Nutritional and Antioxidant Potential of Fiddleheads from European Ferns
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LTC17035
Ministerstvo Školství, Mládeže a Tělovýchovy
CA15136
European Cooperation in Science and Technology
OPPK CZ.2.16/3.1.00/21519
European Regional Development Fund
PubMed
33669902
PubMed Central
PMC7923283
DOI
10.3390/foods10020460
PII: foods10020460
Knihovny.cz E-resources
- Keywords
- alternative vegetable, fatty acid profile, fern species, fiddleheads, natural antioxidants, nutritional quality,
- Publication type
- Journal Article MeSH
Ferns are part of the diet and traditional medicine in East Asia, North America, and Oceania, however, their importance has been forgotten in Europe. Here, the nutritional and antioxidant potential of young fern fronds (fiddleheads) of eight families were studied. Most of the tested fern species excelled in high antioxidant capacity when compared to the reference leafy vegetables spinach and rocket. On average, the total phenol content reached 220 mg·g-1 of extract dry weight for all fiddleheads, and 15 out of 24 tested species exceeded 1 g Trolox equivalent per gram of extract dry weight in Oxygen Radical Absorbance Capacity (ORAC) assay. On the other hand, fiddleheads contained a comparable amount of carotenoids and ascorbic acid with the reference vegetables. In the case of fatty acid composition, fiddleheads contained especially high amounts of essential omega-3 (n3) and omega-6 (n6) polyunsaturated fatty acids with a beneficial n6/n3 ratio. The n6/n3 ratio in all tested species was between 2 and 6.4, whereas the ratio in the reference vegetables was below 0.4. All in all, fiddleheads from European ferns are a rich source of valuable antioxidants and essential fatty acids with a desirable n-6/n-3 ratio and may thus form an alternative source of these compounds, especially for those people not consuming fish and fish products.
See more in PubMed
Smith A.R., Pryer K.M., Schuettpelz E., Korall P., Schneider H., Wolf P.G. A classification for extant ferns. TAXON. 2006;55:705–731. doi: 10.2307/25065646. DOI
Shmakov A. A community-derived classification for extant lycophytes and ferns. J. Syst. Evol. 2016;54:563–603. doi: 10.1111/jse.12229. DOI
Liu Y., Wujisguleng W., Long C. Food uses of ferns in China: A review. Acta Soc. Bot. Pol. 2012;81:263–270. doi: 10.5586/asbp.2012.046. DOI
Crowe A. A Field Guide to the Native Edible Plants of New Zeeland. 2nd ed. Godwit Press; Auckland, New Zealand: 1997.
May L.W. The economic uses and associated folklore of ferns and fern allies. Bot. Rev. 1978;44:491–528. doi: 10.1007/BF02860848. DOI
Bergeron M.E., Lapointe L. Impact of one year crozier removal on long-term frond production in Matteuccia struthiopteris. Can. J. Plant Sci. 2001;81:155–163. doi: 10.4141/P99-176. DOI
Goswami H.K., Sen K., Mukhopadhyay R. Pteridophytes: Evolutionary boon as medicinal plants. Plant Genet. Resour. 2016;14:328–355. doi: 10.1017/S1479262116000290. DOI
Zhu Q.-F., Zhao Q.-S. Chemical constituents and biological activities of lycophytes and ferns. Chin. J. Nat. Med. 2019;17:887–891. doi: 10.1016/S1875-5364(19)30108-6. PubMed DOI
Cao H., Chai T.-T., Wang X., Morais-Braga M.F.B., Yang J.-H., Wong F.-C., Wang R., Yao H., Cao J., Cornara L., et al. Phytochemicals from fern species: Potential for medicine applications. Phytochem. Rev. 2017;16:379–440. doi: 10.1007/s11101-016-9488-7. PubMed DOI PMC
Jamieson G., Reid E.H. The fatty acid composition of fern lipids. Phytochemistry. 1975;14:2229–2232. doi: 10.1016/S0031-9422(00)91104-X. DOI
Delong J., Hodges D.M., Prange R., Forney C., Toivenon P., Bishop M.C., Elliot M., Jordan M. The unique fatty acid and antioxidant composition of ostrich fern (Matteuccia struthiopteris) fiddleheads. Can. J. Plant Sci. 2011;91:919–930. doi: 10.4141/cjps2010-042. DOI
Singleton V.L., Orthofer R., Lamuela-Raventós R.M., Lester P. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999;299:152–178.
