The role of anthropogenic habitats in freshwater mussel conservation

. 2021 Jun ; 27 (11) : 2298-2314. [epub] 20210319

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33739622

Grantová podpora
CA18239 COST project
N18/DBS/000003 Institute of Environmental Sciences Jagiellonian University
Aragón Government

Anthropogenic freshwater habitats may provide undervalued prospects for long-term conservation as part of species conservation planning. This fundamental, but overlooked, issue requires attention considering the pace that humans have been altering natural freshwater ecosystems and the accelerated levels of biodiversity decline in recent decades. We compiled 709 records of freshwater mussels (Bivalvia, Unionida) inhabiting a broad variety of anthropogenic habitat types (from small ponds to large reservoirs and canals) and reviewed their importance as refuges for this faunal group. Most records came from Europe and North America, with a clear dominance of canals and reservoirs. The dataset covered 228 species, including 34 threatened species on the IUCN Red List. We discuss the conservation importance and provide guidance on how these anthropogenic habitats could be managed to provide optimal conservation value to freshwater mussels. This review also shows that some of these habitats may function as ecological traps owing to conflicting management practices or because they act as a sink for some populations. Therefore, anthropogenic habitats should not be seen as a panacea to resolve conservation problems. More information is necessary to better understand the trade-offs between human use and the conservation of freshwater mussels (and other biota) within anthropogenic habitats, given the low number of quantitative studies and the strong biogeographic knowledge bias that persists.

Aquatic Systems Biology Unit Technical University of Munich Freising Germany

Australian Rivers Institute Griffith University Nathan Qld Australia

Cavanilles Institute of Biodiversity and Evolutionary Biology University of Valencia Valencia Spain

CBMA Centre of Molecular and Environmental Biology Department of Biology University of Minho Braga Portugal

Centro de Investigação de Montanha Instituto Politécnico de Bragança Bragança Portugal

Centro de Investigaciones y Transferencia Unidad Académica San Julián Santa Cruz Argentina

CIBIO InBIO Research Center in Biodiversity and Genetic Resources University of Porto Vairão Portugal

CITAB UTAD Centre for Research and Technology of Agro Environment and Biological Sciences Forestry Department University of Trás os Montes and Alto Douro Vila Real Portugal

CNR IRSA Institute of Water Research Verbania Pallanza Italy

Department of Aquatic Zoology Western Australian Museum Welshpool WA Australia

Department of Environmental and Life Sciences Biology Karlstad University Karlstad Sweden

Department of Environmental Horticulture Minami Kyushu University Miyazaki Japan

Department of Freshwater Invertebrates Albany Museum Makhanda South Africa

Department of Invertebrate Zoology National Museum of Natural History Smithsonian Institution Washington DC USA

Department of Zoology and Entomology Rhodes University Makhanda South Africa

Department of Zoology and Fisheries Czech University of Life Sciences Prague Prague Czech Republic

EcoBiv Ecology and Conservation of Freshwater Mussel Group Universidade Federal de Mato Grosso Cuiabá Brazil

Environment Energy and Science NSW Department of Planning Industry and Environment Parramatta NSW Australia

Environmental Service Department Sociedad Aragonesa de Gestión Agroambiental Zaragoza Spain

Faculdade de Tecnologia Nilo de Stéfani FATEC São Paulo Brazil

Faculty of Biotechnology and Food Agricultural University of Tirana Tirana Albania

Institut de Systématique Évolution Biodiversité ISYEB Museum National d'Histoire Naturelle CNRS Sorbonne Université EPHE Université des Antilles Paris France

Institute of Biology Biotechnology and Environmental Protection Faculty of Natural Sciences University of Silesia in Katowice Katowice Poland

Institute of Environmental Sciences Jagiellonian University Kraków Poland

Institute of Marine Biology National Academy of Sciences of Ukraine Odessa Ukraine

Instituto de Investigación de Recursos Biológicos Alexander von Humboldt Programa Ciencias Biodiversidad Línea Gestión de Recursos Hidrobiológicos Bogotá Colombia

N Laverov Federal Center for Integrated Arctic Research Ural Branch of Russian Academy of Sciences Arkhangelsk Russian Federation

