fungus Glomus mosseae. Biol. Trace Elem. Res. 2011;143:1789–1798. doi: 10.1007/s12011-011-8973-5. PubMed DOI

Luo W., Li J., Ma X., Niu H., Hou S., Wu F. Effect of arbuscular mycorrhizal fungi on uptake of selenate, selenite, and selenomethionine by roots of winter wheat. Plant Soil. 2019;438:71–83. doi: 10.1007/s11104-019-04001-4. DOI

Sanmartín P., DeAraujo A., Vasanthakumar A. Melding the old with the new: Trends in methods used to identify, monitor, and control microorganisms on cultural heritage materials. Microb. Ecol. 2018;76:64–80. doi: 10.1007/s00248-016-0770-4. PubMed DOI

Fordyce F., Masara D., Appleton J. Final Report on Stream Sediment, Soil and Forage Chemistry as Indicators of Cattle Mineral Status in North-East Zimbabwe. British Geological Survey; Nottingham, UK: 1994. [(accessed on 24 January 2021)]. 70p. (WC/94/003) Available online: http://nora.nerc.ac.uk/id/eprint/8350/1/WC94003.pdf.

Patel P.J., Trivedi G.R., Shah R.K., Saraf M. Selenorhizobacteria: As biofortification tool in sustainable agriculture. Biocatal. Agric. Biotechnol. 2018;14:198–203. doi: 10.1016/j.bcab.2018.03.013. DOI

Kloepper J.W. Effects of Rhizosphere Colonization by Plant Growth-Promoting Rhizobacteria on Potato Plant Development and Yield. Phytopathology. 1980;70:1078. doi: 10.1094/Phyto-70-1078. DOI

Kumar A., Maurya B.R., Raghuwanshi R., Meena V.S., Islam M.T. Co-inoculation with Enterobacter and Rhizobacteria on Yield and Nutrient Uptake by Wheat (Triticum aestivum L.) in the Alluvial Soil under Indo-Gangetic Plain of India. J. Plant Growth Regul. 2017;36:608–617. doi: 10.1007/s00344-016-9663-5. DOI

Raghavendra M.P., Nayaka S.C., Nuthan B.R. Role of Rhizosphere Microflora in Potassium Solubilization. Potassium Solubilizing Microorg. Sustain. Agric. 2016:43–59. doi: 10.1007/978-81-322-2776-2_4. DOI

Durán P., Acuña J.J., Jorquera M.A., Azcón R., Paredes C., Rengel Z., de la Luz Mora M. Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol. Fertil. Soils. 2014;50:983–990. doi: 10.1007/s00374-014-0920-0. DOI

Abera Tuffa Y. Ph.D. Thesis. Addis Ababa University; Addis Ababa, Ethiopia: 2019. Phenotypic, Symbiotic and Plant Growth Promoting Properties of Soybean Nodulating Rhizobia under Greenhouse and Field Conditions in Ethiopia.

Nakamaru Y.M., Altansuvd J. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: A review. Chemosphere. 2014;111:366–371. doi: 10.1016/j.chemosphere.2014.04.024. PubMed DOI

Abadin Z.U., Yasin M., Faisal M. Bacterial-Mediated Selenium Biofortification of Triticum aestivum: Strategy for Improvement in Selenium Phytoremediation and Biofortification. Agric. Important Microbes Sustain. Agric. 2017:299–315. doi: 10.1007/978-981-10-5589-8_14. DOI

Trivedi G., Patel P., Saraf M. Synergistic effect of endophytic selenobacteria on biofortification and growth of Glycine max under drought stress. South. Afr. J. Bot. 2019 doi: 10.1016/j.sajb.2019.10.001. DOI

Durán P., Acuña J., Jorquera M., Azcón R., Borie F., Cornejo P., Mora M. Enhanced selenium content in wheat grain by co-inoculation of selenobacteria and arbuscular mycorrhizal fungi: A preliminary study as a potential Se biofortification strategy. J. Cereal Sci. 2013;57:275–280. doi: 10.1016/j.jcs.2012.11.012. DOI

Wang P., Wang H., Liu Q., Tian X., Shi Y., Zhang X. QTL mapping of selenium content using a RIL population in wheat. PLoS ONE. 2017;12:e0184351. doi: 10.1371/journal.pone.0184351. PubMed DOI PMC

Bodnar M., Konieczka P., Namiesnik J. The properties, functions, and use of selenium compounds in living organisms. J. Environ. Sci. Health Part C. 2012;30:225–252. doi: 10.1080/10590501.2012.705164. PubMed DOI