Silva E.M., Souza J.N.S., Rogez H., Rees J.-F., Larondelle Y. Antioxidant activities and polyphenolic contents of fifteen selected plant species from the Amazonian region. Food Chem. 2007;101:1012–1018. doi: 10.1016/j.foodchem.2006.02.055. DOI
Cao G.H., Prior R.L. Measurement of oxygen radical absorbance capacity in biological samples. Methods Enzymol. 1999;299:50–62. doi: 10.1016/s0076-6879(99)99008-0. PubMed DOI
Delong J.M., Hodges D.M., Prange R.K., Forney C.F., Fan L., Bishop M.C., Elliot M.L., Jordan M.A., Doucette C. The influence of cold water storage on fatty acids, antioxidant content and activity, and microbial load in ostrich fern (Matteuccia struthiopteris) fiddleheads. Can. J. Plant Sci. 2013;93:683–697. doi: 10.4141/cjps2012-165. DOI
Chang H.-C., Huang G.-J., Agrawal D.C., Kuo C.-L., Wu C.-R., Tsay H.-S. Antioxidant activities and polyphenol contents of six folk medicinal ferns used as “Gusuibu”. Bot. Stud. 2007;48:397–406.
Farràs A., Cásedas G., Les F., Terrado E.M., Mitjans M., López V., Martínez A.F. Evaluation of anti-tyrosinase and antioxidant properties of four fern species for potential cosmetic applications. Forests. 2019;10:179. doi: 10.3390/f10020179. DOI
Kratchanova M., Denev P., Ciz M., Lojek A., Mihailov A. Evaluation of antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems. Acta Biochim. Pol. 2010;57:229–234. doi: 10.18388/abp.2010_2399. PubMed DOI
Soare L.C., Ferdes M., Stefanov S., Denkova Z., Nicolova R., Denev P., Bejan C., Paunescu A. Antioxidant Activity, Polyphenols Content and Antimicrobial Activity of Several Native Pteridophytes of Romania. Not. Bot. Horti Agrobot. Cluj-Napoca. 2012;40:53–57. doi: 10.15835/nbha4016648. DOI
Vasco C., Ruales J., Kamal-Eldin A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 2008;111:816–823. doi: 10.1016/j.foodchem.2008.04.054. DOI
Langhansova L., Pumprova K., Haisel D., Ekrt L., Pavicic A., Zajíčková M., Vanek T., Dvorakova M. European ferns as rich sources of antioxidants in human diet. Food Chem. under review. PubMed
Davey M.W., Van Montagu M., Inze D., Sanmartin M., Kanellis A., Smirnoff N., Benzie I.J.J., Strain J.J., Favell D., Fletcher J. Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 2000;80:825–860. doi: 10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6. DOI
Bone R.A., Davey P.G., Roman B.O., Evans D.W. Efficacy of commercially available nutritional supplements: Analysis of serum uptake, macular pigment optical density and visual functional response. Nutrients. 2020;12:1321. doi: 10.3390/nu12051321. PubMed DOI PMC
Feng L., Nie K., Jiang H., Fan W. Effects of lutein supplementation in age-related macular degeneration. PLoS ONE. 2019;14:e0227048. doi: 10.1371/journal.pone.0227048. PubMed DOI PMC
Kopsell D.A., Lefsrud M.G., Kopsell D.E., Wenzel A.J., Gerweck C., Curran-Celentano J. Spinach cultigen variation for tissue carotenoid concentrations influences human serum carotenoid levels and macular pigment optical density following a 12-week dietary intervention. J. Agric. Food Chem. 2006;54:7998–8005. doi: 10.1021/jf0614802. PubMed DOI
Ozawa Y., Nagai N., Suzuki M., Kurihara T., Shinoda H., Watanabe M., Tsubota K. Effects of constant intake of lute-in-rich spinach on macular pigment optical density: A pilot study. Nippon Ganka Gakkai Zasshi. 2016;120:41–48. PubMed
