Hydrazones of 4-(Trifluoromethyl)benzohydrazide as New Inhibitors of Acetyl- and Butyrylcholinesterase

. 2021 Feb 13 ; 26 (4) : . [epub] 20210213

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33668452

Grantová podpora
20-19638Y Grantová Agentura České Republiky
No. CZ.02.1.01/0.0/0.0/16_019/0000841 European Regional Development Fund

Based on the broad spectrum of biological activity of hydrazide-hydrazones, trifluoromethyl compounds, and clinical usage of cholinesterase inhibitors, we investigated hydrazones obtained from 4-(trifluoromethyl)benzohydrazide and various benzaldehydes or aliphatic ketones as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). They were evaluated using Ellman's spectrophotometric method. The hydrazide-hydrazones produced a dual inhibition of both cholinesterase enzymes with IC50 values of 46.8-137.7 µM and 19.1-881.1 µM for AChE and BuChE, respectively. The majority of the compounds were stronger inhibitors of AChE; four of them (2-bromobenzaldehyde, 3-(trifluoromethyl)benzaldehyde, cyclohexanone, and camphor-based 2o, 2p, 3c, and 3d, respectively) produced a balanced inhibition of the enzymes and only 2-chloro/trifluoromethyl benzylidene derivatives 2d and 2q were found to be more potent inhibitors of BuChE. 4-(Trifluoromethyl)-N'-[4-(trifluoromethyl)benzylidene]benzohydrazide 2l produced the strongest inhibition of AChE via mixed-type inhibition determined experimentally. Structure-activity relationships were identified. The compounds fit physicochemical space for targeting central nervous systems with no apparent cytotoxicity for eukaryotic cell line together. The study provides new insights into this CF3-hydrazide-hydrazone scaffold.

Zobrazit více v PubMed

Isanbor C., O’Hagan D. Fluorine in medicinal chemistry: A review of anticancer agents. J. Fluorine Chem. 2006;127:303–319. doi: 10.1016/j.jfluchem.2006.01.011. DOI

Wang J., Sanchez-Rosello M., Acena L.J., del Pozo C., Sorochinsky A.E., Fustero S., Soloshonok V.A., Liu H. Fluorine in pharmaceutical industry: Fluorine-containing drugs introduced to the market in the last decade (2001–2011) Chem. Rev. 2014;114:2432–2506. doi: 10.1021/cr4002879. PubMed DOI

Ojima I. Strategic incorporation of fluorine into taxoid anticancer agents for medicinal chemistry and chemical biology studies. J. Fluor. Chem. 2017;198:10–23. doi: 10.1016/j.jfluchem.2016.12.016. PubMed DOI PMC

Meanwell N.A. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J. Med. Chem. 2018;611:45822–45880. doi: 10.1021/acs.jmedchem.7b01788. PubMed DOI

Fluorine in Pharmaceutical and Medicinal Chemistry: From Biophysical Aspects to Clinical Applications. [(accessed on 2 January 2021)]; Available online: https://www.worldscientific.com/doi/pdf/10.1142/9781848166363_fmatter. DOI

Zhu W., Wang J., Wang S., Gu Z., Acena J.L., Izawa K., Liu H., Soloshonok V.A. Recent advances in the trifluoromethylation methodology and new CF3-containing drugs. J. Fluor. Chem. 2014;167:37–54. doi: 10.1016/j.jfluchem.2014.06.026. DOI

Yale H.L. The Trifluoromethyl Group in Medicinal Chemistry. J. Med. Pharm. Chem. 1959;1:121–133. doi: 10.1021/jm50003a001. PubMed DOI

Purser S., Moore P.R., Swallow S., Gouverneur V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 2008;37:320–330. doi: 10.1039/B610213C. PubMed DOI

Hagmann W.K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 2008;51:4359–4369. doi: 10.1021/jm800219f. PubMed DOI

Rollas S., Küçükgüzel S.G. Biological activities of hydrazone derivatives. Molecules. 2007;12:1910–1939. doi: 10.3390/12081910. PubMed DOI PMC

Verma G., Marella A., Shaquiquzzaman M., Akhtar M., Ali M.R., Alam M.M. A review exploring biological activities of hydrazones. J. Pharm. Bioallied Sci. 2014;6:69–80. PubMed PMC

Krátký M., Bősze S., Baranyai Z., Stolaříková J., Vinšová J. Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide. Bioorg. Med. Chem. Lett. 2017;27:5185–5189. doi: 10.1016/j.bmcl.2017.10.050. PubMed DOI

He L.-Y., Qiu X.-Y., Cheng J.-Y., Liu S.-J., Wu S.-M. Synthesis, characterization and crystal structures of vanadium(V) complexes derived from halido-substituted tridentate hydrazone compounds with antimicrobial activity. Polyhedron. 2018;156:105–110. doi: 10.1016/j.poly.2018.09.017. DOI

Yang Y.-S., Su M.-M., Zhang X.-P., Liu Q.-X., He Z.-X., Xu C., Zhu H.-L. Developing potential Helicobacter pylori urease inhibitors from novel oxoindoline derivatives: Synthesis, biological evaluation and in silico study. Bioorg. Med. Chem. Lett. 2018;28:3182–3186. doi: 10.1016/j.bmcl.2018.08.025. PubMed DOI

