Anti-MRSA Constituents from Ruta chalepensis (Rutaceae) Grown in Iraq, and In Silico Studies on Two of Most Active Compounds, Chalepensin and 6-Hydroxy-rutin 3',7-Dimethyl ether

. 2021 Feb 19 ; 26 (4) : . [epub] 20210219

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33669881

Ruta chalepensis L. (Rutaceae), a perennial herb with wild and cultivated habitats, is well known for its traditional uses as an anti-inflammatory, analgesic, antipyretic agent, and in the treatment of rheumatism, nerve diseases, neuralgia, dropsy, convulsions and mental disorders. The antimicrobial activities of the crude extracts from the fruits, leaves, stem and roots of R. chalepensis were initially evaluated against two Gram-positive and two Gram-negative bacterial strains and a strain of the fungus Candida albicans. Phytochemical investigation afforded 19 compounds, including alkaloids, coumarins, flavonoid glycosides, a cinnamic acid derivative and a long-chain alkane. These compounds were tested against a panel of methicillin-resistant Staphylococcus aureus (MRSA) strains, i.e., ATCC 25923, SA-1199B, XU212, MRSA-274819 and EMRSA-15. The MIC values of the active compounds, chalepin (9), chalepensin (10), rutamarin (11), rutin 3'-methyl ether (14), rutin 7,4'-dimethyl ether (15), 6-hydroxy-rutin 3',7-dimethyl ether (16) and arborinine (18) were in the range of 32-128 µg/mL against the tested MRSA strains. Compounds 10 and 16 were the most active compounds from R. chalepensis, and were active against four out of six tested MRSA strains, and in silico studies were performed on these compounds. The anti-MRSA activity of compound 16 was comparable to that of the positive control norfloxacin (MICs 32 vs 16 μg/mL, respectively) against the MRSA strain XU212, which is a Kuwaiti hospital isolate that possesses the TetK tetracycline efflux pump. This is the first report on the anti-MRSA property of compounds isolated from R. chalepensis and relevant in silico studies on the most active compounds.

Zobrazit více v PubMed

Livermore D.M. Bacterial resistance: Origins, epidemiology, and impact. Clin. Infect. Dis. 2003;36:S11–S23. doi: 10.1086/344654. PubMed DOI

Moran M. A breakthrough in R&D for neglected diseases: New ways to get the drugs we need. PloS Med. 2005;2:e376 PubMed PMC

Burroughs T., Najafi M., Lemon S.M., Knobler S.L. The resistance Phenomenon in Microbes and Infectious Disease Vectors: Implications for Human Health and Strategies for Containment: Workshop Summary. National Academies Press; Washington, WA, USA: 2003. pp. 1–223. PubMed

Ayukekbong J.A., Ntemgwa M., Atabe A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. 2017;6:47. doi: 10.1186/s13756-017-0208-x. PubMed DOI PMC

Al-Majmaie S., Nahar L., Sharples G.P., Wadi K., Sarker S.D. Isolation and antimicrobial activity of rutin and its derivatives from Ruta chalepensis (Rutaceae) growing in Iraq. Rec. Nat. Prod. 2019;13:64–70. doi: 10.25135/rnp.74.18.03.250. DOI

Al-Said M.S., Yahia M.T., Ginnawi S.R., Ageel A.M. Studies on Ruta chalepensis, an ancient medicinal herb still used in traditional medicine. J. Ethnopharmacol. 1990;23:305–312. doi: 10.1016/0378-8741(90)90081-4. PubMed DOI

Ali-Shtayeh M.S., Abu Ghdeib A.I. Antifungal activity of plant extracts against dermatophytes. Mycoses. 1990;42:665–672. doi: 10.1046/j.1439-0507.1999.00499.x. PubMed DOI

Pollio A., De Natale A., Appetiti E., Aliotta G., Touwaide A. Continuity and change in the Mediterranean medical tradition: Ruta spp. (Rutaceae) in Hippocratic medicine and present practices. J. Ethnopharmacol. 2008;116:469–482. doi: 10.1016/j.jep.2007.12.013. PubMed DOI

Gibbons S., Udo E.E. The effect of reserpine, a modulator of multidrug efflux pumps, on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus (MRSA) possessing the tet(K) determinant. Phytother. Res. 2000;14:139–140. doi: 10.1002/(SICI)1099-1573(200003)14:2<139::AID-PTR608>3.0.CO;2-8. PubMed DOI

Alzoreky N., Nakahara K. Antibacterial activity of extracts from some edible plants commonly consumed in Asia. Int. J. Food Microbiol. 2003;80:223–230. doi: 10.1016/S0168-1605(02)00169-1. PubMed DOI

Priya P.S., Sasikumar J., Gowsigan G. Antibacterial activity of methanol extract of Ruta chalapensis (L), Quercus infectoria (Oliver) and Canthium parviflorum (Lam) Anc. Sci. Life. 2009;29:28. PubMed PMC

