Lower Functional and Proportional Characteristics of Cord Blood Treg of Male Newborns Compared with Female Newborns
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
AZV 15-26877A
Agentura Pro Zdravotnický Výzkum České Republiky
Progres Q25/LF1
Univerzita Karlova
Progres Q28/LF1
Univerzita Karlova
PubMed
33572097
PubMed Central
PMC7915235
DOI
10.3390/biomedicines9020170
PII: biomedicines9020170
Knihovny.cz E-resources
- Keywords
- Helios, TSDR, allergy, cord blood, epigenetics, flow cytometry, induced Treg, natural Treg, regulatory T cells,
- Publication type
- Journal Article MeSH
Understanding the early events involved in the induction of immune tolerance to harmless environmental antigens and microbiota compounds could reveal potential targets for allergic disease therapy or prevention. Regulatory T cells (Treg), particularly induced Treg (iTreg), are crucial for the induction and maintenance of tolerance against environmental antigens including allergens. A decrease in the number and/or function of Treg or iTreg could represent an early predictor of allergy development. We analyzed proportional and functional properties of Treg in the cord blood of children of allergic mothers (neonates at high risk of allergy development) and healthy mothers (neonates with relatively low risk of allergy development). We observed a higher number of induced Treg in the cord blood of females compared to males, suggesting an impaired capacity of male immunity to set up tolerance to allergens, which could contribute to the higher incidence of allergy observed in male infants. The decreased proportion of iTreg in cord blood compared with maternal peripheral blood documents the general immaturity of the neonatal immune system. We observed a positive correlation in the demethylation of the Treg-specific demethylated region (TSDR) and the proportion of Treg in cord blood. Our data suggest that immaturity of the neonatal immune system is more severe in males, predisposing them to increased risk of allergy development.
See more in PubMed
Sykes L., MacIntyre D.A., Yap X.J., Teoh T.G., Bennett P.R. The Th1:th2 dichotomy of pregnancy and preterm labour. Mediat. Inflamm. 2012;2012:967629. doi: 10.1155/2012/967629. PubMed DOI PMC
McCoy K.D., Köller Y. New developments providing mechanistic insight into the impact of the microbiota on allergic disease. Clin. Immunol. 2015;159:170–176. doi: 10.1016/j.clim.2015.05.007. PubMed DOI PMC
Jutel M., Akdis C.A. T-cell Subset Regulation in Atopy. Curr. Allergy Asthma Rep. 2011;11:139–145. doi: 10.1007/s11882-011-0178-7. PubMed DOI PMC
Bacchetta R., Passerini L., Gambineri E., Dai M., Allan S.E., Perroni L., Dagna-Bricarelli F., Sartirana C., Matthes-Martin S., Lawitschka A., et al. Defective regulatory and effector T cell functions in patients with FOXP3 mutations. J. Clin. Investig. 2006;116:1713–1722. doi: 10.1172/JCI25112. PubMed DOI PMC
Alroqi F.J., Chatila T.A. T Regulatory Cell Biology in Health and Disease. Curr. Allergy Asthma Rep. 2016;16 doi: 10.1007/s11882-016-0606-9. PubMed DOI PMC
Lin W., Truong N., Grossman W.J., Haribhai D., Williams C.B., Wang J., Martín M.G., Chatila T.A. Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice. J. Allergy Clin. Immunol. 2005;116:1106–1115. doi: 10.1016/j.jaci.2005.08.046. PubMed DOI
Steinborn A., Engst M., Haensch G.M., Mahnke K., Schmitt E., Meuer S., Sohn C. Small for gestational age (SGA) neonates show reduced suppressive activity of their regulatory T cells. Clin. Immunol. 2010;134:188–197. doi: 10.1016/j.clim.2009.09.003. PubMed DOI
Shevach E.M. Mechanisms of Foxp3+ T Regulatory Cell-Mediated Suppression. Immunity. 2009;30:636–645. doi: 10.1016/j.immuni.2009.04.010. PubMed DOI
