Mutations in the RAS/MAPK Pathway Drive Replication Repair-Deficient Hypermutated Tumors and Confer Sensitivity to MEK Inhibition
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R35 CA220500
NCI NIH HHS - United States
Canadian Institutes for Health Research
PubMed
33563663
PubMed Central
PMC8406556
DOI
10.1158/2159-8290.cd-20-1050
PII: 2159-8290.CD-20-1050
Knihovny.cz E-zdroje
- MeSH
- celosvětové zdraví MeSH
- dítě MeSH
- dospělí MeSH
- genetická predispozice k nemoci * MeSH
- gliom farmakoterapie genetika MeSH
- inhibitory proteinkinas terapeutické užití MeSH
- kolorektální nádory farmakoterapie genetika MeSH
- lidé MeSH
- mitogenem aktivované proteinkinasy kinas genetika MeSH
- mutace MeSH
- myši inbrední NOD MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory mozku farmakoterapie genetika MeSH
- protinádorové látky terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- inhibitory proteinkinas MeSH
- mitogenem aktivované proteinkinasy kinas MeSH
- protinádorové látky MeSH
The RAS/MAPK pathway is an emerging targeted pathway across a spectrum of both adult and pediatric cancers. Typically, this is associated with a single, well-characterized point mutation in an oncogene. Hypermutant tumors that harbor many somatic mutations may obscure the interpretation of such targetable genomic events. We find that replication repair-deficient (RRD) cancers, which are universally hypermutant and affect children born with RRD cancer predisposition, are enriched for RAS/MAPK mutations (P = 10-8). These mutations are not random, exist in subclones, and increase in allelic frequency over time. The RAS/MAPK pathway is activated both transcriptionally and at the protein level in patient-derived RRD tumors, and these tumors responded to MEK inhibition in vitro and in vivo. Treatment of patients with RAS/MAPK hypermutant gliomas reveals durable responses to MEK inhibition. Our observations suggest that hypermutant tumors may be addicted to oncogenic pathways, resulting in favorable response to targeted therapies. SIGNIFICANCE: Tumors harboring a single RAS/MAPK driver mutation are targeted individually for therapeutic purposes. We find that in RRD hypermutant cancers, mutations in the RAS/MAPK pathway are enriched, highly expressed, and result in sensitivity to MEK inhibitors. Targeting an oncogenic pathway may provide therapeutic options for these hypermutant polyclonal cancers.This article is highlighted in the In This Issue feature, p. 1307.
2nd Faculty of Medicine Charles University and University Hospital Motol Prague Czech Republic
Charbonneau Cancer Institute University of Calgary Calgary Alberta Canada
Department of Hematology Oncology Valley Children's Hospital Madera California
Department of Immunology University of Toronto Toronto Ontario Canada
Department of Medical Biophysics University of Toronto Toronto Ontario Canada
Developmental and Stem Cell Biology Program The Hospital for Sick Children Toronto Ontario Canada
Division of Neurosurgery The Hospital for Sick Children Toronto Ontario Canada
Ontario Institute for Cancer Research Toronto Ontario Canada
Princess Margaret Cancer Centre University Health Network Toronto Ontario Canada
Program in Cell Biology The Hospital for Sick Children Toronto Ontario Canada
Program in Genetics and Genome Biology The Hospital for Sick Children Toronto Ontario Canada
Zane Cohen Centre for Digestive Diseases Mount Sinai Hospital Toronto Ontario Canada
Zobrazit více v PubMed
Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F, de Borja R, et al.Comprehensive analysis of hypermutation in human cancer. Cell 2017;171:1042–56. PubMed PMC
Gargiulo P, Della Pepa C, Berardi S, Califano D, Scala S, Buonaguro L, et al.Tumor genotype and immune microenvironment in POLE-ultramutated and MSI-hypermutated endometrial cancers: new candidates for checkpoint blockade immunotherapy? Cancer Treat Rev 2016;48:61–8. PubMed
Pritchard CC, Morrissey C, Kumar A, Zhang X, Smith C, Coleman I, et al.Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat Commun 2014;5:4988. PubMed PMC
Hunter C, Smith R, Cahill DP, Stephens P, Stevens C, Teague J, et al.A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 2006;66:3987–91. PubMed PMC
Touat M, Li YY, Boynton AN, Spurr LF, Iorgulescu JB, Bohrson CL, et al.Mechanisms and therapeutic implications of hypermutation in gliomas. Nature 2020;580:517–23. PubMed PMC
Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al.Signatures of mutational processes in human cancer. Nature 2013;500:415–21. PubMed PMC