Babu-Kasimala M., Tukue M., Ermias R. Phytochemical screening and antibacterial activity of two common terrestrial medicinal plants Ruta chalepensis and Rumex nervosus. Bali. Med. J. 2014;3:116–121. doi: 10.15562/bmj.v3i3.86. DOI

Boyd D.R., Sharma N.D., Carroll J.G., Loke P.L., O’Dowd C.R., Allen C.C.R. Biphenyl dioxygenase-catalysed cis-dihydroxylation of tricyclic azaarenes: Chemoenzymatic synthesis of arene oxide metabolites and furoquinoline alkaloids. RSC Adv. 2013;3:10944–10955. doi: 10.1039/c3ra42026d. DOI

Ulubelen A., Terem B., Tuzlaci E., Cheng K., Kong Y. Alkaloids and coumarins from Ruta chalepensis. Phytochemistry. 1986;25:2692–2693. doi: 10.1016/S0031-9422(00)84549-5. DOI

Wu T.S., Shi L.S., Wang J.J., Iou S.C., Chang H.C., Chen Y.P., Kuo Y.H., Chang Y.L., Tenge C.M. Cytotoxic and antiplatelet aggregation principles of Ruta graveolens. J. Chin. Chem. Soc. 2003;50:171–178. doi: 10.1002/jccs.200300024. DOI

Openshaw H. Quinoline alkaloids, other than those of Cinchona. Alkaloids Chem. Physiol. 1967;9:223–267.

Gaston J.L., Grundon M.F., James K.J. Quinoline alkaloids. Part 19. Synthesis of O-methylptelefolonium iodide and (±)-dubinidine. J. Chem. Soc., Perkin Trans. 1. 1980;24:1136–1138. doi: 10.1039/P19800001136. DOI

Pal C., Kundu M.K., Bandyopadhyay U., Adhikari S. Synthesis of novel heme-interacting acridone derivatives to prevent free heme-mediated protein oxidation and degradation. Bioorganic Med. Chem. Lett. 2011;21:3563–3567. doi: 10.1016/j.bmcl.2011.04.127. PubMed DOI

Um Y.R., Kong C.S., Lee J.I., Kim Y.A., Nam T.J., Seo Y. Evaluation of chemical constituents from Glehnia littoralis for antiproliferative activity against HT-29 human colon cancer cells. Process. Biochem. 2010;45:114–119. doi: 10.1016/j.procbio.2009.08.016. DOI

O’Neill T., Johnson J.A., Webster D., Gray C.A. The Canadian medicinal plant Heracleum maximum contains antimycobacterial diynes and furanocoumarins. J. Ethnopharmacol. 2013;147:232–237. doi: 10.1016/j.jep.2013.03.009. PubMed DOI

Shu Shan D., Zhi Wei D., Jing X., Zhu Feng G., Jiang Bin F., Kai Y., Li F., Cheng Fang W., Hai Yan J., Hai Bo Y. Cytotoxic Constituents from the Stems of Clausena lansium (Lour.) Skeels. Molecules. 2013;18:10768–10775. PubMed PMC

Richardson J.S.M., Sethi G., Lee G.S., Malek S.N.A. Chalepin: Isolated from Ruta angustifolia L. Pers induces mitochondrial mediated apoptosis in lung carcinoma cells. Bmc. Complementary Altern. Med. 2016;16:389. doi: 10.1186/s12906-016-1368-6. PubMed DOI PMC

Bandatmakuru S., Arava V. Novel synthesis of graveoline and graveolinine. Synth. Commun. 2018;48:2635–2641. doi: 10.1080/00397911.2018.1501581. DOI

Kamal L.Z.M., Mohd Hassan N., Taib N.M., Soe M.K. Graveoline from Ruta angustifolia (L.) Pers. and its antimicrobial synergistic potential in erythromycin or vancomycin combinations. Sains Malays. 2018;47:2429–2435. doi: 10.17576/jsm-2018-4710-19. DOI

Sampaio O., Vieira L., Bellete B., King-Diaz B., Lotina-Hennsen B., Da Silva M., Veiga T. Evaluation of alkaloids isolated from Ruta graveolens as photosynthesis inhibitors. Molecules. 2018;23:2693. doi: 10.3390/molecules23102693. PubMed DOI PMC

Markham K.R., Sheppard C., Geiger H. 13C-NMR studies of some naturally occurring amentoflavone and hinokifavone biflavonoids. Phytochemistry. 1987;26:3335–3337. doi: 10.1016/S0031-9422(00)82499-1. DOI

Li S., Zhao M., Li Y., Sui Y., Yao H., Huang L., Lin X. Preparative isolation of six anti-tumour biflavonoids from Selaginella doederleinii Hieron by high-speed counter-current chromatography. Phytochem. Anal. 2014;25:127–133. doi: 10.1002/pca.2478. PubMed DOI

Matsuda H., Morikawa T., Toguchida I., Yoshikawa M. Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem. Pharm. Bull. 2002;50:788–795. doi: 10.1248/cpb.50.788. PubMed DOI

Chen C., Huang Y., Huang F., Wang C.W., Ou J. Water-soluble glycosides from Ruta graveolens. J. Nat. Prod. 2001;64:990–992. doi: 10.1021/np000582y. PubMed DOI

Wu P.P., Zhang K., Lu Y.J., He P., Zhao S.Q. In vitro and in vivo evaluation of the antidiabetic activity of ursolic acid derivatives. Eur. J. Med. Chem. 2014;80:502–508. doi: 10.1016/j.ejmech.2014.04.073. PubMed DOI

Jin H.G., Ko H.J., Chowdhury M.A., Lee D.S., Woo E.R. A new indole glycoside from the seeds of Raphanus sativus. Arch. Pharmacal Res. 2016;39:755–761. doi: 10.1007/s12272-016-0758-0. PubMed DOI

Sarker S.D., Kumarasamy Y., Nahar L. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods. 2007;42:321–324. doi: 10.1016/j.ymeth.2007.01.006. PubMed DOI PMC

Réthy B., Zupkó I., Minorics R., Hohmann J., Ocsovszki I., Falkay G. Investigation of cytotoxic activity on human cancer cell lines of arborinine and furanoacridones isolated from Ruta graveolens. Planta Med. 2007;73:41–48. doi: 10.1055/s-2006-951747. PubMed DOI

Amoa Onguéné P., Ntie-Kang F., Lifongo L.L., Ndom J.C., Sippl W., Mbaze L.M.A. The potential of anti-malarial compounds derived from African medicinal plants. Part I: A pharmacological evaluation of alkaloids and terpenoids. Malar. J. 2013;12:449. doi: 10.1186/1475-2875-12-449. PubMed DOI PMC

Fouotsa H., Mbaveng A., Mbazoa Djama C., Nkengfack A., Farzana S.M., Iqbal C., Meyer J., Lall N., Kuete V. Antibacterial constituents of three Cameroonian medicinal plants: Garcinia nobilis, Oricia suaveolens and Balsamocitrus camerunensis. BMC Complementary Altern. Med. 2013;13:81. doi: 10.1186/1472-6882-13-81. PubMed DOI PMC

Schrodinger Suite Platform 7.0. Schrödinger; New York, NY, USA: 2021. [(accessed on 7 February 2021)]. Available online: https://www.schrodinger.com/platform.

Kuhn B., Tichy M., Wang L., Robinson S., Martin R.E., Kuglstatter A., Benz J., Giroud M., Schirmeister T., Abel R., et al. Prospective evaluation of free energy calculations for the prioritization of cathepsin L inhibitors. J. Med. Chem. 2017;60:2485–2497. doi: 10.1021/acs.jmedchem.6b01881. PubMed DOI

Krzywinski M., Schein J., Birol I., Connors J., Gascoyne R., Horsman D., Jones S.J., Marrra M.A. Circos: An information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC

Macindoe G., Mavridis L., Venkatraman V., Devignes M.-D., Ritchie D.W. HexServer: An FFT-based protein docking server powered by graphics processors. Nucleic Acid Res. 2010;38:W445–W449. doi: 10.1093/nar/gkq311. PubMed DOI PMC

Srisuknimit V., Qiao Y., Schaefer K., Kahne D., Walker S. Peptidoglycan cross-linking preferences of Staphylococcus aureus penicillin binding proteins have implications for treating MRSA infections. J. Am. Chem. Soc. 2017;139:9791–9794. doi: 10.1021/jacs.7b04881. PubMed DOI PMC

Lagunin A., Stepanchikova A., Filimonov D., Poroikov V. PASS prediction of activity spectra for biologically active substances. Bioinformatics. 2000;16:747–748. doi: 10.1093/bioinformatics/16.8.747. PubMed DOI

Kaatz G.W., Seo S.M., Ruble C.A. Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 1993;37:1086–1094. doi: 10.1128/AAC.37.5.1086. PubMed DOI PMC

Richardson J.F., Reith S. Characterization of a strain of methicillin-resistant Staphylococcus aureus (EMRSA-15) by conventional and molecular methods. J. Hosp. Infect. 1993;25:45–52. doi: 10.1016/0195-6701(93)90007-M. PubMed DOI

Nurunnnabi T.R., Nahar L., Al-Majmaie S., Rahman S.M.M., Sohrab M.H., Billah M.M., Ismail F.M.D., Rahman M.M., Sharples G.P., Sarker S.D. Anti-MRSA activity of oxysporone and xylitol from the endophytic fungus Pestalotia sp. growing on the Sundarbans mangrove plant Heritiera fomes. Phytother. Res. 2018;32:348–354. doi: 10.1002/ptr.5983. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Ruta Essential Oils: Composition and Bioactivities

. 2021 Aug 06 ; 26 (16) : . [epub] 20210806

Chalepin and Chalepensin: Occurrence, Biosynthesis and Therapeutic Potential

. 2021 Mar 14 ; 26 (6) : . [epub] 20210314

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...