single atom Dotaz Zobrazit nápovědu
3rd ed XIII, 223 s.
RECQ5 is one of five RecQ helicases found in humans and is thought to participate in homologous DNA recombination by acting as a negative regulator of the recombinase protein RAD51. Here, we use kinetic and single molecule imaging methods to monitor RECQ5 behavior on various nucleoprotein complexes. Our data demonstrate that RECQ5 can act as an ATP-dependent single-stranded DNA (ssDNA) motor protein and can translocate on ssDNA that is bound by replication protein A (RPA). RECQ5 can also translocate on RAD51-coated ssDNA and readily dismantles RAD51-ssDNA filaments. RECQ5 interacts with RAD51 through protein-protein contacts, and disruption of this interface through a RECQ5-F666A mutation reduces translocation velocity by ∼50%. However, RECQ5 readily removes the ATP hydrolysis-deficient mutant RAD51-K133R from ssDNA, suggesting that filament disruption is not coupled to the RAD51 ATP hydrolysis cycle. RECQ5 also readily removes RAD51-I287T, a RAD51 mutant with enhanced ssDNA-binding activity, from ssDNA. Surprisingly, RECQ5 can bind to double-stranded DNA (dsDNA), but it is unable to translocate. Similarly, RECQ5 cannot dismantle RAD51-bound heteroduplex joint molecules. Our results suggest that the roles of RECQ5 in genome maintenance may be regulated in part at the level of substrate specificity.
- MeSH
- adenosintrifosfát metabolismus MeSH
- bodová mutace MeSH
- helikasy RecQ genetika metabolismus ultrastruktura MeSH
- homologní rekombinace * MeSH
- hydrolýza MeSH
- jednovláknová DNA metabolismus ultrastruktura MeSH
- kinetika MeSH
- lidé MeSH
- mikroskopie atomárních sil MeSH
- missense mutace MeSH
- molekulární motory metabolismus ultrastruktura MeSH
- rekombinantní fúzní proteiny metabolismus MeSH
- rekombinantní proteiny metabolismus MeSH
- rekombinasa Rad51 genetika metabolismus MeSH
- replikační protein A metabolismus MeSH
- substrátová specifita MeSH
- zobrazení jednotlivé molekuly * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Membrane-bound pyrophosphatases couple the hydrolysis of inorganic pyrophosphate to the pumping of ions (sodium or protons) across a membrane in order to generate an electrochemical gradient. This class of membrane protein is widely conserved across plants, fungi, archaea, and bacteria, but absent in multicellular animals, making them a viable target for drug design against protozoan parasites such as Plasmodium falciparum. An excellent understanding of many of the catalytic states throughout the enzymatic cycle has already been afforded by crystallography. However, the dynamics and kinetics of the catalytic cycle between these static snapshots remain to be elucidated. Here, we employ single-molecule Förster resonance energy transfer (FRET) measurements to determine the dynamic range and frequency of conformations available to the enzyme in a lipid bilayer during the catalytic cycle. First, we explore issues related to the introduction of fluorescent dyes by cysteine mutagenesis; we discuss the importance of residue selection for dye attachment, and the balance between mutating areas of the protein that will provide useful dynamics while not altering highly conserved residues that could disrupt protein function. To complement and guide the experiments, we used all-atom molecular dynamics simulations and computational methods to estimate FRET efficiency distributions for dye pairs at different sites in different protein conformational states. We present preliminary single-molecule FRET data that points to insights about the binding modes of different membrane-bound pyrophosphatase substrates and inhibitors.
- MeSH
- bakteriální proteiny chemie genetika izolace a purifikace metabolismus MeSH
- buněčná membrána metabolismus MeSH
- enzymatické testy přístrojové vybavení metody MeSH
- fluorescenční barviva chemie MeSH
- fluorescenční mikroskopie přístrojové vybavení metody MeSH
- mutageneze MeSH
- protozoální proteiny chemie genetika izolace a purifikace metabolismus MeSH
- pyrofosfatasy chemie genetika izolace a purifikace metabolismus MeSH
- racionální návrh léčiv MeSH
- rekombinantní proteiny chemie genetika izolace a purifikace metabolismus MeSH
- rezonanční přenos fluorescenční energie přístrojové vybavení metody MeSH
- Saccharomyces cerevisiae MeSH
- sekvenční seřazení MeSH
- simulace molekulární dynamiky * MeSH
- software MeSH
- zobrazení jednotlivé molekuly přístrojové vybavení metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The growing incidence of multidrug-resistant bacterial strains presents a major challenge in modern medicine. Antibiotic resistance is often exhibited by Staphylococcus aureus, which causes severe infections in human and animal hosts and leads to significant economic losses. Antimicrobial agents with enzymatic activity (enzybiotics) and phage therapy represent promising and effective alternatives to classic antibiotics. However, new tools are needed to study phage-bacteria interactions and bacterial lysis with high resolution and in real-time. Here, we introduce a method for studying the lysis of S. aureus at the single-cell level in real-time using atomic force microscopy (AFM) in liquid. We demonstrate the ability of the method to monitor the effect of the enzyme lysostaphin on S. aureus and the lytic action of the Podoviridae phage P68. AFM allowed the topographic and biomechanical properties of individual bacterial cells to be monitored at high resolution over the course of their lysis, under near-physiological conditions. Changes in the stiffness of S. aureus cells during lysis were studied by analyzing force-distance curves to determine Young's modulus. This allowed observing a progressive decline in cellular stiffness corresponding to the disintegration of the cell envelope. The AFM experiments were complemented by surface plasmon resonance (SPR) experiments that provided information on the kinetics of phage-bacterium binding and the subsequent lytic processes. This approach forms the foundation of an innovative framework for studying the lysis of individual bacteria that may facilitate the further development of phage therapy.
