Antioxidant and In Vitro Preliminary Anti-Inflammatory Activity of Castanea sativa (Italian Cultivar "Marrone di Roccadaspide" PGI) Burs, Leaves, and Chestnuts Extracts and Their Metabolite Profiles by LC-ESI/LTQOrbitrap/MS/MS

. 2021 Feb 11 ; 10 (2) : . [epub] 20210211

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33670426

Grantová podpora
B61G18000470007 Regione Campania POR Campania FESR 2014-2020

The Italian "Marrone di Roccadaspide" (Castanea sativa), a labeled Protected Geographical Indication (PGI) product, represents an important economic resource for the Italian market. With the aim to give an interesting opportunity to use chestnuts by-products for the development of nutraceutical and/or cosmetic formulations, the investigation of burs and leaves along with chestnuts of C. sativa, cultivar "Marrone di Roccadaspide", has been performed. The phenolic, tannin, and flavonoid content of the MeOH extracts of "Marrone di Roccadaspide" burs, leaves, and chestnuts as well as their antioxidant activity by spectrophotometric methods (1,1-diphenyl-2-picrylhydrazyl (DPPH), Trolox Equivalent Antioxidant Capacity (TEAC), and Ferric Reducing Antioxidant Power (FRAP) have been evaluated. Furthermore, a cell-based antioxidant in vitro test along with in vitro assays for the evaluation of the ability to reduce nuclear factor-kappa B (NF-κB) activation and nitric oxide (NO) production have been carried out. In order to identify the secondary metabolites responsible for the high phenolic content and the strong antioxidant activity shown by leaves and burs extracts, and to highlight the differences between their chemical composition, the analysis of the metabolite profile of the MeOH extracts obtained from both by-products and chestnuts by liquid chromatography coupled to electrospray ionization and multiple-stage linear ion-trap and Orbitrap high-resolution mass spectrometry (LC-(-)ESI/LTQOrbitrap/MS/MS) has been performed. LC-MS analysis allowed the identification of different classes of specialized metabolites including hydrolyzable tannins, flavonoids, ellagic acid and phenol glucoside derivatives, and triterpenoids as well as polar lipids. Our results show how the antioxidant activity of the extracts can be correlated to their high tannins and flavonoids content while polar lipids occurring in the MeOH extract of the leaves could contribute to determining its higher anti-inflammatory activity.

Zobrazit více v PubMed

Braga N., Rodrigues F., Oliveira P.P.M.B. Castanea sativa by-products: A review on added value and sustainable application. Nat. Prod. Res. 2015;29:1–18. doi: 10.1080/14786419.2014.955488. PubMed DOI

Boscaino F., Cammarota G., Ottombrino A., Nazzaro M., Siano F., Volpe M.G., Sorrentino A. Chemical, volatile profile and shelf life of muffin enriched with supplementation chestnut cream. J. Food Process. Preserv. 2017;41:1–9. doi: 10.1111/jfpp.13013. DOI

Krist S., Unterweger H., Bandion F., Buchbauer G. Volatile compound analysis of SPME headspace and extract samples from roasted Italian chestnuts (Castanea sativa Mill.) using GC-MS. Eur. Food Res. Technol. 2004;219:470–473. doi: 10.1007/s00217-004-0983-5. DOI

Sorice A., Siano F., Capone F., Guerriero E., Picariello G., Budillon A., Ciliberto G., Paolucci M., Costantini S., Volpe M.G. Potential anticancer effects of polyphenols from chestnut shell extracts: Modulation of cell growth, and cytokinomic and metabolomic profiles. Molecules. 2016;21:1411. doi: 10.3390/molecules21101411. PubMed DOI PMC

Vella F.M., Laratta B., La Cara F., Morana A. Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents. Nat. Prod. Res. 2018;32:1022–1032. doi: 10.1080/14786419.2017.1378199. PubMed DOI

De Vasconcelos M.d.C.B.M., Bennett R.N., Quideau S., Jacquet R., Rosa E.A.S., Ferreira-Cardoso J.V. Evaluating the potential of chestnut (Castanea sativa Mill.) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols. Ind. Crops Prod. 2010;31:301–311. doi: 10.1016/j.indcrop.2009.11.008. DOI

Silva V., Falco V., Dias M.I., Barros L., Silva A., Capita R., Alonso-Calleja C., Amaral J.S., Igrejas G., Ferreira I.C.F.R., et al. Evaluation of the phenolic profile of Castanea sativa mill. By-products and their antioxidant and antimicrobial activity against multiresistant bacteria. Antioxidants. 2020;9:87. doi: 10.3390/antiox9010087. PubMed DOI PMC

Esposito T., Celano R., Pane C., Piccinelli A.L., Sansone F., Picerno P., Zaccardelli M., Aquino R.P., Mencherini T. Chestnut (Castanea sativa Miller.) burs extracts and functional compounds: UHPLC-UV-HRMS profiling, antioxidant activity, and inhibitory effects on Phytopathogenic fungi. Molecules. 2019;24:302. doi: 10.3390/molecules24020302. PubMed DOI PMC