Ohkura N., Hamaguchi M., Morikawa H., Sugimura K., Tanaka A., Ito Y., Osaki M., Tanaka Y., Yamashita R., Nakano N., et al. T Cell Receptor Stimulation-Induced Epigenetic Changes and Foxp3 Expression Are Independent and Complementary Events Required for Treg Cell Development. Immunity. 2012;37:785–799. doi: 10.1016/j.immuni.2012.09.010. PubMed DOI
Morikawa H., Sakaguchi S. Genetic and epigenetic basis of Treg cell development and function: From a FoxP3-centered view to an epigenome-defined view of natural Treg cells. Immunol. Rev. 2014;259:192–205. doi: 10.1111/imr.12174. PubMed DOI
Baron U., Floess S., Wieczorek G., Baumann K., Grützkau A., Dong J., Thiel A., Boeld T.J., Hoffmann P., Edinger M., et al. DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3+ conventional T cells. Eur. J. Immunol. 2007;37:2378–2389. doi: 10.1002/eji.200737594. PubMed DOI
Barzaghi F., Passerini L., Gambineri E., Ciullini Mannurita S., Cornu T., Kang E.S., Choe Y.H., Cancrini C., Corrente S., Ciccocioppo R., et al. Demethylation analysis of the FOXP3 locus shows quantitative defects of regulatory T cells in IPEX-like syndrome. J. Autoimmun. 2012;38:49–58. doi: 10.1016/j.jaut.2011.12.009. PubMed DOI PMC
Ohkura N., Yasumizu Y., Kitagawa Y., Tanaka A., Nakamura Y., Motooka D., Nakamura S., Okada Y., Sakaguchi S. Regulatory T Cell-Specific Epigenomic Region Variants Are a Key Determinant of Susceptibility to Common Autoimmune Diseases. Immunity. 2020;52:1119–1132.e4. doi: 10.1016/j.immuni.2020.04.006. PubMed DOI
Swamy R.S., Reshamwala N., Hunter T., Vissamsetti S., Santos C.B., Baroody F.M., Hwang P.H., Hoyte E.G., Garcia M.A., Nadeau K.C. Epigenetic modifications and improved regulatory T-cell function in subjects undergoing dual sublingual immunotherapy. J. Allergy Clin. Immunol. 2012;130:215–224.e7. doi: 10.1016/j.jaci.2012.04.021. PubMed DOI PMC
Syed A., Garcia M.A., Lyu S.-C., Bucayu R., Kohli A., Ishida S., Berglund J.P., Tsai M., Maecker H., O’Riordan G., et al. Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3) J. Allergy Clin. Immunol. 2014;133:500–510. doi: 10.1016/j.jaci.2013.12.1037. PubMed DOI PMC
Paparo L., Nocerino R., Cosenza L., Aitoro R., D’Argenio V., Del Monaco V., Di Scala C., Amoroso A., Di Costanzo M., Salvatore F., et al. Epigenetic features of FoxP3 in children with cow’s milk allergy. Clin. Epigenetics. 2016;8 doi: 10.1186/s13148-016-0252-z. PubMed DOI PMC
Shevach E.M., Thornton A.M. tTregs, pTregs, and iTregs: Similarities and differences. Immunol. Rev. 2014;259:88–102. doi: 10.1111/imr.12160. PubMed DOI PMC
Chen W., Jin W., Hardegen N., Lei K.-J., Li L., Marinos N., McGrady G., Wahl S.M. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 2003;198:1875–1886. doi: 10.1084/jem.20030152. PubMed DOI PMC
Haribhai D., Williams J.B., Jia S., Nickerson D., Schmitt E.G., Edwards B., Ziegelbauer J., Yassai M., Li S.-H., Relland L.M., et al. A Requisite Role for Induced Regulatory T Cells in Tolerance Based on Expanding Antigen Receptor Diversity. Immunity. 2011;35:109–122. doi: 10.1016/j.immuni.2011.03.029. PubMed DOI PMC
Thornton A.M., Korty P.E., Tran D.Q., Wohlfert E.A., Murray P.E., Belkaid Y., Shevach E.M. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 2010;184:3433–3441. doi: 10.4049/jimmunol.0904028. PubMed DOI PMC
Sakaguchi S., Vignali D.A.A., Rudensky A.Y., Niec R.E., Waldmann H. The plasticity and stability of regulatory T cells. Nat. Rev. Immunol. 2013;13:461–467. doi: 10.1038/nri3464. PubMed DOI
Diller M.L., Kudchadkar R.R., Delman K.A., Lawson D.H., Ford M.L. Balancing Inflammation: The Link between Th17 and Regulatory T Cells. Mediat. Inflamm. 2016;2016:6309219. doi: 10.1155/2016/6309219. PubMed DOI PMC