- MeSH
- bakteriofágy * MeSH
- lidé MeSH
- mikroskopie atomárních sil MeSH
- povrchová plasmonová rezonance MeSH
- stafylokokové infekce * MeSH
- Staphylococcus aureus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Density functional theory (DFT) studies on adsorption of several gaseous homo- and hetero-diatomic molecules (AB) including H2, O2, N2, NO and CO on external surface of H-capped pristine armchair (5, 5) single-walled carbon nanotube (SWCNT) were conducted. Structures of C70H10 and the corresponding C70H10-AB adducts were fully optimized at the B3LYP/6-311G* level of theory. Calculated HOMO/LUMO energy gaps (Eg), (13)C NMR chemical shifts and IR/Raman parameters were analyzed and critically compared with available experimental data. Significant changes of carbon NMR atom chemical shifts (up to -100 ppm) and shielding anisotropies (up to -180 ppm) at sites of addition were observed. Functionalized SWCNTs produced IR and Raman spectra different from the pristine nanotube model. The selective changes in vibrational spectra will help in assigning the topology of functionalization at the nanotube wall.
- MeSH
- elektrony MeSH
- kvantová teorie * MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární konformace MeSH
- molekulární modely * MeSH
- nanotrubičky uhlíkové chemie MeSH
- Ramanova spektroskopie * MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The cardiac excitation-contraction coupling is the cellular process through which the heart absolves its blood pumping function, and it is directly affected when cardiac pathologies occur. Cardiomyocytes are the functional units in which this complex biomolecular process takes place: they can be represented as a two-stage electro-chemo and chemo-mechanical transducer, along which each stage can be probed and monitored via appropriate micro/nanotechnology-based tools. Atomic force microscopy (AFM), with its unique nanoresolved force sensitivity and versatile modes of extracting sample properties, can represent a key instrument to study time-dependent heart mechanics and topography at the single cell level. In this work, we show how the integrative possibilities of AFM allowed us to implement an in vitro system which can monitor cardiac electrophysiology, intracellular calcium dynamics, and single cell mechanics. We believe this single cell-sensitive and integrated system will unlock improved, fast, and reliable cardiac in vitro tests in the future.
- MeSH
- analýza dat MeSH
- elektrofyziologické jevy * MeSH
- kardiomyocyty cytologie fyziologie MeSH
- mechanické jevy * MeSH
- mikroskopie atomárních sil * přístrojové vybavení metody MeSH
- molekulární zobrazování MeSH
- spřažení excitace a kontrakce * MeSH
- vápníková signalizace MeSH
- Publikační typ
- časopisecké články MeSH
The aim of the present study was to evaluate the efficiency of photosensitisation induced by two photosensitizers, TMPyP and ClAlPcS2, tested in vitro on the tumor cell line MCF7. The oxidative damage of DNA in MCF-7 cells was analyzed by comet assay (CA) combined with Atomic Force Microscopy (AFM). The ability of detection of apoptotic response detected by Atomic Force Microscopy at the individual molecule level of DNA was successfully demonstrated; when DNA get damaged, cleavage to fragments caused by photodynamic treatment was directly visualized by AFM imaging of individual molecules. Its accuracy and reliability was validated through the comparison with traditional single cell agarose electrophoresis.
Cholesterol is important for the formation of microdomains in supported lipid bilayers and is enriched in the liquid-ordered phase. To understand the interactions leading to this enrichment, we developed an AFM-based single-lipid-extraction (SLX) approach that enables us to determine the anchoring strength of cholesterol in the two phases of a phase-separated lipid membrane. As expected, the forces necessary for extracting a single cholesterol molecule from liquid-ordered phases are significantly higher than for extracting it from the liquid-disordered phases. Interestingly, application of the Bell model shows two energy barriers that correlate with the head and full length of the cholesterol molecule. The resulting lifetimes for complete extraction are 90 s and 11 s in the liquid-ordered and liquid-disordered phases, respectively. Molecular dynamics simulations of the very same experiment show similar force profiles and indicate that the stabilization of cholesterol in the liquid-ordered phase is mainly due to nonpolar contacts.
- MeSH
- cholesterol chemie MeSH
- fosfatidylcholiny chemie MeSH
- fosfatidylethanolaminy chemie MeSH
- lipidové dvojvrstvy chemie MeSH
- mikroskopie atomárních sil metody MeSH
- simulace molekulární dynamiky MeSH
- spektrální analýza MeSH
- unilamelární lipozómy chemie MeSH
- vodíková vazba MeSH
- změna skupenství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH