• This record comes from PubMed

Experimental warming influences species abundances in a Drosophila host community through direct effects on species performance rather than altered competition and parasitism

. 2021 ; 16 (2) : e0245029. [epub] 20210211

Language English Country United States Media electronic-ecollection

Document type Journal Article, Research Support, Non-U.S. Gov't

Global warming is expected to have direct effects on species through their sensitivity to temperature, and also via their biotic interactions, with cascading indirect effects on species, communities, and entire ecosystems. To predict the community-level consequences of global climate change we need to understand the relative roles of both the direct and indirect effects of warming. We used a laboratory experiment to investigate how warming affects a tropical community of three species of Drosophila hosts interacting with two species of parasitoids over a single generation. Our experimental design allowed us to distinguish between the direct effects of temperature on host species performance, and indirect effects through altered biotic interactions (competition among hosts and parasitism by parasitoid wasps). Although experimental warming significantly decreased parasitism for all host-parasitoid pairs, the effects of parasitism and competition on host abundances and host frequencies did not vary across temperatures. Instead, effects on host relative abundances were species-specific, with one host species dominating the community at warmer temperatures, irrespective of parasitism and competition treatments. Our results show that temperature shaped a Drosophila host community directly through differences in species' thermal performance, and not via its influences on biotic interactions.

See more in PubMed

Sage RF. Global change biology: A primer. Glob Chang Biol. 2020;26: 3–30. 10.1111/gcb.14893 PubMed DOI

Wagner DL, Grames EM, Forister ML, Berenbaum C MR, Stopak D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc Natl Acad Sci. 2021;118 10.1073/pnas.2023989118 PubMed DOI PMC

Román-Palacios C, Wiens JJ. Recent responses to climate change reveal the drivers of species extinction and survival. Proc Natl Acad Sci U S A. 2020;117: 4211–4217. 10.1073/pnas.1913007117 PubMed DOI PMC

Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, et al. Ecological responses to recent climate change. Nature. 2002;416: 389–395. 10.1038/416389a PubMed DOI

Ohlberger J. Climate warming and ectotherm body size—from individual physiology to community ecology. Funct Ecol. 2013;27: 991–1001. 10.1111/1365-2435.12098 DOI

Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. Effects of size and temperature on metabolic rate. Science (80-). 2001;293: 2248–2251. 10.1126/science.1061967 PubMed DOI

Benard MF. Warmer winters reduce frog fecundity and shift breeding phenology, which consequently alters larval development and metamorphic timing. Glob Chang Biol. 2015;21: 1058–1065. 10.1111/gcb.12720 PubMed DOI

Tewksbury JJ, Huey RB, Deutsch CA. Ecology: Putting the heat on tropical animals. Science (80-). 2008;320: 1296–1297. 10.1126/science.1159328 PubMed DOI

García-Robledo C, Kuprewicz EK, Staines CL, Erwin TL, Kress WJ. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc Natl Acad Sci U S A. 2016;113: 680–685. 10.1073/pnas.1507681113 PubMed DOI PMC

Kéfi S, Berlow EL, Wieters EA, Joppa LN, Wood SA, Brose U, et al. Network structure beyond food webs: Mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology. 2015;96: 291–303. 10.1890/13-1424.1 PubMed DOI

Godoy O, Bartomeus I, Rohr RP, Saavedra S. Towards the integration of niche and network theories. Trends Ecol Evol. 2018;33: 287–300. 10.1016/j.tree.2018.01.007 PubMed DOI

Woodman RL, Price PW. Differential larval predation by ants can influence willow sawfly community structure. Ecology. 1992;73: 1028–1037. 10.2307/1940177 DOI

Palkovacs EP, Post DM. Experimental evidence that phenotypic divergence in predators drives community divergence in prey. Ecology. 2009;90: 300–305. 10.1890/08-1673.1 PubMed DOI

Thierry M, Hrček J, Lewis OT. Mechanisms structuring host–parasitoid networks in a global warming context: a review. Ecol Entomol. 2019; een.12750. 10.1111/een.12750 DOI

Kéfi S, Berlow EL, Wieters EA, Navarrete SA, Petchey OL, Wood SA, et al. More than a meal… integrating non-feeding interactions into food webs. Ecol Lett. 2012;15: 291–300. 10.1111/j.1461-0248.2011.01732.x PubMed DOI

Melián CJ, Bascompte J, Jordano P, Krivan V. Diversity in a complex ecological network with two interaction types. Oikos. 2009;118: 122–130. 10.1111/j.1600-0706.2008.16751.x DOI

Paine RT. Food web complexity and species diversity. Am Nat. 1966;100: 65–75. 10.1086/282400 DOI

