Antioxidant and In Vitro Preliminary Anti-Inflammatory Activity of Castanea sativa (Italian Cultivar "Marrone di Roccadaspide" PGI) Burs, Leaves, and Chestnuts Extracts and Their Metabolite Profiles by LC-ESI/LTQOrbitrap/MS/MS
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
B61G18000470007
Regione Campania POR Campania FESR 2014-2020
PubMed
33670426
PubMed Central
PMC7917746
DOI
10.3390/antiox10020278
PII: antiox10020278
Knihovny.cz E-zdroje
- Klíčová slova
- LC-ESI/LTQOrbitrap/MS/MS analysis, anti-inflammatory activity, antioxidant activity, burs, chestnuts, leaves, phenolic compounds, polar lipids, “Marrone di Roccadaspide” PGI,
- Publikační typ
- časopisecké články MeSH
The Italian "Marrone di Roccadaspide" (Castanea sativa), a labeled Protected Geographical Indication (PGI) product, represents an important economic resource for the Italian market. With the aim to give an interesting opportunity to use chestnuts by-products for the development of nutraceutical and/or cosmetic formulations, the investigation of burs and leaves along with chestnuts of C. sativa, cultivar "Marrone di Roccadaspide", has been performed. The phenolic, tannin, and flavonoid content of the MeOH extracts of "Marrone di Roccadaspide" burs, leaves, and chestnuts as well as their antioxidant activity by spectrophotometric methods (1,1-diphenyl-2-picrylhydrazyl (DPPH), Trolox Equivalent Antioxidant Capacity (TEAC), and Ferric Reducing Antioxidant Power (FRAP) have been evaluated. Furthermore, a cell-based antioxidant in vitro test along with in vitro assays for the evaluation of the ability to reduce nuclear factor-kappa B (NF-κB) activation and nitric oxide (NO) production have been carried out. In order to identify the secondary metabolites responsible for the high phenolic content and the strong antioxidant activity shown by leaves and burs extracts, and to highlight the differences between their chemical composition, the analysis of the metabolite profile of the MeOH extracts obtained from both by-products and chestnuts by liquid chromatography coupled to electrospray ionization and multiple-stage linear ion-trap and Orbitrap high-resolution mass spectrometry (LC-(-)ESI/LTQOrbitrap/MS/MS) has been performed. LC-MS analysis allowed the identification of different classes of specialized metabolites including hydrolyzable tannins, flavonoids, ellagic acid and phenol glucoside derivatives, and triterpenoids as well as polar lipids. Our results show how the antioxidant activity of the extracts can be correlated to their high tannins and flavonoids content while polar lipids occurring in the MeOH extract of the leaves could contribute to determining its higher anti-inflammatory activity.
Zobrazit více v PubMed
Braga N., Rodrigues F., Oliveira P.P.M.B. Castanea sativa by-products: A review on added value and sustainable application. Nat. Prod. Res. 2015;29:1–18. doi: 10.1080/14786419.2014.955488. PubMed DOI
Boscaino F., Cammarota G., Ottombrino A., Nazzaro M., Siano F., Volpe M.G., Sorrentino A. Chemical, volatile profile and shelf life of muffin enriched with supplementation chestnut cream. J. Food Process. Preserv. 2017;41:1–9. doi: 10.1111/jfpp.13013. DOI
Krist S., Unterweger H., Bandion F., Buchbauer G. Volatile compound analysis of SPME headspace and extract samples from roasted Italian chestnuts (Castanea sativa Mill.) using GC-MS. Eur. Food Res. Technol. 2004;219:470–473. doi: 10.1007/s00217-004-0983-5. DOI
Sorice A., Siano F., Capone F., Guerriero E., Picariello G., Budillon A., Ciliberto G., Paolucci M., Costantini S., Volpe M.G. Potential anticancer effects of polyphenols from chestnut shell extracts: Modulation of cell growth, and cytokinomic and metabolomic profiles. Molecules. 2016;21:1411. doi: 10.3390/molecules21101411. PubMed DOI PMC
Vella F.M., Laratta B., La Cara F., Morana A. Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents. Nat. Prod. Res. 2018;32:1022–1032. doi: 10.1080/14786419.2017.1378199. PubMed DOI
De Vasconcelos M.d.C.B.M., Bennett R.N., Quideau S., Jacquet R., Rosa E.A.S., Ferreira-Cardoso J.V. Evaluating the potential of chestnut (Castanea sativa Mill.) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols. Ind. Crops Prod. 2010;31:301–311. doi: 10.1016/j.indcrop.2009.11.008. DOI