Norwegian Institute of Nature Research Oslo Norway

Pacific Northwest Native Freshwater Mussel Workgroup Hillsboro OR USA

School of Geography University of Nottingham Nottingham UK

School of Life Sciences Nanchang University Nanchang China

tur and ëmwelt Fondation Hëllef fir d'Natur Heinerscheid Luxembourg

Zobrazit více v PubMed

Albrecht, C., Bodon, M., Cianfanelli, S., Giusti, F., & Manganelli, G. (2011). Microcondylaea bonellii. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T155595A4805631.en

Aldridge, D. C. (2000). The impacts of dredging and weed cutting on a population of freshwater mussels (Bivalvia: Unionidae). Biological Conservation, 95, 247-257. https://doi.org/10.1016/S0006-3207(00)00045-8

Araujo, R., & Ramos, M. A. (1998). Margaritifera auricularia (Unionoidea, Margaritiferidae), the giant freshwater pearl mussel rediscovered in Spain. Graellsia, 54, 129-130.

Araujo, R., & Ramos, M. A. (2000). Status and conservation of the giant European freshwater pearl mussel (Margaritifera auricularia) (Spengler, 1793) (Bivalvia: Unionoidea). Biological Conservation, 96, 233-239. https://doi.org/10.1016/S0006-3207(00)00075-6

Aspe, C., & Jacqué, M. (2015). Agricultural irrigation canals in southern France and new urban territorial uses. Agriculture and Agricultural Science Procedia, 4, 29-39. https://doi.org/10.1016/j.aaspro.2015.03.005

Barbarossa, V., Schmitt, R. J., Huijbregts, M. A., Zarfl, C., King, H., & Schipper, A. M. (2020). Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proceedings of the National Academy of Sciences of the United Sciences of America, 117, 3648-3655. https://doi.org/10.1073/pnas.1912776117

Barnosky, A. D. (2008). Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proceedings of the National Academy of Sciences of the United Sciences of America, 105, 11543-11548. https://doi.org/10.1073/pnas.0801918105

Beatty, S. J., & Morgan, D. L. (2017). Rapid proliferation of an endemic galaxiid following eradication of an alien piscivore (Perca fluviatilis) from a reservoir. Journal of Fish Biology, 90, 1090-1097. https://doi.org/10.1111/jfb.13214

Beggel, S., & Geist, J. (2015). Acute effects of salinity exposure on glochidia viability and host infection of the freshwater mussel Anodonta anatina (Linnaeus, 1758). Science of the Total Environment, 502, 659-665. https://doi.org/10.1016/j.scitotenv.2014.09.067

Beran, L. (2019). Distribution and recent status of freshwater mussels of family Unionidae (Bivalvia) in the Czech Republic. Knowledge and Management of Aquatic Ecosystems, 420, 45. https://doi.org/10.1051/kmae/2019038

Bespalaya, Y. V., Bolotov, I. N., Aksenova, O. V., Gofarov, M. Y., Kondakov, A. V., Vikhrev, I. V., & Vinarski, M. V. (2018). DNA barcoding reveals invasion of two cryptic Sinanodonta mussel species (Bivalvia: Unionidae) into the largest Siberian river. Limnologica, 69, 94-102. https://doi.org/10.1016/j.limno.2017.11.009

Brainwood, M., Burgin, S., & Byrne, M. (2008). The role of geomorphology in substratum patch selection by freshwater mussels in the Hawkesbury-Nepean River (New South Wales) Australia. Aquatic Conservation: Marine and Freshwater Ecosystems, 18, 1285-1301. https://doi.org/10.1002/aqc.949

Byrne, M. (1998). Reproduction of river and lake populations of Hyridella depressa (Unionacea: Hyriidae) in New South Wales: Implications for their conservation. Hydrobiologia, 389, 29-43. https://doi.org/10.1023/A:1003528431775

Chester, E. T., & Robson, B. J. (2013). Anthropogenic refuges for freshwater biodiversity: Their ecological characteristics and management. Biological Conservation, 166, 64-75. https://doi.org/10.1016/j.biocon.2013.06.016

Cooke, S. J., Bergman, J. N., Nyboer, E. A., Reid, A. J., Gallagher, A. J., Hammerschlag, N., Van de Riet, K., & Vermaire, J. C. (2020). Overcoming the concrete conquest of aquatic ecosystems. Biological Conservation, 247, 108589. https://doi.org/10.1016/j.biocon.2020.108589

Cucherousset, J., & Olden, J. D. (2011). Ecological impacts of nonnative freshwater fishes. Fisheries, 36, 215-230. https://doi.org/10.1080/03632415.2011.574578