Cancer Genome Atlas N. Genomic classification of cutaneous melanoma. Cell 2015;161:1681–96. PubMed PMC
Pfeifer GP, You YH, Besaratinia A. Mutations induced by ultraviolet light. Mutat Res 2005;571:19–31. PubMed
Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A, Jones D, et al.A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 2010;463:184–90. PubMed PMC
Poon SL, Pang ST, McPherson JR, Yu W, Huang KK, Guan P, et al.Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med 2013;5:197ra01. PubMed
van Thuijl HF, Mazor T, Johnson BE, Fouse SD, Aihara K, Hong C, et al.Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment. Acta Neuropathol 2015;129:597–607. PubMed PMC
Loeb LA, Springgate CF, Battula N. Errors in DNA replication as a basis of malignant changes. Cancer Res 1974;34:2311–21. PubMed
Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 2017;355:1330–4. PubMed PMC
Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM, Broderick P, et al.Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet 2013;45:136–44. PubMed PMC
Bonadona V, Bonaiti B, Olschwang S, Grandjouan S, Huiart L, Longy M, et al.Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA 2011;305:2304–10. PubMed
Shlien A, Campbell BB, de Borja R, Alexandrov LB, Merico D, Wedge D, et al.Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat Genet 2015;47:257–62. PubMed
Johanns TM, Miller CA, Dorward IG, Tsien C, Chang E, Perry A, et al.Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov 2016;6:1230–6. PubMed PMC
Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al.Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 2016;34:2206–11. PubMed
Errico A. Melanoma: CheckMate 067–frontline nivolumab improves PFS alone or in combination with ipilimumab. Nat Rev Clin Oncol 2015;12:435. PubMed
Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al.Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015;348:124–8. PubMed PMC
Santin AD, Bellone S, Buza N, Choi J, Schwartz PE, Schlessinger J, et al.Regression of chemotherapy-resistant polymerase epsilon (POLE) ultra-mutated and MSH6 hyper-mutated endometrial tumors with nivolumab. Clin Cancer Res 2016;22:5682–7. PubMed PMC
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al.PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509–20. PubMed PMC
Vandeven N, Lewis CW, Makarov V, Riaz N, Paulson KG, Hippe D, et al.Merkel cell carcinoma patients presenting without a primary lesion have elevated markers of immunity, higher tumor mutation burden, and improved survival. Clin Cancer Res 2018;24:963–71. PubMed PMC
Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al.Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 2017;18:1182–91. PubMed PMC
Marabelle A, Le DT, Ascierto PA, Giacomo AMD, Jesus-Acosta AD, Delord J-P, et al.Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair–deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 2020;38:1–10. PubMed PMC
Le DT, Kim TW, Cutsem EV, Geva R, Jäger D, Hara H, et al.Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability–high/mismatch repair–deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol 2020;38:11–9. PubMed PMC
Overman MJ, Lonardi S, Wong KYM, Lenz H-J, Gelsomino F, Aglietta M, et al.Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair–deficient/microsatellite instability–high metastatic colorectal cancer. J Clin Oncol 2018;36:773–9. PubMed
Montagut C, Settleman J. Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 2009;283:125–34. PubMed
Sebolt-Leopold JS, Herrera R. Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 2004;4:937–47. PubMed
Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K, Van Loo P, et al.Universal patterns of selection in cancer and somatic tissues. Cell 2017;171:1029–41. PubMed PMC
Chang MT, Bhattarai TS, Schram AM, Bielski CM, Donoghue MTA, Jonsson P, et al.Accelerating discovery of functional mutant alleles in cancer. Cancer Discov 2018;8:174–83. PubMed PMC
Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, et al.Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 2013;31:1023–31. PubMed PMC
Durno CA, Sherman PM, Aronson M, Malkin D, Hawkins C, Bakry D, et al.Phenotypic and genotypic characterisation of biallelic mismatch repair deficiency (BMMR-D) syndrome. Eur J Cancer 2015;51:977–83. PubMed
Eleveld TF, Oldridge DA, Bernard V, Koster J, Daage LC, Diskin SJ, et al.Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat Genet 2015;47:864–71. PubMed PMC