Gurevitch J, Morrison JA, Hedges L V. The interaction between competition and predation: a meta‐analysis of field experiments. Am Nat. 2000;155: 435–453. 10.1086/303337 PubMed DOI

Chase JM, Abrams PA, P. GJ, Sebastian D, Peter C, D. HR, et al. The interaction between predation and competition: a review and synthesis. Ecol Lett. 2002;5: 302–315. 10.1046/j.1461-0248.2002.00315.x DOI

Pilosof S, Porter MA, Pascual M, Kéfi S. The multilayer nature of ecological networks. Nat Ecol Evol. 2017;1: 101 10.1038/s41559-017-0101 PubMed DOI

Veselý L, Boukal DS, Buřič M, Kuklina I, Fořt M, Yazicioglu B, et al. Temperature and prey density jointly influence trophic and non‐trophic interactions in multiple predator communities. Freshw Biol. 2019; fwb.13387. 10.1111/fwb.13387 DOI

Sentis A, Hemptinne JL, Brodeur J. Effects of simulated heat waves on an experimental plant-herbivore-predator food chain. Glob Chang Biol. 2013;19: 833–842. 10.1111/gcb.12094 PubMed DOI

O’Connor MI, Gilbert B, Brown CJ. Theoretical predictions for how temperature affects the dynamics of interacting herbivores and plants. Am Nat. 2011;178: 626–638. 10.1086/662171 PubMed DOI

Gilbert B, Tunney TD, Mccann KS, Delong JP, Vasseur DA, Savage V, et al. A bioenergetic framework for the temperature dependence of trophic interactions. Wootton T, editor. Ecol Lett. 2014;17: 902–914. 10.1111/ele.12307 PubMed DOI

Gårdmark A, Huss M. Individual variation and interactions explain food web responses to global warming. Philos Trans R Soc B Biol Sci. 2020;375: 20190449 10.1098/rstb.2019.0449 PubMed DOI PMC

Tougeron K, Brodeur J, Le Lann C, Baaren J. How climate change affects the seasonal ecology of insect parasitoids. Ecol Entomol. 2019; een.12792. 10.1111/een.12792 DOI

Buse A, Dury SJ, Woodburn RJW, Perrins CM, Good JEG. Effects of elevated temperature on multi-species interactions: The case of Pedunculate Oak, Winter Moth and Tits. Funct Ecol. 1999;13: 74–82. 10.1046/j.1365-2435.1999.00010.x DOI

Bideault A, Loreau M, Gravel D. Temperature modifies consumer-resource interaction strength through its effects on biological rates and body mass. Front Ecol Evol. 2019;7: 45 10.3389/fevo.2019.00045 DOI

Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD. A framework for community interactions under climate change. Trends Ecol Evol. 2010;25: 325–331. 10.1016/j.tree.2010.03.002 PubMed DOI

Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S. Making mistakes when predicting shifts in species range in response to global warming. Nature. 1998;391: 783–786. 10.1038/35842 PubMed DOI

Tylianakis JM, Didham RK, Bascompte J, Wardle DA. Global change and species interactions in terrestrial ecosystems. Ecol Lett. 2008;11: 1351–1363. 10.1111/j.1461-0248.2008.01250.x PubMed DOI

Berg MP, Toby Kiers E, Driessen G, van der Heijden M, Kooi BW, Kuenen F, et al. Adapt or disperse: Understanding species persistence in a changing world. Glob Chang Biol. 2010;16: 587–598. 10.1111/j.1365-2486.2009.02014.x DOI

Sentis A, Gémard C, Jaugeon B, Boukal DS. Predator diversity and environmental change modify the strengths of trophic and nontrophic interactions. Glob Chang Biol. 2017;23: 2629–2640. 10.1111/gcb.13560 PubMed DOI

Dyer LA, Richards LA, Short SA, Dodson CD. Effects of CO2 and temperature on tritrophic interactions. PLoS One. 2013;8: e62528 10.1371/journal.pone.0062528 PubMed DOI PMC

Dancau T, Stemberger TLM, Clarke P, Gillespie DR. Can competition be superior to parasitism for biological control? The case of spotted wing Drosophila (Drosophila suzukii), Drosophila melanogaster and Pachycrepoideus vindemmiae. Biocontrol Sci Technol. 2017;27: 3–16. 10.1080/09583157.2016.1241982 DOI

Bartley TJ, McCann KS, Bieg C, Cazelles K, Granados M, Guzzo MM, et al. Food web rewiring in a changing world. Nat Ecol Evol. 2019; 1 10.1038/s41559-018-0772-3 PubMed DOI

Seibold S, Cadotte MW, MacIvor JS, Thorn S, Müller J. The necessity of multitrophic approaches in community ecology. Trends Ecol Evol. 2018;33: 754–764. 10.1016/j.tree.2018.07.001 PubMed DOI

Godfray HCJ. Parasitoids: Behavioral and Evolutionary Ecology. Princeton University Press; 1994.

Hance T, Baaren J van, Vernon P, Boivin G. Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol. 2007;52: 107–126. 10.1146/annurev.ento.52.110405.091333 PubMed DOI

Le Lann C, Visser B, Mériaux M, Moiroux J, Baaren J van, Alphen JJM van, et al. Rising temperature reduces divergence in resource use strategies in coexisting parasitoid species. Oecologia. 2014;174: 967–977. 10.1007/s00442-013-2810-9 PubMed DOI

Fand BB, Tonnang HEZ, Bal SK, Dhawan AK. Shift in the manifestations of insect pests under predicted climatic change scenarios: key challenges and adaptation strategies Advances in Crop Environment Interaction. Springer Singapore; 2018. pp. 389–404. 10.1007/978-981-13-1861-0_15 DOI

Thomson LJ, Macfadyen S, Hoffmann AA. Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control. 2010;52: 296–306. 10.1016/j.biocontrol.2009.01.022 DOI

Stireman JO, Dyer LA, Janzen DH, Singer MS, Lill JT, Marquis RJ, et al. Climatic unpredictability and parasitism of caterpillars: implications of global warming. Proc Natl Acad Sci U S A. 2005;102: 17384–17387. 10.1073/pnas.0508839102 PubMed DOI PMC

Jeffs CT, Lewis OT. Effects of climate warming on host–parasitoid interactions. Ecol Entomol. 2013;38: 209–218. 10.1111/een.12026 DOI

Fleury F, Ris N, Allemand R, Fouillet P, Carton Y, Boulétreau M. Ecological and genetic interactions in Drosophila-parasitoids communities: a case study with D. melanogaster, D. simulans and their common Leptopilina parasitoids in south-eastern France In: Capy P, Gibert P, Boussy I, editors. Drosophila melanogaster, Drosophila simulans: So Similar, So Different. Springer Netherlands; 2004. pp. 181–194. Available: http://link.springer.com/chapter/10.1007/978-94-007-0965-2_15 PubMed DOI

Fox JW, Morin PJ. Effects of intra‐ and interspecific interactions on species responses to environmental change. J Anim Ecol. 2008;70: 80–90. 10.1111/j.1365-2656.2001.00478.x DOI

Ockendon N, Baker DJ, Carr JA, White EC, Almond REA, Amano T, et al. Mechanisms underpinning climatic impacts on natural populations: Altered species interactions are more important than direct effects. Glob Chang Biol. 2014;20: 2221–2229. 10.1111/gcb.12559 PubMed DOI

Jeffs CT, Terry JCD, Higgie M, Jandová A, Konvičková H, Brown JJ, et al. Molecular analyses reveal consistent food web structure with elevation in rainforest Drosophila—parasitoid communities. Ecography (Cop). 2020; ecog.05390. 10.1111/ecog.05390 DOI

Kraaijeveld AR, Godfray HCJ. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature. 1997;389: 278–280. 10.1038/38483 PubMed DOI

Overgaard J, Kearney MR, Hoffmann AA. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species. Glob Chang Biol. 2014;20: 1738–1750. 10.1111/gcb.12521 PubMed DOI

MacLean HJ, Sørensen JG, Kristensen TN, Loeschcke V, Beedholm K, Kellermann V, et al. Evolution and plasticity of thermal performance: An analysis of variation in thermal tolerance and fitness in 22 Drosophila species. Philos Trans R Soc B Biol Sci. 2019;374: 20180548 10.1098/rstb.2018.0548 PubMed DOI PMC

Grimaldi D, Jaenike J. Competition in natural populations of mycophagous Drosophila. Ecology. 1984;65: 1113–1120. 10.2307/1938319 DOI

Forbes RW, Sang JH. The ecological determinants of population growth in a Drosophila culture. I. Fecundity of adult flies. Proc R Soc London Ser B—Biol Sci. 1944;132: 258–277. 10.1098/rspb.1944.0017 DOI

Pachauri RK, Meyer L, Hallegatte France S, Bank W, Hegerl G, Brinkman S, et al. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change e [Core Writing Team, Pachauri R.K. and Meyer L.A. (eds.)]. IPCC, Geneva, Switzerland; 2014. Available: http://www.ipcc.ch.

Team RC. R: The R Project for statistical computing. 2017. Available: https://www.r-project.org/

Venables WN, Riplley BD. Modern Applied Statistics with S. Fourth Edi Springer; 2002. doi:ISBN 0-387-95457-0

Fox J, Weisberg S. An {R} companion to applied regression. Third Edit Sage; 2019. Available: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

Lüdecke D, Makowski D, Waggoner P. Performance: Assessment of regression models performance. 2019. Available: https://cran.r-project.org/package=performance

Hartig F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. 2019. Available: http://florianhartig.github.io/DHARMa/

Lenth R V. Emmeans: Estimated marginal means, aka least-squares means. R Packag version. 2018.