Renkema H., Koopmans A., Kersbergen L., Kikkert J., Hale B., Berkelaar E. The effect of transpiration on selenium uptake and mobility in durum wheat and spring canola. Plant Soil. 2012;354:239–250. doi: 10.1007/s11104-011-1069-3. DOI

Missana T., Alonso U., García-Gutiérrez M. Experimental study and modeling of selenite sorption onto illite and smectite clays. J. Colloid Interface Sci. 2009;334:132–138. doi: 10.1016/j.jcis.2009.02.059. PubMed DOI

Li H.F., McGrath S.P., Zhao F.J. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol. 2008;178:92–102. doi: 10.1111/j.1469-8137.2007.02343.x. PubMed DOI

White P.J., Bowen H.C., Parmaguru P., Fritz M., Spracklen W.P., Spiby R.E., Meacham M.C., Mead A., Harriman M., Trueman L.J., et al. Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J. Exp. Bot. 2004;55:1927–1937. doi: 10.1093/jxb/erh192. PubMed DOI

El Kassis E., Cathala E., Rouached H., Fourcroy P., Berthomieu P., Terry N., Davidian J.C. Characterization of a selenate-resistant Arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiol. 2007;143:1231–1241. doi: 10.1104/pp.106.091462. PubMed DOI PMC

Takahashi H., Saito K. Sulfur Metabolism in Phototrophic Organisms. Springer; Berlin/Heidelberg, Germany: 2008. Molecular biology and functional genomics for identification of regulatory networks of plant sulfate uptake and assimilatory metabolism; pp. 149–159.

Shibagaki N., Rose A., McDermott J.P., Fujiwara T., Hayashi H., Yoneyama T., Davies J.P. Selenate-resistant mutants of Arabidopsis thaliana identify Sultr1;2, a sulfate transporter required for efficient transport of sulfate into roots. Plant J. 2002;29:475–486. doi: 10.1046/j.0960-7412.2001.01232.x. PubMed DOI

Ellis D.R., Salt D.E. Plants, selenium, and human health. Curr. Opin. Plant Biol. 2002;6:273–279. doi: 10.1016/S1369-5266(03)00030-X. PubMed DOI

Cappa J.J., Cappa P.J., El Mehdawi A.F., McAleer J.M., Simmons M.P., Pilon-Smits E.A. Characterization of selenium and sulfur accumulation across the genus Stanleya (Brassicaceae): A field survey and common-garden experiment. Am. J. Bot. 2014;101:830–839. doi: 10.3732/ajb.1400041. PubMed DOI

Ximénez-Embún P., Alonso I., Madrid-Albarrán Y., Cámara C. Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. J. Agric. Food Chem. 2004;52:832–838. doi: 10.1021/jf034835f. PubMed DOI

Mazej D., Osvald J., Stibilj V. Selenium species in leaves of chicory, dandelion, lamb’s lettuce and parsley. Food Chem. 2008;107:75–83. doi: 10.1016/j.foodchem.2007.07.036. DOI

Gigolashvili T., Kopriva S. Transporters in plant sulphur metabolism. Front. Plant Sci. 2014;5:422. doi: 10.3389/fpls.2014.00442. PubMed DOI PMC

Galeas M.L., Zhang L.H., Freeman J.L., Wegner M., Pilon-Smits E.A.H. Seasonal fluctuations of selenium and sulfur accumulation in selenium-hyperaccumulators and related non-accumulators. New Phytol. 2007;173:517–525. doi: 10.1111/j.1469-8137.2006.01943.x. PubMed DOI

Jarzyńska G., Falandysz J. Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus)—consequences to human health. Environ. Int. 2011;37:882–888. doi: 10.1016/j.envint.2011.02.017. PubMed DOI

D’Amato R., Regni L., Falcinelli B., Mattioli S., Benincasa P., Dal Bosco A., Pacheco P., Proietti P., Troni E., Santi C., et al. Current knowledge on selenium biofortification to improve the nutraceutical profile of food: A comprehensive review. J. Agric. Food Chem. 2020;68:4075–4097. doi: 10.1021/acs.jafc.0c00172. PubMed DOI PMC

Pezzarossa B., Rosellini I., Borghesi E., Tonutti P., Malorgio F. Effects of Se enrich- ment on yield, fruit composition and ripening of tomato (Solanum lycopersicum) plants grown in hydroponics. Sci. Hortic. 2014;165:106–110. doi: 10.1016/j.scienta.2013.10.029. DOI

