• This record comes from PubMed

Carbon Nitride-Based Ruthenium Single Atom Photocatalyst for CO2 Reduction to Methanol

. 2021 Apr ; 17 (16) : e2006478. [epub] 20210319

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

With increasing concerns for global warming, the solar-driven photocatalytic reduction of CO2 into chemical fuels like methanol is a propitious route to enrich energy supplies, with concomitant reduction of the abundant CO2 stockpiles. Herein, a novel single atom-confinement and a strategy are reported toward single ruthenium atoms dispersion over porous carbon nitride surface. Ruthenium single atom character is well confirmed by EXAFS absorption spectrometric analysis unveiling the cationic coordination environment for the single-atomic-site ruthenium center, that is formed by Ru-N/C intercalation in the first coordination shell, attaining synergism in N-Ru-N connection and interfacial carrier transfer. From time resolved fluorescence decay spectra, the average carrier lifetime of the RuSA-mC3 N4 system is found to be higher compared to m-C3 N4 ; the fact uncovering the crucial role of single Ru atoms in promoting photocatalytic reaction system. A high yield of methanol (1500 µmol g-1 cat. after 6 h of the reaction) using water as an electron donor and the reusability of the developed catalyst without any significant change in the efficiency represent the superior aspects for its potential application in real industrial technologies.

See more in PubMed

U. Ulmer, T. Dingle, P. N. Duchesne, R. H. Morris, A. Tavasoli, T. Wood, G. A. Ozin, Nat. Commun. 2019, 10, 3169.

Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933.

X. Liu, S. Inagaki, J. Gong, Angew. Chem., Int. Ed. 2016, 55, 14924.

S. N. Habisreutinger, L. Schmidt-Mende, J. K. Stolarczyk, Angew. Chem., Int. Ed. 2013, 52, 7372.

M. Parry, M. L. Parry, O. Canziani, J. Palutikof, P. Van der Linden, C. Hanson, Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC, Cambridge University Press, Cambridge 2007.

A. White, M. G. R. Cannell, A. D. Friend, Global Change Biol. 2000, 6, 817.

C. Costentin, M. Robert, J.-M. Savéant, Chem. Soc. Rev. 2013, 42, 2423.

X. Jiao, K. Zheng, Z. Hu, Y. Sun, Y. Xie, ACS Cent. Sci. 2020, 6, 653.

B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C. P. Kubiak, Annu. Rev. Phys. Chem. 2012, 63, 541.

J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang, T. Zhang, Chem. Soc. Rev. 2020, 49, 1385.

P. R. Yaashikaa, P. Senthil Kumar, S. J. Varjani, A. Saravanan, J. CO2 Util. 2019, 33, 131.

S. Kumar, M. B. Gawande, J. Kopp, S. Kment, R. S. Varma, R. Zbořil, ChemSusChem 2020, 13, 5231.

K. Sekizawa, K. Maeda, K. Domen, K. Koike, O. Ishitani, J. Am. Chem. Soc. 2013, 135, 4596.

A. Kumar, P. Kumar, R. Borkar, A. Bansiwal, N. Labhsetwar, S. L. Jain, Carbon 2017, 123, 371.

B. Duan, L. Mei, J. Colloid Interface Sci. 2020, 575, 265.

Y. N. Kavil, Y. A. Shaban, R. Kh. Al Farawati, M. I. Orif, M. Zobidi, S. U. M. Khan, J. Photochem. Photobiol. Chem. 2017, 347, 244.

B. AlOtaibi, X. Kong, S. Vanka, S. Y. Woo, A. Pofelski, F. Oudjedi, S. Fan, M. G. Kibria, G. A. Botton, W. Ji, H. Guo, Z. Mi, ACS Energy Lett. 2016, 1, 246.

T. Billo, F.-Y. Fu, P. Raghunath, I. Shown, W.-F. Chen, H.-T. Lien, T.-H. Shen, J.-F. Lee, T.-S. Chan, K.-Y. Huang, C.-I. Wu, M. C. Lin, J.-S. Hwang, C.-H. Lee, L.-C. Chen, K.-H. Chen, Small 2018, 14, 1702928.

H. Cheng, B. Huang, Y. Liu, Z. Wang, X. Qin, X. Zhang, Y. Dai, Chem. Commun. 2012, 48, 9729.

A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2018, 2, 65.

Z. Chen, E. Vorobyeva, S. Mitchell, E. Fako, N. López, S. M. Collins, R. K. Leary, P. A. Midgley, R. Hauert, J. Pérez-Ramírez, Natl. Sci. Rev. 2018, 5, 642.

X. Su, X.-F. Yang, Y. Huang, B. Liu, T. Zhang, Acc. Chem. Res. 2019, 52, 656.

L. Cao, W. Liu, Q. Luo, R. Yin, B. Wang, J. Weissenrieder, M. Soldemo, H. Yan, Y. Lin, Z. Sun, C. Ma, W. Zhang, S. Chen, H. Wang, Q. Guan, T. Yao, S. Wei, J. Yang, J. Lu, Nature 2019, 565, 631.

