Can changes in skin impedance be used to monitor sedation after midazolam and during recovery from anesthesia?

. 2021 Apr 30 ; 70 (2) : 265-272. [epub] 20210308

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články, randomizované kontrolované studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid33676384

It has been suggested that sympathetic activity, measured as changes in electrical skin impedance (SI), can be used to assess the adequacy of general anesthesia. Our prospective study investigated if measurements of skin impedance can determine levels of sedation induced by midazolam. Twenty-seven patients scheduled for arthroscopy requiring general anesthesia were served as their own control. These were blinded to the order of injections by telling them that they will be randomly administered a placebo (saline) orsedative agent. A DM 3900 multimeter was used for SI measurements. The degree of sedation was measured using the modified Observer's Assessment of Alertness and Sedation (mOAAS) scale. Resting SI values were noted, and all participants were then administered the placebo followed 5 min later by midazolam 2 mg i.v. Five min after that, patients were administered standard general anesthesia with propofol, oxygen, nitrous oxide 60 %, and isoflurane 1 MAC via a laryngeal mask, and sufentanil 5 - 10 µg. SI significantly increased after administration of midazolam and induction of anesthesia. There were no significant differences between pre-administration (baseline) and placebo and end of surgery and end of anesthesia with closed eyes. There were highly significant differences (p<0.001) between pre-administration vs. midazolam, placebo vs. midazolam, pre-administration vs. induction of anesthesia. We found slight correlation between mOAAS and SI. There were no significant changes between the end of surgery and the end of anesthesia with closed eyes, but SI significantly decreased (p<0.01) after eyes opened.

Zobrazit více v PubMed

BACH DR. Sympathetic nerve activity can be estimated from skin conductance responses - a comment on Henderson et al (2012) Neuroimage. 2014;84:122–123. doi: 10.1016/j.neuroimage.2013.08.030. PubMed DOI PMC

CHERNIK DA, GILLINGS D, LAINE H, HENDLER J, SILVER JM, DAVIDSON AB, SCHWAM EM, SIEGEL JL. Validity and reliability of the Observer’s Assessment of Alertness/Sedation Scale: study with intravenous midazolam. J Clin Psychopharmacol. 1990;10:244–251. doi: 10.1097/00004714-199008000-00003. PubMed DOI

CHISHOLM CJ, ZURICA J, MIRONOV D, SCIACCA RR, ORNSTEIN E, HEYER EJ. Comparison of electrophysiologic monitors with clinical assessment of level of sedation. Mayo Clin Proc. 2006;81:46–52. doi: 10.4065/81.1.46. PubMed DOI PMC

COWEN R, STASIOWSKA MK, LAYCOCK H, BANTEL C. Assessing pain objectively: the use of physiological markers. Anaesthesia. 2015;70:828–847. doi: 10.1111/anae.13018. PubMed DOI

CZAPLIK M, HUBNER C, KONY M, KALICIAK J, KEZZE F, LEONHARDT S, ROSSAINT R. Acute pain therapy in postanesthesia care unit directed by skin conductance: a randomized controlled trial. PLoS One. 2012;7:e41758. doi: 10.1371/journal.pone.0041758. PubMed DOI PMC

GJERSTAD AC, STORM H, HAGEN R, HUIKU M, QVIGSTAD E, RAEDER J. Comparison of skin conductance with entropy during intubation, tetanic stimulation and emergence from general anaesthesia. Acta Anaesthesiol Scand. 2007;51:8–15. doi: 10.1111/j.1399-6576.2006.01189.x. PubMed DOI

GJERSTAD AC. Is skin conductance a predictor of arousal, noxious stimuli and pain in the sedated and anaesthetized patient? Series of dissertations submitted to the Faculty of Medicine, University of Oslon; p. 1249.

GUNTHER AC, BOTTAI M, SCHANDL AR, STORM H, ROSSI P, SACKEY PV. Palmar skin conductance variability and the relation to stimulation, pain and the motor activity assessment scale in intensive care unit patients. Crit Care. 2013;17:R51. doi: 10.1186/cc12571. PubMed DOI PMC

HABERLAND CM, BAKER S, LIU H. Bispectral index monitoring of sedation depth in pediatric dental patients. Anesth Prog. 2011;58:66–72. doi: 10.2344/0003-3006-58.2.66. PubMed DOI PMC

HINOJOSA-LABORDE C, CHAPA I, LANGE D, HAYWOOD JR. Gender differences in sympathetic nervous system regulation. Clin Exp Pharmacol Physiol. 1999;26:122–126. doi: 10.1046/j.1440-1681.1999.02995.x. PubMed DOI

KITTNAR O. Selected sex related differences in pathophysiology of cardiovascular system. Physiol Res. 2020;69:21–31. doi: 10.33549/physiolres.934068. PubMed DOI PMC