Daga, V. S., Azevedo-Santos, V. M., Pelicice, F. M., Fearnside, P. M., Perbiche-Neves, G., Paschoal, L. R. P., Daniel, C., Cavallari, D. C., Erickson, J., Ruocco, A. M. C., Oliveira, I., Padial, A. A., & Vitule, J. R. S. (2020). Water diversion in Brazil threatens biodiversity. Ambio, 49, 165-172. https://doi.org/10.1007/s13280-019-01189-8

Ding, L., Chen, L., Ding, C., & Tao, J. (2019). Global trends in dam removal and related research: A systematic review based on associated datasets and bibliometric analysis. Chinese Geographical Science, 29, 1-12. https://doi.org/10.1007/s11769-018-1009-8

Donrovich, S. W., Douda, K., Plechingerová, V., Rylková, K., Horký, P., Slavík, O., Liu, H.-Z., Reichard, M., Lopes-Lima, M., & Sousa, R. (2017). Invasive Chinese pond mussel Sinanodonta woodiana threatens native mussel reproduction by inducing cross-resistance of host fish. Aquatic Conservation: Marine and Freshwater Ecosystems, 27, 1325-1333. https://doi.org/10.1002/aqc.2759

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A.-H., Soto, D., Stiassny, M. L. J., & Sullivan, C. A. (2006). Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81, 163-182. https://doi.org/10.1017/S1464793105006950

Ellis, E. C., & Ramankutty, N. (2008). Putting people in the map: Anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6, 439-447. https://doi.org/10.1890/070062

Falcucci, A., Maiorano, L., & Boitani, L. (2007). Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 22, 617-631. https://doi.org/10.1007/s10980-006-9056-4

Ferreira-Rodríguez, N., Akiyama, B. Y., Aksenova, O., Araujo, R., Barnhart, C., Bespalaya, Y., Bogan, A., Bolotov, I. N., Budha, P. B., Clavijo, C., Clearwater, S. J., Darrigran, G., Do, V. T., Douda, K., Froufe, E., Graf, D., Gumpinger, C., Humphrey, C. L., Johnson, N. A., … Vaughn, C. C. (2019). Research priorities for freshwater mussel conservation assessment. Biological Conservation, 231, 77-87. https://doi.org/10.1016/j.biocon.2019.01.002

Freyhof, J., & Harrison, I. J. (2014). Aphanius sirhani. The IUCN Red List of Threatened Species 2014:e.T60411A16580970. https://doi.org/10.2305/IUCN.UK.20141.RLTS.T60411A16580970.en

Geist, J. (2011). Integrative freshwater ecology and biodiversity conservation. Ecological Indicators, 11, 1507-1516. https://doi.org/10.1016/j.ecolind.2011.04.002

Geyer, B., & Monchambert, J. Y. (2015). Canals and water supply in the lower Euphrates valley. Water History, 7, 11-37. https://doi.org/10.1007/s12685-014-0108-4

Ghosh, S., Mondal, A., Gangopadhyay, S., & Mandal, S. (2020). Cadmium bioaccumulation in Lamellidens marginalis and human health risk assessment: A case study in India. Human and Ecological Risk Assessment: An International Journal, 26, 713-725. https://doi.org/10.1080/10807039.2018.1530588

Gomes-dos-Santos, A., Froufe, E., Gonçalves, D. V., Sousa, R., Prié, V., Ghamizi, M., Benaissa, H., Varandas, S., Teixeira, A., & Lopes-Lima, M. (2019). Freshwater conservation assessments in (semi-)arid regions: Testing river intermittence and buffer strategies using freshwater mussels (Bivalvia, Unionida) in Morocco. Biological Conservation, 236, 420-434. https://doi.org/10.1016/j.biocon.2019.05.038

Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M. E., Meng, J., Mulligan, M., … Zarfl, C. (2019). Mapping the world's free-flowing rivers. Nature, 569, 215-221. https://doi.org/10.1038/s41586-019-1111-9

Haag, W. R. (2012). North American freshwater mussels: Natural history, ecology, and conservation. Cambridge University Press.