Sanabria J.C., Bass J., Spors F., Gierhart D.L., Davey P.G. Measurement of carotenoids in perifovea using the macular pigment reflectometer. J. Vis. Exp. 2020:e60429. doi: 10.3791/60429. PubMed DOI
Cho S., Lee D.H., Won C.-H., Kim S.M., Lee S., Lee M.-J., Chung J.H. Differential effects of low-dose and high-dose beta-carotene supplementation on the signs of photoaging and type I procollagen gene expression in human skin in vivo. Dermatology. 2010;221:160–171. doi: 10.1159/000305548. PubMed DOI
Miyazono S., Isayama T., Delori F.C., Makino C.L. Vitamin A activates rhodopsin and sensitizes it to ultraviolet light. Vis. Neurosci. 2011;28:485–497. doi: 10.1017/S0952523811000423. PubMed DOI PMC
Carocho M., Barreiro M.F., Morales P., Ferreira I.C. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr. Rev. Food Sci. Food Saf. 2014;13:377–399. doi: 10.1111/1541-4337.12065. PubMed DOI
Carlsen M.H., Halvorsen B.L., Holte K., Bøhn S.K., Dragland S., Sampson L., Willey C., Senoo H., Umezono Y., Sanada C., et al. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutr. J. 2010;9:3. doi: 10.1186/1475-2891-9-3. PubMed DOI PMC
Villaverde P., Lajous M., Macdonald C.-J., Fagherazzi G., Bonnet F., Boutron-Ruault M.-C. High dietary total antioxidant capacity is associated with a reduced risk of hypertension in French women. Nutr. J. 2019;18:31. doi: 10.1186/s12937-019-0456-0. PubMed DOI PMC
Ninfali P., Mea G., Giorgini S., Rocchi M., Bacchiocca M. Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. Br. J. Nutr. 2005;93:257–266. doi: 10.1079/BJN20041327. PubMed DOI
Wojcikowski K., Stevenson L., Leach D., Wohlmuth H., Gobe G. Antioxidant capacity of 55 medicinal herbs traditionally used to treat the urinary system: A comparison using a sequential three-solvent extraction process. J. Altern. Complement. Med. 2007;13:103–110. doi: 10.1089/acm.2006.6122. PubMed DOI
Wolfe K.L., Kang X., He X., Dong M., Zhang Q., Liu R.H. Cellular antioxidant activity of common fruits. J. Agric. Food Chem. 2008;56:8418–8426. doi: 10.1021/jf801381y. PubMed DOI
Shou S., Lu G., Huang X. Seasonal variations in nutritional components of green asparagus using the mother fern cultivation. Sci. Hortic. 2007;112:251–257. doi: 10.1016/j.scienta.2006.12.048. DOI
Zeb A., Ullah F. Reversed phase HPLC-DAD Profiling of carotenoids, chlorophylls and phenolic compounds in Adiantum capillus-veneris leaves. Front. Chem. 2017;5:29. doi: 10.3389/fchem.2017.00029. PubMed DOI PMC
Kösesakal T. Effects of seasonal changes on pigment composition of Azolla filiculoides Lam. Am. Fern J. 2014;104:58–66. doi: 10.1640/0002-8444-104.2.58. DOI
Lytle T., Lytle J.S., Caruso A. Hydrocarbons and fatty acids of ferns. Phytochemistry. 1976;15:965–970. doi: 10.1016/S0031-9422(00)84381-2. DOI
Nekrasov E.V., Svetashev V.I., Khrapko O.V., Vyssotski M.V. Variability of fatty acid profiles in ferns: Relation to fern taxonomy and seasonal development. Phytochemistry. 2019;162:47–55. doi: 10.1016/j.phytochem.2019.02.015. PubMed DOI
Gemmrich A.R. Fatty acid composition of fern spore lipids. Phytochemistry. 1977;16:1044–1046. doi: 10.1016/S0031-9422(00)86721-7. DOI
Robinson P.M., Smith D.L., Safford R., Nichols B.W. Lipid metabolism in the fern Polypodium vulgare. Phytochemistry. 1973;12:1377–1381. doi: 10.1016/0031-9422(73)80569-2. DOI