Lal G., Bromberg J.S. Epigenetic mechanisms of regulation of Foxp3 expression. Blood. 2009;114:3727–3735. doi: 10.1182/blood-2009-05-219584. PubMed DOI PMC
Lin X., Chen M., Liu Y., Guo Z., He X., Brand D., Zheng S.G. Advances in distinguishing natural from induced Foxp3(+) regulatory T cells. Int. J. Clin. Exp. Pathol. 2013;6:116–123. PubMed PMC
Chen Q., Kim Y.C., Laurence A., Punkosdy G.A., Shevach E.M. IL-2 controls the stability of Foxp3 expression in TGF-beta-induced Foxp3+ T cells in vivo. J. Immunol. 2011;186:6329–6337. doi: 10.4049/jimmunol.1100061. PubMed DOI PMC
Yue X., Trifari S., Äijö T., Tsagaratou A., Pastor W.A., Zepeda-Martínez J.A., Lio C.-W.J., Li X., Huang Y., Vijayanand P., et al. Control of Foxp3 stability through modulation of TET activity. J. Exp. Med. 2016;213:377–397. doi: 10.1084/jem.20151438. PubMed DOI PMC
Lee S., Park K., Kim J., Min H., Seong R.H. Foxp3 expression in induced regulatory T cells is stabilized by C/EBP in inflammatory environments. EMBO Rep. 2018:e45995. doi: 10.15252/embr.201845995. PubMed DOI PMC
Mikami N., Kawakami R., Chen K.Y., Sugimoto A., Ohkura N., Sakaguchi S. Epigenetic conversion of conventional T cells into regulatory T cells by CD28 signal deprivation. Proc. Natl. Acad. Sci. USA. 2020;117:12258–12268. doi: 10.1073/pnas.1922600117. PubMed DOI PMC
Prokešová L., Novotná O., Janatková I., Zanvít P., Žižka J., Lodinová-Žádníková R., Kocourková I., Šterzl I. IgE against food and respiratory allergens in healthy and allergic mothers and their children. Folia Microbiol. (Praha) 2008;53:67–72. doi: 10.1007/s12223-008-0010-5. PubMed DOI
Peters J.L., Cohen S., Staudenmayer J., Hosen J., Platts-Mills T.A.E., Wright R.J. Prenatal negative life events increases cord blood IgE: Interactions with dust mite allergen and maternal atopy. Allergy. 2012;67:545–551. doi: 10.1111/j.1398-9995.2012.02791.x. PubMed DOI PMC
Hrdý J., Zanvít P., Novotná O., Kocourková I., Žižka J., Prokešová L. Cytokine expression in cord blood cells of children of healthy and allergic mothers. Folia Microbiol. 2010;55:515–519. doi: 10.1007/s12223-010-0085-7. PubMed DOI
Chung E.K., Miller R.L., Wilson M.T., McGeady S.J., Culhane J.F. Antenatal risk factors, cytokines and the development of atopic disease in early childhood. Arch. Dis. Child. Fetal Neonatal Ed. 2007;92:F68–F73. doi: 10.1136/adc.2006.106492. PubMed DOI PMC
Belderbos M.E., Knol E.F., Houben M.L., Bleek G.M., Wilbrink B., Kimpen J.L.L., Rovers M., Bont L. Low neonatal Toll-like receptor 4-mediated interleukin-10 production is associated with subsequent atopic dermatitis. Clin. Exp. Allergy. 2012;42:66–75. doi: 10.1111/j.1365-2222.2011.03857.x. PubMed DOI
Hrdý J., Vlasáková K., Černý V., Súkeníková L., Novotná O., Petrásková P., Boráková K., Lodinová-Žádníková R., Kolářová L., Prokešová L. Decreased allergy incidence in children supplemented with E. coli O83:K24:H31 and its possible modes of action. Eur. J. Immunol. 2018;48:2015–2030. doi: 10.1002/eji.201847636. PubMed DOI
Bullens D.M.A., Kasran A., Dilissen E., Ceuppens J.L. Neonatal IL-10 production and risk of allergy development. Clin. Exp. Allergy. 2012;42:483–484. doi: 10.1111/j.1365-2222.2011.03952.x. PubMed DOI
Rindsjö E., Joerink M., Johansson C., Bremme K., Malmström V., Scheynius A. Maternal allergic disease does not affect the phenotype of T and B cells or the immune response to allergens in neonates: No effect of maternal allergy on neonatal lymphocytes. Allergy. 2009;65:822–830. doi: 10.1111/j.1398-9995.2009.02266.x. PubMed DOI
Schaub B., Liu J., Höppler S., Schleich I., Huehn J., Olek S., Wieczorek G., Illi S., von Mutius E. Maternal farm exposure modulates neonatal immune mechanisms through regulatory T cells. J. Allergy Clin. Immunol. 2009;123:774–782.e5. doi: 10.1016/j.jaci.2009.01.056. PubMed DOI