Haag, W. R., & Warren, M. L. (2007). Freshwater mussel assemblage structure in a regulated river in the Lower Mississippi River Alluvial Basin, USA. Aquatic Conservation: Marine and Freshwater Ecosystems, 17, 25-36. https://doi.org/10.1002/aqc.773

Hamstead, B. A., Hartfield, P. D., Jones, R. L., & Gangloff, M. M. (2019). Changes to freshwater mussel assemblages after 25 years of impoundment and river habitat fragmentation. Aquatic Conservation: Marine and Freshwater Ecosystems, 29, 2162-2175. https://doi.org/10.1002/aqc.3220

Hijdra, A., Arts, J., & Woltjer, J. (2014). Do we need to rethink our waterways? Values of ageing waterways in current and future society. Water Resources Management, 28, 2599-2613. https://doi.org/10.1007/s11269-014-0629-8

Hoess, R., & Geist, J. (2020). Spatiotemporal variation of streambed quality and fine sediment deposition in five freshwater pearl mussel streams, in relation to extreme drought, strong rain and snow melt. Limnologica, 85, 125833. https://doi.org/10.1016/j.limno.2020.125833

Hoffmann, R. C. (1996). Economic development and aquatic ecosystems in medieval Europe. The American Historical Review, 101, 631-669. https://doi.org/10.1086/ahr/101.3.631

Hronek, J. (2010). The occurrence and population characteristics of freshwater mussels (family Unionidae) on selected anthropogenically modified localities in the Czech Republic. Master Thesis (in Czech). Czech University of Life Sciences Prague.

Huber, V., & Geist, J. (2019). Reproduction success of the invasive Sinanodonta woodiana (Lea 1834) in relation to native mussel species. Biological Invasions, 21, 3451-3465. https://doi.org/10.1007/s10530-019-02060-3

IUCN. (2020). Red List version 2020-1.

Jabłońska, A., Mamos, T., Gruszka, P., Szlauer-Łukaszewska, A., & Grabowski, M. (2018). First record and DNA barcodes of the aquarium shrimp, Neocaridina davidi, in Central Europe from thermally polluted River Oder canal, Poland. Knowledge and Management of Aquatic Ecosystems, 419, 14. https://doi.org/10.1051/kmae/2018004

Jarić, I., Roll, U., Arlinghaus, R., Belmaker, J., Chen, Y., China, V., Douda, K., Essl, F., Jähnig, S. C., Jeschke, J. M., Kalinkat, G., Kalous, L., Ladle, R., Lennox, R. J., Rosa, R., Sbragaglia, V., Sherren, K., Šmejkal, M., Soriano-Redondo, A., … Correia, R. A. (2020). Expanding conservation culturomics and iEcology from terrestrial to aquatic realms. PLoS Biology, 18, e3000935. https://doi.org/10.1371/journal.pbio.3000935

Johnson, M. T., & Munshi-South, J. (2017). Evolution of life in urban environments. Science, 358, eaam8327. https://doi.org/10.1126/science.aam8327

Jones, H. A. (2007). The influence of hydrology on freshwater mussel (Bivalvia: Hyriidae) distributions in a semi-arid river system, the Barwon-Darling River and Intersecting Streams. In C. R. Dickman, S. Burgin, & D. Lunney (Eds.), Animals of arid Australia: Out on their own? (pp. 132-142). Royal Zoological Society of NSW.

Jones, H. A. (2011). Crustaceans and molluscs. In K. Rogers & T. J. Ralph (Eds.), Floodplain wetland biota in the Murray-Darling Basin: Water and habitat requirements (pp. 275-310). CSIRO Publishing.

Katayama, N., Baba, Y. G., Kusumoto, Y., & Tanaka, K. (2015). A review of post-war changes in rice farming and biodiversity in Japan. Agricultural Systems, 132, 73-84. https://doi.org/10.1016/j.agsy.2014.09.001

Kingsford, R. T. (2000). Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecology, 25, 109-127. https://doi.org/10.1046/j.1442-9993.2000.01036.x

Kissel, A. M., Halabisky, M., Scherer, R. D., Ryan, M. E., & Hansen, E. C. (2020). Expanding wetland hydroperiod data via satellite imagery for ecological applications. Frontiers in Ecology and the Environment, 18, 432-438. https://doi.org/10.1002/fee.2233

Klunzinger, M. W., Beatty, S. J., Morgan, D. L., Pinder, A. M., & Lymbery, A. J. (2015). Range decline and conservation status of Westralunio carteri Iredale, 1934 (Bivalvia: Hyriidae) from south-western Australia. Australian Journal of Zoology, 63, 127-135. https://doi.org/10.1071/ZO15002