Nekrasov E.V., Shelikhan L.A., Svetashev V.I. Fatty acid composition of gametophytes of Matteuccia struthiopteris (L.) Tod. (Onocleaceae, Polypodiophyta) Bot. Pac. 2019;8:63–66. doi: 10.17581/bp.2019.08104. DOI
Orsavova J., Misurcova L., Ambrozova J.V., Vicha R., Mlcek J. Fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci. 2015;16:12871–12890. doi: 10.3390/ijms160612871. PubMed DOI PMC
Virgilio A., Sinisi A., Russo V., Gerardo S., Santoro A., Galeone A., Taglialatela-Scafati O., Roperto F. Ptaquiloside, the major carcinogen of bracken fern, in the pooled raw milk of healthy sheep and goats: An underestimated, global concern of food safety. J. Agric. Food Chem. 2015;63:4886–4892. doi: 10.1021/acs.jafc.5b01937. PubMed DOI
Tourchi-Roudsari M. Multiple effects of Bracken fern under in vivo and in vitro Conditions. Asian Pac. J. Cancer Prev. 2014;15:7505–7513. doi: 10.7314/APJCP.2014.15.18.7505. PubMed DOI
O’Connor P., Alonso-Amelot M., Roberts S., Povey A. The role of bracken fern illudanes in bracken fern-induced toxicities. Mutat. Res. Mutat. Res. 2019;782:108276. doi: 10.1016/j.mrrev.2019.05.001. PubMed DOI
Saito K., Nagao T., Matoba M., Koyama K., Natori S., Murakami T., Saiki Y. Chemical assay of ptaquiloside, the carcinogen of pteridium aquilinum, and the distribution of related compounds in the pteridaceae. Phytochemistry. 1989;28:1605–1611. doi: 10.1016/S0031-9422(00)97808-7. DOI
Rasmussen L.H., Pedersen H.A. Screening for ptaquiloside in ferns: Using herbarium specimens for qualitative mapping purposes. Phytochem. Anal. 2017;28:575–583. doi: 10.1002/pca.2707. PubMed DOI
Murbach T.S., Béres E., Vértesi A., Glávits R., Hirka G., Endres J.R., Clewell A.E., Szakonyiné I.P. A comprehensive toxicological safety assessment of an aqueous extract of Polypodium leucotomos (Fernblock®) Food Chem. Toxicol. 2015;86:328–341. doi: 10.1016/j.fct.2015.11.008. PubMed DOI
Murbach T.S., Glávits R., Hirka G., Endres J.R., Clewell A.E., Szakonyiné I.P. A 28-day oral toxicology study of an aqueous extract of Polypodium leucotomos (Fernblock®) Toxicol. Rep. 2017;4:494–501. doi: 10.1016/j.toxrep.2017.09.002. PubMed DOI PMC
Mondal S., Panigrahi N., Sancheti P., Tirkey R., Mondal P., Almas S., Kola V. Evaluation of toxicological, diuretic, and laxative properties of ethanol extract from Macrothelypteris Torresiana (Gaudich) aerial parts with in silico docking studies of polyphenolic compounds on carbonic anhydrase II: An enzyme target for diuretic activity. Pharmacogn. Res. 2018;10:408. doi: 10.4103/pr.pr_16_18. DOI
Erhirhie E.O., Ilodigwe E.E. Sub-chronic toxicity evaluation of Dryopteris filix-mas (L.) schott, leaf extract in albino rats. Braz. J. Pharm. Sci. 2019;55:e18107. doi: 10.1590/s2175-97902019000118107. DOI
Socolsky C., Dominguez L., Asakawa Y., Bardon A. Unusual terpenylated acylphloroglucinols from Dryopteris wallichiana. Phytochemistry. 2012;80:115–122. doi: 10.1016/j.phytochem.2012.04.017. PubMed DOI
Wollenweber E., Stevens J.F., Ivanic M., Deinzer M.L. Acylphloroglucinols and flavonoid aglycones produced by external glands on the leaves of two dryopteris ferns and currania robertiana. Phytochemistry. 1998;48:931–939. doi: 10.1016/S0031-9422(97)01003-0. DOI
Hwang Y.-H., Ha H., Ma J.Y. Acute oral toxicity and genotoxicity of Dryopteris crassirhizoma. J. Ethnopharmacol. 2013;149:133–139. doi: 10.1016/j.jep.2013.06.011. PubMed DOI