Bachiega P., Salgado J.M., de Carvalho J.E., Ruiz A.L.T.G., Schwarz K., Tezotto T., Morzelle M.C. Antioxidant and antiproliferative activities in different maturation stages of broccoli (Brassica oleracea Italica) biofortified with selenium. Food Chem. 2016;190:771–776. doi: 10.1016/j.foodchem.2015.06.024. PubMed DOI

Businelli D., D’Amato R., Onofri A., Tedeschin E., Tei F. Se-enrichment of cucumber (Cucumis sativus L.), lettuce (Lactuca sativa L.) and tomato (Solanum lycopersicum L.) through fortification in pre-transplanting. Sci. Hortic. 2015;197:697–704. doi: 10.1016/j.scienta.2015.10.039. DOI

Smoleń S., Skoczylas L., Ledwozyw-Smolen I., Rakoczy R., Kopec A., Ewa Piatkowska E., Biezanowska-Kopec R., Koronowicz A., Kapusta-Duch J. Biofortification of carrot (Daucus carota L.) with iodine and selenium in a field experiment. Front. Plant. Sci. 2016;7:1–17. doi: 10.3389/fpls.2016.00730. PubMed DOI PMC

Joy E.J.M., Kalimbira A.A., Gashu D., Ferguson E.L., Sturgess J., Dangour A.D., Banda L., Chiutsi-Phiri G., Bailey E.H. Can selenium deficiency in Malawi be alleviated through consumption of agro-biofortified maize flour? Study protocol for a randomised, double-blind, controlled trial. Trials. 2019;20:795. doi: 10.1186/s13063-019-3894-2. PubMed DOI PMC

Davis C.D. Nutritional interactions: Credentialing of molecular targets for cancer prevention. Exp. Biol. Med. 2007;232:176–183. PubMed

Malagoli M., Schiavon M., Dall’acqua S., Pilon-Smits E.A.H. Effects of selenium biofortification on crop nutritional quality. Front. Plant. Sci. 2015;6:1–5. doi: 10.3389/fpls.2015.00280. PubMed DOI PMC

Chang J.C., Gutenmann W.H., Reid C.M., Lisk D.J. Selenium content of Brazil nuts from two geographic locations in Brazil. Chemosphere. 1995;30:801–802. doi: 10.1016/0045-6535(94)00409-N. PubMed DOI

Whelan R., Barrow N.J. Slow-release selenium fertilizers to correct selenium sheep in Western Australia. Fertil. Res. 1994;38:183–188. doi: 10.1007/BF00749690. DOI

Schiavon M., Pilon-Smits E.A. The fascinating facets of plant selenium accumulation—Biochemistry, physiology, evolution and ecology. New Phytol. 2017;213:1582–1596. doi: 10.1111/nph.14378. PubMed DOI

White P.J. Selenium metabolism in plants. Biochim. Biophys. Acta Gen. Subj. 2018 doi: 10.1016/j.bbagen.2018.05.006. PubMed DOI

Van Hoewyk D. A tale of two toxicities: Malformed selenoproteins and oxidative stress both contribute to seleni- um stress in plants. Ann. Bot. 2013;112:965–972. doi: 10.1093/aob/mct163. PubMed DOI PMC

Malik J.A., Goel S., Kaur N., Sharma S., Singh I., Nayyar H. Selenium antagonizes the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms. Environ. Exp. Bot. 2012;77:242–248. doi: 10.1016/j.envexpbot.2011.12.001. DOI

Habibi G. Physiological, photochemical and ionic responses of sunflower seedlings to exogenous selenium sup- ply under salt stress. Acta Physiol. Plant. 2017;39:213. doi: 10.1007/s11738-017-2517-3. DOI

Manojlović M.S., Lončarić Z., Cabilovski R.R., Popović B., Karalić K., Ivezić V., Ademi A., Singh B.R. Biofortification of wheat cultivars with selenium. Soil Plant Sci. 2019;69:715–724. doi: 10.1080/09064710.2019.1645204. DOI

Sarwar N., Akhtar M., Kamran M.A., Imran M., Riaz M.A., Kamran K., Hussain S. Selenium biofortification in food crops: Key mechanisms and future perspectives. J. Food Compos. Anal. 2020:103615. doi: 10.1016/j.jfca.2020.103615. DOI

Mechora Š. Selenium as a protective agent against pests: A review. Plants. 2019;8:262. doi: 10.3390/plants8080262. PubMed DOI PMC

Xu J., Jia W., Hu C., Nie M., Ming J., Cheng Q., Cai M., Sun X., Li X., Zheng X., et al. Selenium as a potential fungicide could protect oilseed rape leaves from Sclerotinia sclerotiorum infection. Environ. Pollut. 2020;257:113495. doi: 10.1016/j.envpol.2019.113495. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...