H. Wang, J.-X. Liu, L. F. Allard, S. Lee, J. Liu, H. Li, J. Wang, J. Wang, S. H. Oh, W. Li, M. Flytzani-Stephanopoulos, M. Shen, B. R. Goldsmith, M. Yang, Nat. Commun. 2019, 10, 3808.

G. Vilé, D. Albani, M. Nachtegaal, Z. Chen, D. Dontsova, M. Antonietti, N. López, J. Pérez-Ramírez, Angew. Chem., Int. Ed. 2015, 54, 11265.

X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740.

M. B. Gawande, P. Fornasiero, R. Zbořil, ACS Catal. 2020, 10, 2231.

B. Ma, G. Chen, C. Fave, L. Chen, R. Kuriki, K. Maeda, O. Ishitani, T.-C. Lau, J. Bonin, M. Robert, J. Am. Chem. Soc. 2020, 142, 6188.

J. Fu, S. Wang, Z. Wang, K. Liu, H. Li, H. Liu, J. Hu, X. Xu, H. Li, M. Liu, Front. Phys. 2020, 15, 33201.

W. Yu, D. Xu, T. Peng, J. Mater. Chem. A 2015, 3, 19936.

M. S. Jeletic, M. T. Mock, A. M. Appel, J. C. Linehan, J. Am. Chem. Soc. 2013, 135, 11533.

Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan, Z. Zou, J. Am. Chem. Soc. 2010, 132, 14385.

C. Federsel, A. Boddien, R. Jackstell, R. Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy, M. Beller, Angew. Chem., Int. Ed. 2010, 49, 9777.

S. Cao, M. Yang, A. O. Elnabawy, A. Trimpalis, S. Li, C. Wang, F. Göltl, Z. Chen, J. Liu, J. Shan, M. Li, T. Haas, K. W. Chapman, S. Lee, L. F. Allard, M. Mavrikakis, M. Flytzani-Stephanopoulos, Nat. Chem. 2019, 11, 1098.

L. Liang, F. Lei, S. Gao, Y. Sun, X. Jiao, J. Wu, S. Qamar, Y. Xie, Angew. Chem., Int. Ed. 2015, 54, 13971.

P. Huang, J. Huang, S. A. Pantovich, A. D. Carl, T. G. Fenton, C. A. Caputo, R. L. Grimm, A. I. Frenkel, G. Li, J. Am. Chem. Soc. 2018, 140, 16042.

X. Cui, W. Li, P. Ryabchuk, K. Junge, M. Beller, Nat. Catal. 2018, 1, 385.

A. Bakandritsos, R. G. Kadam, P. Kumar, G. Zoppellaro, M. Medved', J. Tuček, T. Montini, O. Tomanec, P. Andrýsková, B. Drahoš, R. S. Varma, M. Otyepka, M. B. Gawande, P. Fornasiero, R. Zbořil, Adv. Mater. 2019, 31, 1900323.

K. Li, B. Peng, T. Peng, ACS Catal. 2016, 6, 7485.

D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548.

M. Wu, Y. Gong, T. Nie, J. Zhang, R. Wang, H. Wang, B. He, J. Mater. Chem. A 2019, 7, 5324.

Q. Lin, Y. Huang, Y. Wang, L. Li, X. Y. Liu, F. Lv, A. Wang, W.-C. Li, T. Zhang, J. Mater. Chem. A 2014, 2, 5178.

R. E. Shepherd, A. Proctor, W. W. Henderson, T. K. Myser, Inorg. Chem. 1987, 26, 2440.

L. Chen, P. Hu, C. P. Deming, N. Wang, J. E. Lu, S. Chen, J. Phys. Chem. C 2016, 120, 13303.

C. Creutz, N. Sutin, Proc. Natl. Acad. Sci. USA 1975, 72, 2858.

Y.-T. Li, S.-H. Zhang, G.-P. Zheng, P. Liu, Z.-K. Peng, X.-C. Zheng, Appl. Catal., A 2020, 595, 117511.

S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P. M. Ajayan, Adv. Mater. 2013, 25, 2452.

T. Marshall-Roth, N. J. Libretto, A. T. Wrobel, K. J. Anderton, M. L. Pegis, N. D. Ricke, T. V. Voorhis, J. T. Miller, Y. Surendranath, Nat. Commun. 2020, 11, 5283.

T. Marshall-Roth, N. J. Libretto, A. T. Wrobel, K. Anderton, N. D. Ricke, T. Van Voorhis, J. T. Miller, Y. Surendranath, Nat. Commun. 2020, 11, 5283.

X. Li, H. Rong, J. Zhang, D. Wang, Y. Li, Nano Res. 2020, 13, 1842.

J. Yang, W. Li, D. Wang, Y. Li, Small Struct. 2021, 2, 2000051.

X. Wang, C. Liow, A. Bisht, X. Liu, T. C. Sum, X. Chen, S. Li, Adv. Mater. 2015, 27, 2207.

S. Mondal, L. Sahoo, Y. Vaishnav, S. Mishra, R. S. Roy, C. P. Vinod, A. K. De, U. K. Gautam, J. Mater. Chem. A 2020, 8, 20581.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...