Prescott S.L., King B., Strong T.L., Holt P.G. The value of perinatal immune responses in predicting allergic disease at 6 years of age. Allergy. 2003;58:1187–1194. doi: 10.1034/j.1398-9995.2003.00263.x. PubMed DOI
Björkander S., Hallberg J., Persson J.-O., Lilja G., Nilsson C., Sverremark-Ekström E. The allergic phenotype during the first 10 years of life in a prospective cohort. Immun. Inflamm. Dis. 2019;7:170–182. doi: 10.1002/iid3.255. PubMed DOI PMC
Hrdý J., Novotná O., Kocourková I., Prokešová L. Gene expression of subunits of the IL-12 family cytokines in moDCs derived in vitro from the cord blood of children of healthy and allergic mothers. Folia Biol. (Praha) 2014;60:74–82. PubMed
Wieczorek G., Asemissen A., Model F., Turbachova I., Floess S., Liebenberg V., Baron U., Stauch D., Kotsch K., Pratschke J., et al. Quantitative DNA methylation analysis of FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue. Cancer Res. 2009;69:599–608. doi: 10.1158/0008-5472.CAN-08-2361. PubMed DOI
Černý V., Hrdý J., Novotná O., Petrásková P., Boráková K., Kolářová L., Prokešová L. Distinct characteristics of Tregs of newborns of healthy and allergic mothers. PLoS ONE. 2018;13:e0207998. doi: 10.1371/journal.pone.0207998. PubMed DOI PMC
Lodinová-Žádníková R., Prokešová L., Kocourková I., Hrdý J., Žižka J. Prevention of allergy in infants of allergic mothers by probiotic Escherichia coli. Int. Arch. Allergy Immunol. 2010;153:201–206. doi: 10.1159/000312638. PubMed DOI
Stein M.M., Hrusch C.L., Gozdz J., Igartua C., Pivniouk V., Murray S.E., Ledford J.G., Marques dos Santos M., Anderson R.L., Metwali N., et al. Innate Immunity and Asthma Risk in Amish and Hutterite Farm Children. N. Engl. J. Med. 2016;375:411–421. doi: 10.1056/NEJMoa1508749. PubMed DOI PMC
Hinz D., Bauer M., Röder S., Olek S., Huehn J., Sack U., Borte M., Simon J.C., Lehmann I., Herberth G., et al. Cord blood Tregs with stable FOXP3 expression are influenced by prenatal environment and associated with atopic dermatitis at the age of one year. Allergy. 2012;67:380–389. doi: 10.1111/j.1398-9995.2011.02767.x. PubMed DOI
Jones C.A., Holloway J.A., Warner J.O. Does atopic disease start in foetal life? Allergy. 2000;55:2–10. doi: 10.1034/j.1398-9995.2000.00109.x. PubMed DOI
Hrdý J., Kocourková I., Prokešová L. Impaired function of regulatory T cells in cord blood of children of allergic mothers: Tregs in cord blood and allergy risk. Clin. Exp. Immunol. 2012;170:10–17. doi: 10.1111/j.1365-2249.2012.04630.x. PubMed DOI PMC
Bili H., Fleva A., Pados G., Argyriou T., Tsolakidis D., Pavlitou A., Tarlatzis B.C. Regulatory Τ-cell Differentiation Between Maternal and Cord Blood Samples in Pregnancies with Spontaneous Vaginal Delivery and with Elective Cesarian Section: REGULATORY AND γ/δ T-CELLS IN NORMAL PREGNANCY. Am. J. Reprod. Immunol. 2011;65:173–179. doi: 10.1111/j.1600-0897.2010.00910.x. PubMed DOI
Yildiran A., Yurdakul E., Guloglu D., Dogu F., Arsan S., Arikan M., Cengiz L., Tezcan S., İkinciogullari A. The Effect of Mode of Delivery on T Regulatory (Treg) Cells of Cord Blood. Indian J. Pediatr. 2011;78:1234–1238. doi: 10.1007/s12098-011-0400-6. PubMed DOI
Słabuszewska-Jóźwiak A., Szymański J.K., Ciebiera M., Sarecka-Hujar B., Jakiel G. Pediatrics Consequences of Caesarean Section-A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health. 2020;17:31. doi: 10.3390/ijerph17218031. PubMed DOI PMC
Kristensen K., Henriksen L. Cesarean section and disease associated with immune function. J. Allergy Clin. Immunol. 2016;137:587–590. doi: 10.1016/j.jaci.2015.07.040. PubMed DOI