Schubert M, Klinger B, Klünemann M, Sieber A, Uhlitz F, Sauer S, et al.Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat Commun 2018;9:20. PubMed PMC
Dry JR, Pavey S, Pratilas CA, Harbron C, Runswick S, Hodgson D, et al.Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244). Cancer Res 2010;70:2264–73. PubMed PMC
Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov Jill P, Tamayo P. The molecular signatures database hallmark gene set collection. Cell Syst 2015;1:417–25. PubMed PMC
Yaeger R, Yao Z, Hyman DM, Hechtman JF, Vakiani E, Zhao H, et al.Mechanisms of acquired resistance to BRAF V600E inhibition in colon cancers converge on RAF dimerization and are sensitive to its inhibition. Cancer Res 2017;77:6513–23. PubMed PMC
Shannon S, Jia D, Entersz I, Beelen P, Yu M, Carcione C, et al.Inhibition of glioblastoma dispersal by the MEK inhibitor PD0325901. BMC Cancer 2017;17:121. PubMed PMC
Canale FP, Ramello MC, Núñez N, Araujo Furlan CL, Bossio SN, Gorosito Serrán M, et al.CD39 expression defines cell exhaustion in tumor-infiltrating CD8(+) T cells. Cancer Res 2018;78:115–28. PubMed
Duhen T, Duhen R, Montler R, Moses J, Moudgil T, de Miranda NF, et al.Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat Commun 2018;9:2724. PubMed PMC
D’Angelo F, Ceccarelli M, Tala Garofano L, Zhang J, Frattini V, et al.The molecular landscape of glioma in patients with neurofibromatosis 1. Nat Med 2019;25:176–87. PubMed PMC
Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al.Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med 2017;23:703–13. PubMed PMC
Oshrine B, Grana N, Moore C, Nguyen J, Crenshaw M, Edwards M, et al.B-cell acute lymphoblastic leukemia with high mutation burden presenting in a child with constitutional mismatch repair deficiency. Blood Adv 2019;3:1795–8. PubMed PMC
Sun C, Fang Y, Yin J, Chen J, Ju Z, Zhang D, et al.Rational combination therapy with PARP and MEK inhibitors capitalizes on therapeutic liabilities in RAS mutant cancers. Sci Transl Med 2017;9:eaal5148. PubMed PMC
Maertens O, Kuzmickas R, Manchester HE, Emerson CE, Gavin AG, Guild CJ, et al.MAPK pathway suppression unmasks latent DNA repair defects and confers a chemical synthetic vulnerability in BRAF-, NRAS-, and NF1-mutant melanomas. Cancer Discov 2019;9: 526–45. PubMed PMC
Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, et al.Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med 2018;378:2093–104. PubMed PMC
Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015; 161:205–14. PubMed PMC
Mahoney KM, Freeman GJ, McDermott DF. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin Ther 2015;37:764–82. PubMed PMC
Kyi C, Postow MA. Immune checkpoint inhibitor combinations in solid tumors: opportunities and challenges. Immunotherapy 2016; 8:821–37. PubMed PMC
Hellmann MD, Kim TW, Lee CB, Goh BC, Miller WH Jr, Oh DY, et al.Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors. Ann Oncol 2019;30:1134–42. PubMed PMC
Eng C, Kim TW, Bendell J, Argilés G, Tebbutt NC, Di Bartolomeo M, et al.Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 2019;20:849–61. PubMed
Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et al.SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol 2014;10:e1003665. PubMed PMC
Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet 2013;76:7.20.1–7.41. PubMed PMC
Fedele C, Ran H, Diskin B, Wei W, Jen J, Geer MJ, et al.SHP2 inhibition prevents adaptive resistance to MEK inhibitors in multiple cancer models. Cancer Discov 2018;8:1237–49. PubMed PMC
Lin L, Sabnis AJ, Chan E, Olivas V, Cade L, Pazarentzos E, et al.The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat Genet 2015;47:250–6. PubMed PMC
Yao Z, Yaeger R, Rodrik-Outmezguine VS, Tao A, Torres NM, Chang MT, et al.Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature 2017;548:234–8. PubMed PMC
Lin GL, Wilson KM, Ceribelli M, Stanton BZ, Woo PJ, Kreimer S, et al.Therapeutic strategies for diffuse midline glioma from high-throughput combination drug screening. Sci Transl Med 2019;11:eaaw0064. PubMed PMC
Bartholomeusz C, Oishi T, Saso H, Akar U, Liu P, Kondo K, et al.MEK1/2 inhibitor selumetinib (AZD6244) inhibits growth of ovarian clear cell carcinoma in a PEA-15-dependent manner in a mouse xenograft model. Mol Cancer Ther 2012;11:360–9. PubMed PMC
Troiani T, Vecchione L, Martinelli E, Capasso A, Costantino S, Ciuffreda LP, et al.Intrinsic resistance to selumetinib, a selective inhibitor of MEK1/2, by cAMP-dependent protein kinase A activation in human lung and colorectal cancer cells. Br J Cancer 2012;106: 1648–59. PubMed PMC