Yang Y.-S., Su M.-M., Xu J.-F., Liu Q.-X., Bai L.-F., Hu X.-W., Zhu H.-L. Discovery of novel oxoindolin derivatives as atypical dual inhibitors for DNA Gyrase and FabH. Bioorg. Chem. 2019;93:103309. doi: 10.1016/j.bioorg.2019.103309. PubMed DOI

Tu Q.-D., Li D., Sun Y., Han X.-Y., Yi F., Sha Y., Ren Y.-L., Ding M.-W., Feng L.-L., Wan J. Design and syntheses of novel N′-((4-oxo-4H-chromen-3-yl)methylene)benzohydrazide as inhibitors of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase. Bioorg. Med. Chem. 2013;21:2826–2831. doi: 10.1016/j.bmc.2013.04.003. PubMed DOI

Karaman N., Sıcak Y., Taşkın-Tok T., Öztürk M., Karaküçük-İyidoğan A., Dikmen M., Koçyiğit-Kaymakçıoğlu B., Oruç-Emre E.E. New piperidine-hydrazone derivatives: Synthesis, biological evaluations and molecular docking studies as AChE and BChE inhibitors. Eur. J. Med. Chem. 2016;124:270–283. doi: 10.1016/j.ejmech.2016.08.037. PubMed DOI

Aktar B.S.K., Sıcak Y., Tok T.T., Oruç-Emre E.E., Yağlıoğlu A.S., Iyidoğan A.K., Öztürk M., Demirtaş I. Designing heterocyclic chalcones, benzoyl/sulfonyl hydrazones: An insight into their biological activities and molecular docking study. J. Mol. Struct. 2020;1211:128059. doi: 10.1016/j.molstruc.2020.128059. DOI

Javaid S., Saad S.M., Zafar H., Malik R., Khan K.M., Choudhary M.I., Rahman A.U. Thymidine phosphorylase and prostrate cancer cell proliferation inhibitory activities of synthetic 4-hydroxybenzohydrazides: In vitro, kinetic, and in silico studies. PLoS ONE. 2020;15:e0227549. doi: 10.1371/journal.pone.0227549. PubMed DOI PMC

Taha M., Aldhamin E.A.J., Almandil N.B., Anouar E., Uddin N., Alomari M., Rahim F., Adalat B., Ibrahim M., Nawaz F., et al. Synthesis of indole based acetohydrazide analogs: Their in vitro and in silico thymidine phosphorylase studies. Bioorg. Chem. 2020;98:103745. doi: 10.1016/j.bioorg.2020.103745. PubMed DOI

Leigh M., Raines D.J., Castillo C.E., Duhme-Klair A.K. Inhibition of xanthine oxidase by thiosemicarbazones, hydrazones and dithiocarbazates derived from hydroxy-substituted benzaldehydes. ChemMedChem. 2011;6:1107–1118. doi: 10.1002/cmdc.201100054. PubMed DOI

Maniak H., Talma M., Matyja K., Trusek A., Giurg M. Synthesis and structure-activity relationship studies of hydrazide-hydrazones as inhibitors of laccase from Trametes versicolor. Molecules. 2020;25:1255. doi: 10.3390/molecules25051255. PubMed DOI PMC

Krátký M., Baranyai Z., Štěpánková Š., Svrčková K., Švarcová M., Stolaříková J., Horváth L., Bősze S., Vinšová J. N-Alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides and their analogues: Synthesis and multitarget biological activity. Molecules. 2020;25:2268. doi: 10.3390/molecules25102268. PubMed DOI PMC

Krátký M., Štěpánková Š., Brablíková M., Svrčková K., Švarcová M., Vinšová J. Novel iodinated hydrazide-hydrazones and their analogues as acetyl- and butyrylcholinesterase Inhibitors. Curr. Top. Med. Chem. 2020;20:2106–2117. doi: 10.2174/1568026620666200819155503. PubMed DOI

Lineweaver H., Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 1934;56:658–666. doi: 10.1021/ja01318a036. DOI

Daina A., Zoete V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 2016;7:1117–1121. doi: 10.1002/cmdc.201600182. PubMed DOI PMC

Rankovic Z. CNS drug design: Balancing physicochemical properties for optimal brain exposure. J. Med. Chem. 2015;58:2584–2608. doi: 10.1021/jm501535r. PubMed DOI

Ghose A.K., Ott G.R., Hudkins R.L. Technically extended multiparameter optimization (TEMPO): An advanced robust scoring scheme to calculate central nervous system druggability and monitor lead optimization. ACS Chem. Neurosci. 2017;8:147–154. doi: 10.1021/acschemneuro.6b00273. PubMed DOI

Mikitsh J.L., Chacko A.M. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. Perspect. Medicin. Chem. 2014;6:11–24. doi: 10.4137/PMC.S13384. PubMed DOI PMC

Daina A., Michielin O., Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017;7:42717. doi: 10.1038/srep42717. PubMed DOI PMC

Zdrazilova P., Stepankova S., Komers K., Ventura K., Cegan A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Naturforsch. C J. Biosci. 2004;59:293–296. doi: 10.1515/znc-2004-3-430. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...