Bager P., Wohlfahrt J., Westergaard T. Caesarean delivery and risk of atopy and allergic disesase: Meta-analyses. Clin. Exp. Allergy. 2008;38:634–642. doi: 10.1111/j.1365-2222.2008.02939.x. PubMed DOI
McLoughlin R.M., Calatroni A., Visness C.M., Wallace P.K., Cruikshank W.W., Tuzova M., Ly N.P., Ruiz-Perez B., Kattan M., Bloomberg G.R., et al. Longitudinal relationship of early life immunomodulatory T cell phenotype and function to development of allergic sensitization in an urban cohort. Clin. Exp. Allergy. 2012;42:392–404. doi: 10.1111/j.1365-2222.2011.03882.x. PubMed DOI PMC
Strömbeck A., Rabe H., Lundell A.-C., Andersson K., Johansen S., Adlerberth I., Wold A.E., Hesselmar B., Rudin A. High proportions of FOXP3+ CD25high T cells in neonates are positively associated with allergic sensitization later in childhood. Clin. Exp. Allergy. 2014;44:940–952. doi: 10.1111/cea.12290. PubMed DOI PMC
Meng S.-S., Gao R., Yan B., Ren J., Wu F., Chen P., Zhang J., Wang L.-F., Xiao Y.-M., Liu J. Maternal allergic disease history affects childhood allergy development through impairment of neonatal regulatory T-cells. Respir. Res. 2016;17:114. doi: 10.1186/s12931-016-0430-8. PubMed DOI PMC
Fu Y., Lou H., Wang C., Lou W., Wang Y., Zheng T., Zhang L. T cell subsets in cord blood are influenced by maternal allergy and associated with atopic dermatitis. Pediatric Allergy Immunol. 2013;24:178–186. doi: 10.1111/pai.12050. PubMed DOI
Law J.P., Hirschkorn D.F., Owen R.E., Biswas H.H., Norris P.J., Lanteri M.C. The importance of Foxp3 antibody and fixation/permeabilization buffer combinations in identifying CD4+CD25+Foxp3+ regulatory T cells. Cytom. A. 2009;75:1040–1050. doi: 10.1002/cyto.a.20815. PubMed DOI PMC
Presicce P., Moreno-Fernandez M.E., Lages C.S., Orsborn K.I., Chougnet C.A. Association of two clones allows for optimal detection of human FOXP3. Cytom. A. 2010;77:571–579. doi: 10.1002/cyto.a.20875. PubMed DOI PMC
Lima J., Martins C., Nunes G., Sousa M.-J., Branco J.C., Borrego L.-M. Regulatory T Cells Show Dynamic Behavior During Late Pregnancy, Delivery, and the Postpartum Period. Reprod. Sci. 2017;24:1025–1032. doi: 10.1177/1933719116676395. PubMed DOI
Jutel M., Akdis M., Budak F., Aebischer-Casaulta C., Wrzyszcz M., Blaser K., Akdis C.A. IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur. J. Immunol. 2003;33:1205–1214. doi: 10.1002/eji.200322919. PubMed DOI
Fuseini H., Newcomb D.C. Mechanisms Driving Gender Differences in Asthma. Curr. Allergy Asthma Rep. 2017;17:19. doi: 10.1007/s11882-017-0686-1. PubMed DOI PMC
Zein J.G., Erzurum S.C. Asthma is Different in Women. Curr. Allergy Asthma Rep. 2015;15:28. doi: 10.1007/s11882-015-0528-y. PubMed DOI PMC
Vink N.M., Postma D.S., Schouten J.P., Rosmalen J.G.M., Boezen H.M. Gender differences in asthma development and remission during transition through puberty: The TRacking Adolescents’ Individual Lives Survey (TRAILS) study. J. Allergy Clin. Immunol. 2010;126:498–504.e6. doi: 10.1016/j.jaci.2010.06.018. PubMed DOI
Almqvist C., Worm M., Leynaert B. Impact of gender on asthma in childhood and adolescence: A GA2 LEN review. Allergy. 2007;63:47–57. doi: 10.1111/j.1398-9995.2007.01524.x. PubMed DOI
Kurukulaaratchy R.J., Karmaus W., Raza A., Matthews S., Roberts G., Arshad S.H. The influence of gender and atopy on the natural history of rhinitis in the first 18 years of life: Rhinitis trends through childhood and adolescence. Clin. Exp. Allergy. 2011;41:851–859. doi: 10.1111/j.1365-2222.2011.03765.x. PubMed DOI
Pinart M., Keller T., Reich A., Fröhlich M., Cabieses B., Hohmann C., Postma D.S., Bousquet J., Antó J.M., Keil T. Sex-Related Allergic Rhinitis Prevalence Switch from Childhood to Adulthood: A Systematic Review and Meta-Analysis. Int. Arch. Allergy Immunol. 2017;172:224–235. doi: 10.1159/000464324. PubMed DOI
