Mutations in the RAS/MAPK Pathway Drive Replication Repair-Deficient Hypermutated Tumors and Confer Sensitivity to MEK Inhibition

. 2021 Jun ; 11 (6) : 1454-1467. [epub] 20210209

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, multicentrická studie, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33563663

Grantová podpora
R35 CA220500 NCI NIH HHS - United States
Canadian Institutes for Health Research

Odkazy

PubMed 33563663
PubMed Central PMC8406556
DOI 10.1158/2159-8290.cd-20-1050
PII: 2159-8290.CD-20-1050
Knihovny.cz E-zdroje

The RAS/MAPK pathway is an emerging targeted pathway across a spectrum of both adult and pediatric cancers. Typically, this is associated with a single, well-characterized point mutation in an oncogene. Hypermutant tumors that harbor many somatic mutations may obscure the interpretation of such targetable genomic events. We find that replication repair-deficient (RRD) cancers, which are universally hypermutant and affect children born with RRD cancer predisposition, are enriched for RAS/MAPK mutations (P = 10-8). These mutations are not random, exist in subclones, and increase in allelic frequency over time. The RAS/MAPK pathway is activated both transcriptionally and at the protein level in patient-derived RRD tumors, and these tumors responded to MEK inhibition in vitro and in vivo. Treatment of patients with RAS/MAPK hypermutant gliomas reveals durable responses to MEK inhibition. Our observations suggest that hypermutant tumors may be addicted to oncogenic pathways, resulting in favorable response to targeted therapies. SIGNIFICANCE: Tumors harboring a single RAS/MAPK driver mutation are targeted individually for therapeutic purposes. We find that in RRD hypermutant cancers, mutations in the RAS/MAPK pathway are enriched, highly expressed, and result in sensitivity to MEK inhibitors. Targeting an oncogenic pathway may provide therapeutic options for these hypermutant polyclonal cancers.This article is highlighted in the In This Issue feature, p. 1307.

2nd Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic

Charbonneau Cancer Institute University of Calgary Calgary Alberta Canada

Department of Hematology Oncology Valley Children's Hospital Madera California

Department of Immunology University of Toronto Toronto Ontario Canada

Department of Laboratory Medicine and Pathobiology Faculty of Medicine University of Toronto Toronto Ontario Canada

Department of Medical Biophysics University of Toronto Toronto Ontario Canada

Department of Pathology Laboratory Medicine Program University Health Network and University of Toronto Toronto Ontario Canada

Department of Pediatric Hematology Oncology Children's Hospital of Pittsburgh of UPMC Pittsburgh Pennsylvania

Developmental and Stem Cell Biology Program The Hospital for Sick Children Toronto Ontario Canada

Division of Hematology Oncology The Hospital for Sick Children Department of Pediatrics University of Toronto Toronto Ontario Canada

Division of Neurosurgery The Hospital for Sick Children Toronto Ontario Canada

Division of Oncology and Center for Childhood Cancer Research Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania Philadelphia Pennsylvania

Ontario Institute for Cancer Research Toronto Ontario Canada

Princess Margaret Cancer Centre University Health Network Toronto Ontario Canada

Program in Cell Biology The Hospital for Sick Children Toronto Ontario Canada

Program in Genetics and Genome Biology The Hospital for Sick Children Toronto Ontario Canada

The Arthur and Sonia Labatt Brain Tumour Research Centre The Hospital for Sick Children Toronto Ontario Canada

Zane Cohen Centre for Digestive Diseases Mount Sinai Hospital Toronto Ontario Canada

Zobrazit více v PubMed

Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F, de Borja R, et al.Comprehensive analysis of hypermutation in human cancer. Cell 2017;171:1042–56. PubMed PMC

Gargiulo P, Della Pepa C, Berardi S, Califano D, Scala S, Buonaguro L, et al.Tumor genotype and immune microenvironment in POLE-ultramutated and MSI-hypermutated endometrial cancers: new candidates for checkpoint blockade immunotherapy? Cancer Treat Rev 2016;48:61–8. PubMed

Pritchard CC, Morrissey C, Kumar A, Zhang X, Smith C, Coleman I, et al.Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat Commun 2014;5:4988. PubMed PMC

Hunter C, Smith R, Cahill DP, Stephens P, Stevens C, Teague J, et al.A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 2006;66:3987–91. PubMed PMC

Touat M, Li YY, Boynton AN, Spurr LF, Iorgulescu JB, Bohrson CL, et al.Mechanisms and therapeutic implications of hypermutation in gliomas. Nature 2020;580:517–23. PubMed PMC

Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al.Signatures of mutational processes in human cancer. Nature 2013;500:415–21. PubMed PMC

Cancer Genome Atlas N. Genomic classification of cutaneous melanoma. Cell 2015;161:1681–96. PubMed PMC

Pfeifer GP, You YH, Besaratinia A. Mutations induced by ultraviolet light. Mutat Res 2005;571:19–31. PubMed

Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, et al.A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 2010;463:184–90. PubMed PMC

Poon SL, Pang ST, McPherson JR, Yu W, Huang KK, Guan P, et al.Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med 2013;5:197ra01. PubMed

van Thuijl HF, Mazor T, Johnson BE, Fouse SD, Aihara K, Hong C, et al.Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment. Acta Neuropathol 2015;129:597–607. PubMed PMC

Loeb LA, Springgate CF, Battula N. Errors in DNA replication as a basis of malignant changes. Cancer Res 1974;34:2311–21. PubMed

Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017;355:1330–4. PubMed PMC

Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM, Broderick P, et al.Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 2013;45:136–44. PubMed PMC

Bonadona V, Bonaiti B, Olschwang S, Grandjouan S, Huiart L, Longy M, et al.Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 2011;305:2304–10. PubMed

Shlien A, Campbell BB, de Borja R, Alexandrov LB, Merico D, Wedge D, et al.Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat Genet 2015;47:257–62. PubMed

Johanns TM, Miller CA, Dorward IG, Tsien C, Chang E, Perry A, et al.Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov 2016;6:1230–6. PubMed PMC

Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al.Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 2016;34:2206–11. PubMed

Errico A. Melanoma: CheckMate 067–frontline nivolumab improves PFS alone or in combination with ipilimumab. Nat Rev Clin Oncol 2015;12:435. PubMed

Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al.Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015;348:124–8. PubMed PMC

Santin AD, Bellone S, Buza N, Choi J, Schwartz PE, Schlessinger J, et al.Regression of chemotherapy-resistant polymerase epsilon (POLE) ultra-mutated and MSH6 hyper-mutated endometrial tumors with nivolumab. Clin Cancer Res 2016;22:5682–7. PubMed PMC

Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al.PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509–20. PubMed PMC

Vandeven N, Lewis CW, Makarov V, Riaz N, Paulson KG, Hippe D, et al.Merkel cell carcinoma patients presenting without a primary lesion have elevated markers of immunity, higher tumor mutation burden, and improved survival. Clin Cancer Res 2018;24:963–71. PubMed PMC

Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al.Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 2017;18:1182–91. PubMed PMC

Marabelle A, Le DT, Ascierto PA, Giacomo AMD, Jesus-Acosta AD, Delord J-P, et al.Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair–deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 2020;38:1–10. PubMed PMC

Le DT, Kim TW, Cutsem EV, Geva R, Jäger D, Hara H, et al.Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability–high/mismatch repair–deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol 2020;38:11–9. PubMed PMC

Overman MJ, Lonardi S, Wong KYM, Lenz H-J, Gelsomino F, Aglietta M, et al.Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair–deficient/microsatellite instability–high metastatic colorectal cancer. J Clin Oncol 2018;36:773–9. PubMed

Montagut C, Settleman J. Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 2009;283:125–34. PubMed

Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 2004;4:937–47. PubMed

Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, et al.Universal patterns of selection in cancer and somatic tissues. Cell 2017;171:1029–41. PubMed PMC

Chang MT, Bhattarai TS, Schram AM, Bielski CM, Donoghue MTA, Jonsson P, et al.Accelerating discovery of functional mutant alleles in cancer. Cancer Discov 2018;8:174–83. PubMed PMC

Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al.Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 2013;31:1023–31. PubMed PMC

Durno CA, Sherman PM, Aronson M, Malkin D, Hawkins C, Bakry D, et al.Phenotypic and genotypic characterisation of biallelic mismatch repair deficiency (BMMR-D) syndrome. Eur J Cancer 2015;51:977–83. PubMed

Eleveld TF, Oldridge DA, Bernard V, Koster J, Daage LC, Diskin SJ, et al.Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat Genet 2015;47:864–71. PubMed PMC

Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S, et al.Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat Commun 2018;9:20. PubMed PMC

Dry JR, Pavey S, Pratilas CA, Harbron C, Runswick S, Hodgson D, et al.Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244). Cancer Res 2010;70:2264–73. PubMed PMC

Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov Jill P, Tamayo P. The molecular signatures database hallmark gene set collection. Cell Syst 2015;1:417–25. PubMed PMC