Barreira J.C.M., Ferreira I.C.F.R., Oliveira M.B.P.P., Pereira J.A. Antioxidant potential of chestnut (Castanea sativa L.) and almond (Prunus dulcis L.) by-products. Food Sci. Technol. Int. 2010;16:209–216. doi: 10.1177/1082013209353983. PubMed DOI

Afonso A.F., Pereira O.R., Cardoso S.M. Health-promoting effects of Thymus phenolic-rich extracts: Antioxidant, anti-inflammatory and antitumoral properties. Antioxidants. 2020;9:814. doi: 10.3390/antiox9090814. PubMed DOI PMC

Cerulli A., Napolitano A., Masullo M., Hosek J., Pizza C., Piacente S. Chestnut shells (Italian cultivar “Marrone di Roccadaspide” PGI): Antioxidant activity and chemical investigation with in depth LC-HRMS/MSn rationalization of tannins. Food Res. Int. 2020;129:108787. doi: 10.1016/j.foodres.2019.108787. PubMed DOI

Cerulli A., Masullo M., Mari A., Balato A., Filosa R., Lembo S., Napolitano A., Piacente S. Phenolics from Castanea sativa leaves and their effects on UVB-induced damage. Nat. Prod. Res. 2018;32:1170–1175. doi: 10.1080/14786419.2017.1331225. PubMed DOI

Masullo M., Cerulli A., Mari A., Santos C.C.D., Pizza C., Piacente S. LC-MS profiling highlights hazelnut (Nocciola di Giffoni PGI) shells as a byproduct rich in antioxidant phenolics. Food Res. Int. 2017;101:180–187. doi: 10.1016/j.foodres.2017.08.063. PubMed DOI

Makkar H.P.S. Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual. Kluwer Academic Publishers; Dodrecht, The Netherlands: 2003. p. 102.

Jia Z., Tang M., Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64:555–559. doi: 10.1016/S0308-8146(98)00102-2. DOI

Zamuz S., Lopez-Pedrouso M., Barba F.J., Lorenzo J.M., Dominguez H., Franco D. Application of hull, bur and leaf chestnut extracts on the shelf-life of beef patties stored under MAP: Evaluation of their impact on physicochemical properties, lipid oxidation, antioxidant, and antimicrobial potential. Food Res. Int. 2018;112:263–273. doi: 10.1016/j.foodres.2018.06.053. PubMed DOI

Cerulli A., Masullo M., Montoro P., Hosek J., Pizza C., Piacente S. Metabolite profiling of “green” extracts of Corylus avellana leaves by 1H NMR spectroscopy and multivariate statistical analysis. J. Pharm. Biomed. Anal. 2018;160:168–178. doi: 10.1016/j.jpba.2018.07.046. PubMed DOI

Iranshahi M., Masullo M., Asili A., Hamedzadeh A., Jahanbin B., Festa M., Capasso A., Piacente S. Sesquiterpene Coumarins from Ferula gumosa. J. Nat. Prod. 2010;73:1958–1962. doi: 10.1021/np100487j. PubMed DOI

Masullo M., Cantone V., Cerulli A., Lauro G., Messano F., Russo G.L., Pizza C., Bifulco G., Piacente S. Giffonins J–P, highly hydroxylated cyclized diarylheptanoids from the leaves of Corylus avellana cultivar “Tonda di Giffoni”. J. Nat. Prod. 2015;78:2975–2982. doi: 10.1021/acs.jnatprod.5b00695. PubMed DOI

Masullo M., Montoro P., Autore G., Marzocco S., Pizza C., Piacente S. Quali-quantitative determination of triterpenic acids of Ziziphus jujuba fruits and evaluation of their capability to interfere in macrophages activation inhibiting NO release and iNOS expression. Food Res. Int. 2015;77:109–117. doi: 10.1016/j.foodres.2015.09.009. DOI

Napolitano A., Cerulli A., Pizza C., Piacente S. Multi-class polar lipid profiling in fresh and roasted hazelnut (Corylus avellana cultivar “Tonda di Giffoni”) by LC-ESI/LTQOrbitrap/MS/MSn. Food Chem. 2018;269:125–135. doi: 10.1016/j.foodchem.2018.06.121. PubMed DOI

Mari A., Napolitano A., Masullo M., Pizza C., Piacente S. Identification and quantitative determination of the polar constituents in Helichrysum italicum flowers and derived food supplements. J. Pharm. Biomed. Anal. 2014;96:249–255. doi: 10.1016/j.jpba.2014.04.005. PubMed DOI

Moilanen J., Sinkkonen J., Salminen J.P. Characterization of bioactive plant ellagitannins by chromatographic, spectroscopic and mass spectrometric methods. Chemoecology. 2013;23:165–179. doi: 10.1007/s00049-013-0132-3. DOI