LEDOWSKI T, BROMILOW J, WU J, PAECH MJ, STORM H, SCHUG SA. The assessment of postoperative pain by monitoring skin conductance: results of a prospective study. Anaesthesia. 2007;62:989–993. doi: 10.1111/j.1365-2044.2007.05191.x. PubMed DOI

LEDOWSKI T, PASCOE E, ANG B, SCHMARBECK T, CLARKE MW, FULLER C, KAPOOR V. Monitoring of intra-operative nociception: skin conductance and surgical stress index versus stress hormone plasma levels. Anaesthesia. 2010;65:1001–1006. doi: 10.1111/j.1365-2044.2010.06480.x. PubMed DOI

MARSH A. A Brief History of the Lie Detector. [Accessed 31/10/2020.2019.]. https://spectrum.ieee.org/tech-history/heroic-failures/a-brief-history-of-the-lie-detector .

NONAKA T, INAMORI M, MIYASHITA T, INOH Y, KANOSHIMA K, HIGURASHI T, OHKUBO H, IIDA H, FUJITA K, KUSAKABE A, GOTOH T, NAKAJIMA A. Can sedation using a combination of propofol and dexmedetomidine enhance the satisfaction of the endoscopist in endoscopic submucosal dissection? Endosc Int Open. 2018;6:E3–E10. doi: 10.1055/s-0043-122228. PubMed DOI PMC

ROGOYOV V, VANEK T. The importance and options of perioperative evaluation of nociception (in Czech) Anest Intenziv Med. 2020;31:225–232.

ROKYTA R, YAMAMOTOVA A. Sex differences in pain perception and interpretation. Act Nerv SuperRediviva. 2013;55:125–134.

SHETTY RM, BELLINI A, WIJAYATILAKE DS, HAMILTON MA, JAIN R, KARANTH S, NAMACHIVAYAM A. BIS monitoring versus clinical assessment for sedation in mechanically ventilated adults in the intensive care unit and its impact on clinical outcomes and resource utilization. Cochrane Database Syst Rev. 2:CD011240–2018.. PubMed PMC

STORM H. Changes in skin conductance as a tool to monitor nociceptive stimulation and pain. Curr Opin Anaesthesiol. 2008;21:796–804. doi: 10.1097/ACO.0b013e3283183fe4. PubMed DOI

UENO T, TREMBLAY J, KUNES J, ZICHA J, DOBESOVA Z, PAUSOVA Z, DENG AY, SUN Y, JACOB HJ, HAMET P. Gender-specific genetic determinants of blood pressure and organ weight: pharmacogenetic approach. Physiol Res. 2003;52:689–700. PubMed

VALKENBURG AJ, NIEHOF SP, VAN DM, VERHAAR EJ, TIBBOEL D. Skin conductance peaks could result from changes in vital parameters unrelated to pain. Pediatr Res. 2012;71:375–379. doi: 10.1038/pr.2011.72. PubMed DOI

WIDACKI J. Discoverers of the Galvanic Skin Response. Eur Polygraph. 2015;9:209–220. doi: 10.1515/ep-2015-0008. DOI

WINTERHALTER M, MUNTE S, GERHARD M, DANZEISEN O, JUTTNER T, MONACA E, HOY L, RAHE-MEYER N, KIENBAUM P. Prospective study comparing skin impedance with EEG parameters during the induction of anaesthesia with fentanyl and etomidate. Eur J Med Res. 2010;15:47–53. doi: 10.1186/2047-783X-15-2-47. PubMed DOI PMC

WINTERHALTER M, MUNTE S, TASCHENBRECKER P, HECKER H, WEILBACH C, OSTHAUS AW, GROSS M, PIEPENBROCK S, RAHE-MEYER N. Skin impedance correlates to sedation grade, plasma propofol concentrations and bispectral index during a target-controlled infusion of propofol. Eur J Anaesthesiol. 2009;26:589–596. doi: 10.1097/EJA.0b013e328329b149. PubMed DOI

WINTERHALTER M, SCHILLER J, MUNTE S, BUND M, HOY L, WEILBACH C, PIEPENBROCK S, RAHE-MEYER N. Prospective investigation into the influence of various stressors on skin impedance. J Clin Monit Comput. 2008;22:67–74. doi: 10.1007/s10877-007-9107-7. PubMed DOI

ZHANG H, LU Y, WANG L, LV J, MA Y, WANG W, LI G, LI Y. Bispectral index monitoring of sedation depth during endoscopy: a meta-analysis with trial sequential analysis of randomized controlled trials. Minerva Anestesiol. 2019;85:412–432. doi: 10.23736/S0375-9393.18.13227-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...