Silva V., Falco V., Dias M.I., Barros L., Silva A., Capita R., Alonso-Calleja C., Amaral J.S., Igrejas G., Ferreira I.C.F.R., et al. Evaluation of the phenolic profile of Castanea sativa mill. By-products and their antioxidant and antimicrobial activity against multiresistant bacteria. Antioxidants. 2020;9:87. doi: 10.3390/antiox9010087. PubMed DOI PMC
Esposito T., Celano R., Pane C., Piccinelli A.L., Sansone F., Picerno P., Zaccardelli M., Aquino R.P., Mencherini T. Chestnut (Castanea sativa Miller.) burs extracts and functional compounds: UHPLC-UV-HRMS profiling, antioxidant activity, and inhibitory effects on Phytopathogenic fungi. Molecules. 2019;24:302. doi: 10.3390/molecules24020302. PubMed DOI PMC
Barreira J.C.M., Ferreira I.C.F.R., Oliveira M.B.P.P., Pereira J.A. Antioxidant potential of chestnut (Castanea sativa L.) and almond (Prunus dulcis L.) by-products. Food Sci. Technol. Int. 2010;16:209–216. doi: 10.1177/1082013209353983. PubMed DOI
Afonso A.F., Pereira O.R., Cardoso S.M. Health-promoting effects of Thymus phenolic-rich extracts: Antioxidant, anti-inflammatory and antitumoral properties. Antioxidants. 2020;9:814. doi: 10.3390/antiox9090814. PubMed DOI PMC
Cerulli A., Napolitano A., Masullo M., Hosek J., Pizza C., Piacente S. Chestnut shells (Italian cultivar “Marrone di Roccadaspide” PGI): Antioxidant activity and chemical investigation with in depth LC-HRMS/MSn rationalization of tannins. Food Res. Int. 2020;129:108787. doi: 10.1016/j.foodres.2019.108787. PubMed DOI
Cerulli A., Masullo M., Mari A., Balato A., Filosa R., Lembo S., Napolitano A., Piacente S. Phenolics from Castanea sativa leaves and their effects on UVB-induced damage. Nat. Prod. Res. 2018;32:1170–1175. doi: 10.1080/14786419.2017.1331225. PubMed DOI
Masullo M., Cerulli A., Mari A., Santos C.C.D., Pizza C., Piacente S. LC-MS profiling highlights hazelnut (Nocciola di Giffoni PGI) shells as a byproduct rich in antioxidant phenolics. Food Res. Int. 2017;101:180–187. doi: 10.1016/j.foodres.2017.08.063. PubMed DOI
Makkar H.P.S. Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual. Kluwer Academic Publishers; Dodrecht, The Netherlands: 2003. p. 102.
Jia Z., Tang M., Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64:555–559. doi: 10.1016/S0308-8146(98)00102-2. DOI
Zamuz S., Lopez-Pedrouso M., Barba F.J., Lorenzo J.M., Dominguez H., Franco D. Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 2018;112:263–273. doi: 10.1016/j.foodres.2018.06.053. PubMed DOI
Cerulli A., Masullo M., Montoro P., Hosek J., Pizza C., Piacente S. Metabolite profiling of “green” extracts of Corylus avellana leaves by 1H NMR spectroscopy and multivariate statistical analysis. J. Pharm. Biomed. Anal. 2018;160:168–178. doi: 10.1016/j.jpba.2018.07.046. PubMed DOI
Iranshahi M., Masullo M., Asili A., Hamedzadeh A., Jahanbin B., Festa M., Capasso A., Piacente S. Sesquiterpene Coumarins from Ferula gumosa. J. Nat. Prod. 2010;73:1958–1962. doi: 10.1021/np100487j. PubMed DOI
Masullo M., Cantone V., Cerulli A., Lauro G., Messano F., Russo G.L., Pizza C., Bifulco G., Piacente S. Giffonins J–P, highly hydroxylated cyclized diarylheptanoids from the leaves of Corylus avellana cultivar “Tonda di Giffoni”. J. Nat. Prod. 2015;78:2975–2982. doi: 10.1021/acs.jnatprod.5b00695. PubMed DOI
Masullo M., Montoro P., Autore G., Marzocco S., Pizza C., Piacente S. Quali-quantitative determination of triterpenic acids of Ziziphus jujuba fruits and evaluation of their capability to interfere in macrophages activation inhibiting NO release and iNOS expression. Food Res. Int. 2015;77:109–117. doi: 10.1016/j.foodres.2015.09.009. DOI
Napolitano A., Cerulli A., Pizza C., Piacente S. Multi-class polar lipid profiling in fresh and roasted hazelnut (Corylus avellana cultivar “Tonda di Giffoni”) by LC-ESI/LTQOrbitrap/MS/MSn. Food Chem. 2018;269:125–135. doi: 10.1016/j.foodchem.2018.06.121. PubMed DOI
Mari A., Napolitano A., Masullo M., Pizza C., Piacente S. Identification and quantitative determination of the polar constituents in Helichrysum italicum flowers and derived food supplements. J. Pharm. Biomed. Anal. 2014;96:249–255. doi: 10.1016/j.jpba.2014.04.005. PubMed DOI
Moilanen J., Sinkkonen J., Salminen J.P. Characterization of bioactive plant ellagitannins by chromatographic, spectroscopic and mass spectrometric methods. Chemoecology. 2013;23:165–179. doi: 10.1007/s00049-013-0132-3. DOI
Masullo M., Cerulli A., Montoro P., Pizza C., Piacente S. In depth LC-ESIMSn-guided phytochemical analysis of Ziziphus jujuba Mill. leaves. Phytochemistry. 2019;159:148–158. doi: 10.1016/j.phytochem.2018.12.014. PubMed DOI
Benavides A., Montoro P., Bassarello C., Piacente S., Pizza C. Catechin derivatives in Jatropha macrantha stems: Characterisation and LC/ESI/MS/MS quali-quantitative analysis. J. Pharm. Biomed. Anal. 2006;40:639–647. doi: 10.1016/j.jpba.2005.10.004. PubMed DOI
Mahmood N., Pacente S., Burke A., Khan A., Pizaa C. Constituents of Cuscuta reflexa are anti-HIV agents. Antivir. Chem. Chemother. 1997;8:70–74. doi: 10.1177/095632029700800108. DOI
Perez A.J., Pecio L., Kowalczyk M., Kontek R., Gajek G., Stopinsek L., Mirt I., Oleszek W., Stochmal A. Triterpenoid Components from Oak Heartwood (Quercus robur) and Their Potential Health Benefits. J. Agric. Food Chem. 2017;65:4611–4623. doi: 10.1021/acs.jafc.7b01396. PubMed DOI
Wensbo Posaric D., Andersson A., Bergquist K.-E., Isaksson A. Differentiation and quantification of synthetic phosphatidylethanol (PEth) homologues by 1H- and 13C-NMR in polar organic solvents. Anal. Bioanal. Chem. 2014;406:4735–4744. doi: 10.1007/s00216-014-7826-4. PubMed DOI
Gnann H., Engelmann C., Skopp G., Winkler M., Auwaerter V., Dresen S., Ferreiros N., Wurst F.M., Weinmann W. Identification of 48 homologues of phosphatidylethanol in blood by LC-ESI-MS/MS. Anal. Bioanal. Chem. 2010;396:2415–2423. doi: 10.1007/s00216-010-3458-5. PubMed DOI
D’Urso G., Napolitano A., Cannavacciuolo C., Masullo M., Piacente S. Okra fruit: LC-ESI/LTQOrbitrap/MS/MSn based deep insight on polar lipids and specialized metabolites with evaluation of anti-oxidant and anti-hyperglycemic activity. Food Funct. 2020;11:7856–7865. doi: 10.1039/D0FO00867B. PubMed DOI
Napolitano A., Carbone V., Saggese P., Takagaki K., Pizza C. Novel galactolipids from the leaves of Ipomoea batatas L.: Characterization by liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight tandem mass spectrometry. J. Agric. Food Chem. 2007;55:10289–10297. doi: 10.1021/jf071331z. PubMed DOI
Napolitano A., Benavides A., Pizza C., Piacente S. Qualitative on-line profiling of ceramides and cerebrosides by high performance liquid chromatography coupled with electrospray ionization ion trap tandem mass spectrometry: The case of Dracontium loretense. J. Pharm. Biomed. Anal. 2011;55:23–30. doi: 10.1016/j.jpba.2010.12.035. PubMed DOI
Ito H. Metabolites of the ellagitannin geraniin and their antioxidant activities. Planta Med. 2011;77:1110–1115. doi: 10.1055/s-0030-1270749. PubMed DOI
Karak P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res. 2019;10:1567–1574. doi: 10.13040/ijpsr.0975-8232.10(4).1567-74. DOI
Inoue M., Adachi M., Shimizu Y., Tsutsumi T., Tokumura A. Comparison of Lysophospholipid Levels in Rat Feces with Those in a Standard Chow. J. Agric. Food Chem. 2011;59:7062–7067. doi: 10.1021/jf200986k. PubMed DOI
Damnjanovic J., Kuroiwa C., Tanaka H., Ishida K., Nakano H., Iwasaki Y. Directing positional specificity in enzymatic synthesis of bioactive 1-phosphatidylinositol by protein engineering of a phospholipase D. Biotechnol. Bioeng. 2016;113:62–71. doi: 10.1002/bit.25697. PubMed DOI
Narayanan S., Tamura P.J., Roth M.R., Prasad P.V.V., Welti R. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant Cell Environ. 2016;39:787–803. doi: 10.1111/pce.12649. PubMed DOI PMC
Masullo M., Montoro P., Mari A., Pizza C., Piacente S. Medicinal plants in the treatment of women’s disorders: Analytical strategies to assure quality, safety and efficacy. J. Pharm. Biomed. Anal. 2015;113:189–211. doi: 10.1016/j.jpba.2015.03.020. PubMed DOI
Da Costa E., Amaro H.M., Melo T., Guedes A.C., Domingues M.R. Screening for polar lipids, antioxidant, and anti-inflammatory activities of Gloeothece sp. lipid extracts pursuing new phytochemicals from cyanobacteria. J. Appl. Phycol. 2020;32:3015–3030. doi: 10.1007/s10811-020-02173-6. DOI