Masullo M., Cerulli A., Montoro P., Pizza C., Piacente S. In depth LC-ESIMSn-guided phytochemical analysis of Ziziphus jujuba Mill. leaves. Phytochemistry. 2019;159:148–158. doi: 10.1016/j.phytochem.2018.12.014. PubMed DOI

Benavides A., Montoro P., Bassarello C., Piacente S., Pizza C. Catechin derivatives in Jatropha macrantha stems: Characterisation and LC/ESI/MS/MS quali-quantitative analysis. J. Pharm. Biomed. Anal. 2006;40:639–647. doi: 10.1016/j.jpba.2005.10.004. PubMed DOI

Mahmood N., Pacente S., Burke A., Khan A., Pizaa C. Constituents of Cuscuta reflexa are anti-HIV agents. Antivir. Chem. Chemother. 1997;8:70–74. doi: 10.1177/095632029700800108. DOI

Perez A.J., Pecio L., Kowalczyk M., Kontek R., Gajek G., Stopinsek L., Mirt I., Oleszek W., Stochmal A. Triterpenoid Components from Oak Heartwood (Quercus robur) and Their Potential Health Benefits. J. Agric. Food Chem. 2017;65:4611–4623. doi: 10.1021/acs.jafc.7b01396. PubMed DOI

Wensbo Posaric D., Andersson A., Bergquist K.-E., Isaksson A. Differentiation and quantification of synthetic phosphatidylethanol (PEth) homologues by 1H- and 13C-NMR in polar organic solvents. Anal. Bioanal. Chem. 2014;406:4735–4744. doi: 10.1007/s00216-014-7826-4. PubMed DOI

Gnann H., Engelmann C., Skopp G., Winkler M., Auwaerter V., Dresen S., Ferreiros N., Wurst F.M., Weinmann W. Identification of 48 homologues of phosphatidylethanol in blood by LC-ESI-MS/MS. Anal. Bioanal. Chem. 2010;396:2415–2423. doi: 10.1007/s00216-010-3458-5. PubMed DOI

D’Urso G., Napolitano A., Cannavacciuolo C., Masullo M., Piacente S. Okra fruit: LC-ESI/LTQOrbitrap/MS/MSn based deep insight on polar lipids and specialized metabolites with evaluation of anti-oxidant and anti-hyperglycemic activity. Food Funct. 2020;11:7856–7865. doi: 10.1039/D0FO00867B. PubMed DOI

Napolitano A., Carbone V., Saggese P., Takagaki K., Pizza C. Novel galactolipids from the leaves of Ipomoea batatas L.: Characterization by liquid chromatography coupled with electrospray ionization-quadrupole time-of-flight tandem mass spectrometry. J. Agric. Food Chem. 2007;55:10289–10297. doi: 10.1021/jf071331z. PubMed DOI

Napolitano A., Benavides A., Pizza C., Piacente S. Qualitative on-line profiling of ceramides and cerebrosides by high performance liquid chromatography coupled with electrospray ionization ion trap tandem mass spectrometry: The case of Dracontium loretense. J. Pharm. Biomed. Anal. 2011;55:23–30. doi: 10.1016/j.jpba.2010.12.035. PubMed DOI

Ito H. Metabolites of the ellagitannin geraniin and their antioxidant activities. Planta Med. 2011;77:1110–1115. doi: 10.1055/s-0030-1270749. PubMed DOI

Karak P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res. 2019;10:1567–1574. doi: 10.13040/ijpsr.0975-8232.10(4).1567-74. DOI

Inoue M., Adachi M., Shimizu Y., Tsutsumi T., Tokumura A. Comparison of Lysophospholipid Levels in Rat Feces with Those in a Standard Chow. J. Agric. Food Chem. 2011;59:7062–7067. doi: 10.1021/jf200986k. PubMed DOI

Damnjanovic J., Kuroiwa C., Tanaka H., Ishida K., Nakano H., Iwasaki Y. Directing positional specificity in enzymatic synthesis of bioactive 1-phosphatidylinositol by protein engineering of a phospholipase D. Biotechnol. Bioeng. 2016;113:62–71. doi: 10.1002/bit.25697. PubMed DOI

Narayanan S., Tamura P.J., Roth M.R., Prasad P.V.V., Welti R. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant Cell Environ. 2016;39:787–803. doi: 10.1111/pce.12649. PubMed DOI PMC

Masullo M., Montoro P., Mari A., Pizza C., Piacente S. Medicinal plants in the treatment of women’s disorders: Analytical strategies to assure quality, safety and efficacy. J. Pharm. Biomed. Anal. 2015;113:189–211. doi: 10.1016/j.jpba.2015.03.020. PubMed DOI

Da Costa E., Amaro H.M., Melo T., Guedes A.C., Domingues M.R. Screening for polar lipids, antioxidant, and anti-inflammatory activities of Gloeothece sp. lipid extracts pursuing new phytochemicals from cyanobacteria. J. Appl. Phycol. 2020;32:3015–3030. doi: 10.1007/s10811-020-02173-6. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...