Loh W., Tang M.L.K. The Epidemiology of Food Allergy in the Global Context. Int. J. Environ. Res. Public Health. 2018;15:43. doi: 10.3390/ijerph15092043. PubMed DOI PMC
Kelly C., Gangur V. Sex Disparity in Food Allergy: Evidence from the PubMed Database. J. Allergy. 2009;2009:1–7. doi: 10.1155/2009/159845. PubMed DOI PMC
Karpa K.D., Paul I.M., Leckie J.A., Shung S., Carkaci-Salli N., Vrana K.E., Mauger D., Fausnight T., Poger J. A retrospective chart review to identify perinatal factors associated with food allergies. Nutr. J. 2012;11:87. doi: 10.1186/1475-2891-11-87. PubMed DOI PMC
Peters R.L., Allen K.J., Dharmage S.C., Lodge C.J., Koplin J.J., Ponsonby A.-L., Wake M., Lowe A.J., Tang M.L.K., Matheson M.C., et al. Differential factors associated with challenge-proven food allergy phenotypes in a population cohort of infants: A latent class analysis. Clin. Exp. Allergy. 2015;45:953–963. doi: 10.1111/cea.12478. PubMed DOI
Kim H.-B., Ahn K.M., Kim K.W., Shin Y.H., Yu J., Seo J.-H., Kim H.Y., Kwon J.-W., Kim B.-J., Kwon J.-Y., et al. Cord Blood Cellular Proliferative Response as a Predictive Factor for Atopic Dermatitis at 12 Months. J. Korean Med. Sci. 2012;27:1320. doi: 10.3346/jkms.2012.27.11.1320. PubMed DOI PMC
Lee S., Hess E.P., Lohse C., Gilani W., Chamberlain A.M., Campbell R.L. Trends, characteristics, and incidence of anaphylaxis in 2001-2010: A population-based study. J. Allergy Clin. Immunol. 2017;139:182–188.e2. doi: 10.1016/j.jaci.2016.04.029. PubMed DOI PMC
Akinbami L.J., Simon A.E., Schoendorf K.C. Trends in allergy prevalence among children aged 0-17 years by asthma status, United States, 2001–2013. J. Asthma. 2016;53:356–362. doi: 10.3109/02770903.2015.1126848. PubMed DOI PMC
Salo P.M., Arbes S.J., Jaramillo R., Calatroni A., Weir C.H., Sever M.L., Hoppin J.A., Rose K.M., Liu A.H., Gergen P.J., et al. Prevalence of allergic sensitization in the United States: Results from the National Health and Nutrition Examination Survey (NHANES) 2005-2006. J. Allergy Clin. Immunol. 2014;134:350–359. doi: 10.1016/j.jaci.2013.12.1071. PubMed DOI PMC
Georgiev P., Charbonnier L.-M., Chatila T.A. Regulatory T Cells: The Many Faces of Foxp3. J. Clin. Immunol. 2019;39:623–640. doi: 10.1007/s10875-019-00684-7. PubMed DOI PMC
Shi H., Chi H. Metabolic Control of Treg Cell Stability, Plasticity, and Tissue-Specific Heterogeneity. Front. Immunol. 2019;10:2716. doi: 10.3389/fimmu.2019.02716. PubMed DOI PMC
Hori S. Lineage stability and phenotypic plasticity of Foxp3+ regulatory T cells. Immunol. Rev. 2014;259:159–172. doi: 10.1111/imr.12175. PubMed DOI
Xiong H., Zhou C., Qi G. Proportional changes of CD4+CD25+Foxp3+ Regulatory T cells in maternal peripheral blood during pregnancy and labor at term and preterm. CIM. 2010;33:422. doi: 10.25011/cim.v33i6.14594. PubMed DOI
Gomez-Lopez N., StLouis D., Lehr M.A., Sanchez-Rodriguez E.N., Arenas-Hernandez M. Immune cells in term and preterm labor. Cell Mol. Immunol. 2014;11:571–581. doi: 10.1038/cmi.2014.46. PubMed DOI PMC
Keelan J.A. Intrauterine inflammatory activation, functional progesterone withdrawal, and the timing of term and preterm birth. J. Reprod. Immunol. 2018;125:89–99. doi: 10.1016/j.jri.2017.12.004. PubMed DOI
Mold J.E., Michaëlsson J., Burt T.D., Muench M.O., Beckerman K.P., Busch M.P., Lee T.-H., Nixon D.F., McCune J.M. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science. 2008;322:1562–1565. doi: 10.1126/science.1164511. PubMed DOI PMC
Santner-Nanan B., Straubinger K., Hsu P., Parnell G., Tang B., Xu B., Makris A., Hennessy A., Peek M.J., Busch D.H., et al. Fetal-Maternal Alignment of Regulatory T Cells Correlates with IL-10 and Bcl-2 Upregulation in Pregnancy. J. Immunol. 2013;191:145–153. doi: 10.4049/jimmunol.1203165. PubMed DOI PMC