Daufresne M, Boët P. Climate change impacts on structure and diversity of fish communities in rivers. Glob Chang Biol. 2007;13: 2467–2478. 10.1111/j.1365-2486.2007.01449.x DOI

Kardol P, Campany CE, Souza L, Norby RJ, Weltzin JF, Classen AT. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Glob Chang Biol. 2010;16: 2676–2687. 10.1111/j.1365-2486.2010.02162.x DOI

Villalpando SN, Williams RS, Norby RJ. Elevated air temperature alters an old-field insect community in a multifactor climate change experiment. Glob Chang Biol. 2009;15: 930–942. 10.1111/j.1365-2486.2008.01721.x DOI

MacLean HJ, Overgaard J, Kristensen TN, Lyster C, Hessner L, Olsvig E, et al. Temperature preference across life stages and acclimation temperatures investigated in four species of Drosophila. J Therm Biol. 2019;86: 102428 10.1016/j.jtherbio.2019.102428 PubMed DOI

Overgaard J, Kristensen TN, Mitchell KA, Hoffmann AA. Thermal tolerance in widespread and tropical Drosophila species: Does phenotypic plasticity increase with latitude? Am Nat. 2011;178 10.1086/663677 PubMed DOI

Boulétreau M, Wajnberg E. Comparative responses of two sympatric parasitoid cynipids to the genetic and epigenetic variations of the larvae of their host, Drosophila melanogaster. Entomol Exp Appl. 1986;41: 107–114. 10.1111/j.1570-7458.1986.tb00516.x DOI

Carton Y, Kitano H. Evolutionary relationships to parasitism by seven species of the Drosophila melanogaster subgroup. Biol J Linn Soc. 1981;16: 227–241. 10.1111/j.1095-8312.1981.tb01849.x DOI

Linder JE, Owers KA, Promislow DEL. The effects of temperature on host–pathogen interactions in D. melanogaster: who benefits? J Insect Physiol. 2008;54: 297–308. 10.1016/j.jinsphys.2007.10.001 PubMed DOI PMC

Flores-Mejia S, Fournier V, Cloutier C. Performance of a tri-trophic food web under different climate change scenarios. Food Webs. 2017;11: 1–12. 10.1016/j.fooweb.2017.05.001 DOI

Lavandero B, Tylianakis JM. Genotype matching in a parasitoid–host genotypic food web: an approach for measuring effects of environmental change. Mol Ecol. 2013;22: 229–238. 10.1111/mec.12100 PubMed DOI

Terry JCD, Chen J, Lewis OT. The effect of natural enemies on the coexistence of competing species—an empirical test using Bayesian modern coexistence theory. bioRxiv. 2020; 2020.08.27.270389. 10.1101/2020.08.27.270389 DOI

O´Brien EK, Higgie M, Jeffs CT, Hoffmann AA, Hrcek J, Lewis OT, et al. Interacting effects of the abiotic and biotic environment on fitness of rainforest Drosophila. bioRxiv. 2018; 395624 10.1101/395624 DOI

Derocles SAP, Lunt DH, Berthe SCF, Nichols PC, Moss ED, Evans DM. Climate warming alters the structure of farmland tritrophic ecological networks and reduces crop yield. Mol Ecol. 2018;27: 4931–4946. 10.1111/mec.14903 PubMed DOI

Han P, Becker C, Sentis A, Rostás M, Desneux N, Lavoir AV. Global change-driven modulation of bottom–up forces and cascading effects on biocontrol services. Curr Opin Insect Sci. 2019;35: 27–33. 10.1016/j.cois.2019.05.005 PubMed DOI

Freeman BG, Lee-Yaw JA, Sunday JM, Hargreaves AL. Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions. Glob Ecol Biogeogr. 2018;27: 1268–1276. 10.1111/geb.12774 DOI

Alexander JM, Diez JM, Levine JM. Novel competitors shape species’ responses to climate change. Nature. 2015;525: 515–518. 10.1038/nature14952 PubMed DOI

Davis AJ, Lawton JH, Shorrocks B, Jenkinson LS. Individualistic species responses invalidate simple physiological models of community dynamics under global environmental change. J Anim Ecol. 1998;67: 600–612. 10.1046/j.1365-2656.1998.00223.x DOI

IUCN. IUCN Red List of Threatened Species. 2012 [cited 21 Jan 2021] pp. 49-6872-49–6872. 10.5860/choice.49-6872 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...