Yaeger R, Yao Z, Hyman DM, Hechtman JF, Vakiani E, Zhao H, et al.Mechanisms of acquired resistance to BRAF V600E inhibition in colon cancers converge on RAF dimerization and are sensitive to its inhibition. Cancer Res 2017;77:6513–23. PubMed PMC

Shannon S, Jia D, Entersz I, Beelen P, Yu M, Carcione C, et al.Inhibition of glioblastoma dispersal by the MEK inhibitor PD0325901. BMC Cancer 2017;17:121. PubMed PMC

Canale FP, Ramello MC, Núñez N, Araujo Furlan CL, Bossio SN, Gorosito Serrán M, et al.CD39 expression defines cell exhaustion in tumor-infiltrating CD8(+) T cells. Cancer Res 2018;78:115–28. PubMed

Duhen T, Duhen R, Montler R, Moses J, Moudgil T, de Miranda NF, et al.Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun 2018;9:2724. PubMed PMC

D’Angelo F, Ceccarelli M, Tala Garofano L, Zhang J, Frattini V, et al.The molecular landscape of glioma in patients with neurofibromatosis 1. Nat Med 2019;25:176–87. PubMed PMC

Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al.Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017;23:703–13. PubMed PMC

Oshrine B, Grana N, Moore C, Nguyen J, Crenshaw M, Edwards M, et al.B-cell acute lymphoblastic leukemia with high mutation burden presenting in a child with constitutional mismatch repair deficiency. Blood Adv 2019;3:1795–8. PubMed PMC

Sun C, Fang Y, Yin J, Chen J, Ju Z, Zhang D, et al.Rational combination therapy with PARP and MEK inhibitors capitalizes on therapeutic liabilities in RAS mutant cancers. Sci Transl Med 2017;9:eaal5148. PubMed PMC

Maertens O, Kuzmickas R, Manchester HE, Emerson CE, Gavin AG, Guild CJ, et al.MAPK pathway suppression unmasks latent DNA repair defects and confers a chemical synthetic vulnerability in BRAF-, NRAS-, and NF1-mutant melanomas. Cancer Discov 2019;9: 526–45. PubMed PMC

Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al.Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 2018;378:2093–104. PubMed PMC

Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015; 161:205–14. PubMed PMC

Mahoney KM, Freeman GJ, McDermott DF. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther 2015;37:764–82. PubMed PMC

Kyi C, Postow MA. Immune checkpoint inhibitor combinations in solid tumors: opportunities and challenges. Immunotherapy 2016; 8:821–37. PubMed PMC

Hellmann MD, Kim TW, Lee CB, Goh BC, Miller WH Jr, Oh DY, et al.Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors. Ann Oncol 2019;30:1134–42. PubMed PMC

Eng C, Kim TW, Bendell J, Argilés G, Tebbutt NC, Di Bartolomeo M, et al.Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 2019;20:849–61. PubMed

Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et al.SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol 2014;10:e1003665. PubMed PMC

Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013;76:7.20.1–7.41. PubMed PMC

Fedele C, Ran H, Diskin B, Wei W, Jen J, Geer MJ, et al.SHP2 inhibition prevents adaptive resistance to MEK inhibitors in multiple cancer models. Cancer Discov 2018;8:1237–49. PubMed PMC

Lin L, Sabnis AJ, Chan E, Olivas V, Cade L, Pazarentzos E, et al.The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat Genet 2015;47:250–6. PubMed PMC

Yao Z, Yaeger R, Rodrik-Outmezguine VS, Tao A, Torres NM, Chang MT, et al.Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature 2017;548:234–8. PubMed PMC

Lin GL, Wilson KM, Ceribelli M, Stanton BZ, Woo PJ, Kreimer S, et al.Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Sci Transl Med 2019;11:eaaw0064. PubMed PMC

Bartholomeusz C, Oishi T, Saso H, Akar U, Liu P, Kondo K, et al.MEK1/2 inhibitor selumetinib (AZD6244) inhibits growth of ovarian clear cell carcinoma in a PEA-15-dependent manner in a mouse xenograft model. Mol Cancer Ther 2012;11:360–9. PubMed PMC

Troiani T, Vecchione L, Martinelli E, Capasso A, Costantino S, Ciuffreda LP, et al.Intrinsic resistance to selumetinib, a selective inhibitor of MEK1/2, by cAMP-dependent protein kinase A activation in human lung and colorectal cancer cells. Br J Cancer 2012;106: 1648–59. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...