Kmieciak M., Gowda M., Graham L., Godder K., Bear H.D., Marincola F.M., Manjili M.H. Human T cells express CD25 and Foxp3 upon activation and exhibit effector/memory phenotypes without any regulatory/suppressor function. J. Transl. Med. 2009;7:89. doi: 10.1186/1479-5876-7-89. PubMed DOI PMC
Allan S.E., Crome S.Q., Crellin N.K., Passerini L., Steiner T.S., Bacchetta R., Roncarolo M.G., Levings M.K. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 2007;19:345–354. doi: 10.1093/intimm/dxm014. PubMed DOI
Iizuka-Koga M., Nakatsukasa H., Ito M., Akanuma T., Lu Q., Yoshimura A. Induction and maintenance of regulatory T cells by transcription factors and epigenetic modifications. J. Autoimmun. 2017;83:113–121. doi: 10.1016/j.jaut.2017.07.002. PubMed DOI
Kitagawa Y., Ohkura N., Sakaguchi S. Epigenetic control of thymic Treg-cell development. Eur. J. Immunol. 2015;45:11–16. doi: 10.1002/eji.201444577. PubMed DOI
Singh K., Hjort M., Thorvaldson L., Sandler S. Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naïve mice. Sci. Rep. 2015;5:7767. doi: 10.1038/srep07767. PubMed DOI PMC
Akimova T., Beier U.H., Wang L., Levine M.H., Hancock W.W. Helios expression is a marker of T cell activation and proliferation. PLoS ONE. 2011;6:e24226. doi: 10.1371/journal.pone.0024226. PubMed DOI PMC
Szurek E., Cebula A., Wojciech L., Pietrzak M., Rempala G., Kisielow P., Ignatowicz L. Differences in Expression Level of Helios and Neuropilin-1 Do Not Distinguish Thymus-Derived from Extrathymically-Induced CD4+Foxp3+ Regulatory T Cells. PLoS ONE. 2015;10:e0141161. doi: 10.1371/journal.pone.0141161. PubMed DOI PMC
Thornton A.M., Shevach E.M. Helios: Still behind the clouds. Immunology. 2019;158:161–170. doi: 10.1111/imm.13115. PubMed DOI PMC
Lord J., Chen J., Thirlby R.C., Sherwood A.M., Carlson C.S. T-cell receptor sequencing reveals the clonal diversity and overlap of colonic effector and FOXP3+ T cells in ulcerative colitis. Inflamm. Bowel Dis. 2015;21:19–30. doi: 10.1097/MIB.0000000000000242. PubMed DOI PMC
Thornton A.M., Lu J., Korty P.E., Kim Y.C., Martens C., Sun P.D., Shevach E.M. Helios+ and Helios− Treg subpopulations are phenotypically and functionally distinct and express dissimilar TCR repertoires. Eur. J. Immunol. 2019;49:398–412. doi: 10.1002/eji.201847935. PubMed DOI PMC
Akdis M., Burgler S., Crameri R., Eiwegger T., Fujita H., Gomez E., Klunker S., Meyer N., O’Mahony L., Palomares O., et al. Interleukins, from 1 to 37, and interferon-γ: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 2011;127:701–721.e1–70. doi: 10.1016/j.jaci.2010.11.050. PubMed DOI
Fife B.T., Bluestone J.A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol. Rev. 2008;224:166–182. doi: 10.1111/j.1600-065X.2008.00662.x. PubMed DOI
Watanabe N., Nakajima H. Coinhibitory molecules in autoimmune diseases. Clin. Dev. Immunol. 2012;2012:269756. doi: 10.1155/2012/269756. PubMed DOI PMC
Kumar S., Verma A.K., Das M., Dwivedi P.D. A molecular insight of CTLA-4 in food allergy. Immunol. Lett. 2013;149:101–109. doi: 10.1016/j.imlet.2012.12.003. PubMed DOI
Nocentini G., Riccardi C. GITR: A modulator of immune response and inflammation. Adv. Exp. Med. Biol. 2009;647:156–173. doi: 10.1007/978-0-387-89520-8_11. PubMed DOI
Huang C.-T., Workman C.J., Flies D., Pan X., Marson A.L., Zhou G., Hipkiss E.L., Ravi S., Kowalski J., Levitsky H.I., et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21:503–513. doi: 10.1016/j.immuni.2004.08.010. PubMed DOI
Liang B., Workman C., Lee J., Chew C., Dale B.M., Colonna L., Flores M., Li N., Schweighoffer E., Greenberg S., et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J. Immunol. 2008;180:5916–5926. doi: 10.4049/jimmunol.180.9.5916. PubMed DOI
Rosser E.C., Mauri C. Regulatory B cells: Origin, phenotype, and function. Immunity. 2015;42:607–612. doi: 10.1016/j.immuni.2015.04.005. PubMed DOI
Palomares O., Akdis M., Martín-Fontecha M., Akdis C.A. Mechanisms of immune regulation in allergic diseases: The role of regulatory T and B cells. Immunol. Rev. 2017;278:219–236. doi: 10.1111/imr.12555. PubMed DOI
Wang S., Xia P., Chen Y., Qu Y., Xiong Z., Ye B., Du Y., Tian Y., Yin Z., Xu Z., et al. Regulatory Innate Lymphoid Cells Control Innate Intestinal Inflammation. Cell. 2017;171:201–216.e18. doi: 10.1016/j.cell.2017.07.027. PubMed DOI
Saradna A., Do D.C., Kumar S., Fu Q.-L., Gao P. Macrophage polarization and allergic asthma. Transl. Res. 2018;191:1–14. doi: 10.1016/j.trsl.2017.09.002. PubMed DOI PMC
Palomares O., Martín-Fontecha M., Lauener R., Traidl-Hoffmann C., Cavkaytar O., Akdis M., Akdis C.A. Regulatory T cells and immune regulation of allergic diseases: Roles of IL-10 and TGF-β. Genes Immun. 2014;15:511–520. doi: 10.1038/gene.2014.45. PubMed DOI
Akdis C.A., Akdis M. Mechanisms of allergen-specific immunotherapy. J. Allergy Clin. Immunol. 2011;127:18–27. doi: 10.1016/j.jaci.2010.11.030. PubMed DOI
Akdis C.A., Akdis M. Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organ J. 2015;8:17. doi: 10.1186/s40413-015-0063-2. PubMed DOI PMC
Palomares O., Rückert B., Jartti T., Kücüksezer U.C., Puhakka T., Gomez E., Fahrner H.B., Speiser A., Jung A., Kwok W.W., et al. Induction and maintenance of allergen-specific FOXP3+ Treg cells in human tonsils as potential first-line organs of oral tolerance. J. Allergy Clin. Immunol. 2012;129:510–520.e1–9. doi: 10.1016/j.jaci.2011.09.031. PubMed DOI
Branchett W.J., Lloyd C.M. Regulatory cytokine function in the respiratory tract. Mucosal Immunol. 2019;12:589–600. doi: 10.1038/s41385-019-0158-0. PubMed DOI PMC
Ruan G., Wen X., Yuan Z. Correlation between miR-223 and IL-35 and their regulatory effect in children with allergic rhinitis. Clin. Immunol. 2020;214:108383. doi: 10.1016/j.clim.2020.108383. PubMed DOI
Ma Y., Liu X., Wei Z., Wang X., Xu D., Dai S., Li Y., Gao M., Ji C., Guo C., et al. The expression of a novel anti-inflammatory cytokine IL-35 and its possible significance in childhood asthma. Immunol. Lett. 2014;162:11–17. doi: 10.1016/j.imlet.2014.06.002. PubMed DOI
Layhadi J.A., Eguiluz-Gracia I., Shamji M.H. Role of IL-35 in sublingual allergen immunotherapy. Curr. Opin. Allergy Clin. Immunol. 2019;19:12–17. doi: 10.1097/ACI.0000000000000499. PubMed DOI
Overacre A.E., Vignali D.A. Treg stability: To be or not to be. Curr. Opin. Immunol. 2016;39:39–43. doi: 10.1016/j.coi.2015.12.009. PubMed DOI PMC
Barbi J., Pardoll D., Pan F. Treg functional stability and its responsiveness to the microenvironment. Immunol. Rev. 2014;259:115–139. doi: 10.1111/imr.12172. PubMed DOI PMC
Korn T., Muschaweckh A. Stability and Maintenance of Foxp3+ Treg Cells in Non-lymphoid Microenvironments. Front. Immunol. 2019;10:2634. doi: 10.3389/fimmu.2019.02634. PubMed DOI PMC
Herberth G., Hinz D., Röder S., Schlink U., Sack U., Diez U., Borte M., Lehmann I. Maternal immune status in pregnancy is related to offspring’s immune responses and atopy risk: Immune status in pregnancy and offspring’s immune responses. Allergy. 2011;66:1065–1074. doi: 10.1111/j.1398-9995.2011.02587.x. PubMed DOI
Hinz D., Simon J.C., Maier-Simon C., Milkova L., Röder S., Sack U., Borte M., Lehmann I., Herberth G. Reduced maternal regulatory T cell numbers and increased T helper type 2 cytokine production are associated with elevated levels of immunoglobulin E in cord blood. Clin. Exp. Allergy. 2010;40:419–426. doi: 10.1111/j.1365-2222.2009.03434.x. PubMed DOI