Klunzinger, M. W., Beatty, S. J., Morgan, D. L., Thomson, G. J., & Lymbery, A. J. (2012). Glochidia ecology in wild fish populations and laboratory determination of competent host fishes for an endemic freshwater mussel of south-western Australia. Australian Journal of Zoology, 60, 26-36. https://doi.org/10.1071/ZO12022

Kondakov, A. V., Bespalaya, Y. V., Vikhrev, I. V., Konopleva, E. S., Gofarov, M. Y., Tomilova, A. A., Vinarski, M. V., & Bolotov, I. N. (2020). The Asian pond mussels rapidly colonize Russia: Successful invasions of two cryptic species to the Volga and Ob rivers. BioInvasions Records, 9, 504-518. https://doi.org/10.3391/bir.2020.9.3.07

Labecka, A. M., & Czarnoleski, M. (2019). Patterns of growth, brooding and offspring size in the invasive mussel Sinanodonta woodiana (Lea, 1834) (Bivalvia: Unionidae) from an anthropogenic heat island. Hydrobiologia. https://doi.org/10.1007/s10750-019-04141-9

Labecka, A. M., & Domagala, J. (2018). Continuous reproduction of Sinanodonta woodiana (Lea, 1824) females - An invasive mussel species in a female-biased population. Hydrobiologia, 810, 57-76. https://doi.org/10.1007/s10750-016-2835-2

Łabęcka, A. M., Domagała, J., & Pilecka-Rapacz, M. (2005). First record of Corbicula fluminalis (O.F. Müller, 1774) (Bivalvia: Corbiculidae) in Poland. Folia Malacologica, 13, 25-27. https://doi.org/10.12657/folmal.013.003

Latawiec, A. E., Strassburg, B. B., Brancalion, P. H., Rodrigues, R. R., & Gardner, T. (2015). Creating space for large-scale restoration in tropical agricultural landscapes. Frontiers in Ecology and the Environment, 13, 211-218. https://doi.org/10.1890/140052

Lehner, B., Liermann, C. R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., Frenken, K., Magome, J., Nilsson, C., Robertson, J. C., Rödel, R., Sindorf, N., & Wisser, D. (2011). High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment, 9, 494-502. https://doi.org/10.1890/100125

Lin, H. Y., Cooke, S. J., Wolter, C., Young, N., & Bennett, J. R. (2020). On the conservation value of historic canals for aquatic ecosystems. Biological Conservation, 251, 108764. https://doi.org/10.1016/j.biocon.2020.108764

Lopes-Lima, M., Burlakova, L. E., Karatayev, A. Y., Mehler, K., Seddon, M., & Sousa, R. (2018). Conservation of freshwater bivalves at the global scale: Diversity, threats and research needs. Hydrobiologia, 810, 1-14. https://doi.org/10.1007/s10750-017-3486-7

Lopes-Lima, M., Sousa, R., Geist, J., Aldridge, D. C., Araujo, R., Bergengren, J., Bespalaya, Y., Bódis, E., Burlakova, L., Van Damme, D., Douda, K., Froufe, E., Georgiev, D., Gumpinger, C., Karatayev, A., Kebapçi, Ü., Killeen, I., Lajtner, J., Larsen, B. M., … Zogaris, S. (2017). Conservation status of freshwater mussels in Europe: State of the art and future challenges. Biological Reviews, 92, 572-607. https://doi.org/10.1111/brv.12244

Lopes-Lima, M., Teixeira, A., Froufe, E., Lopes, A., Varandas, S., & Sousa, R. (2014). Biology and conservation of freshwater bivalves: Past, present and future perspectives. Hydrobiologia, 735, 1-13. https://doi.org/10.1007/s10750-014-1902-9

Lundholm, J. T., & Richardson, P. J. (2010). Habitat analogues for reconciliation ecology in urban and industrial environments. Journal of Applied Ecology, 47, 966-975. https://doi.org/10.1111/j.1365-2664.2010.01857.x

Lymbery, A. J., Ma, L., Lymbery, S. J., Klunzinger, M. W., Beatty, S. J., & Morgan, D. L. (2020). Burrowing behavior protects a threatened freshwater mussel in drying rivers. Hydrobiologia. https://doi.org/10.1007/s10750-020-04268-0

McAllister, E., Craig, J. F., Davidson, N., Delany, S., & Ii, M. S. (2001). Biodiversity Impacts of Large Dams. Background Paper, 1.

McMichael, D. F., & Hiscock, I. D. (1958). A monograph of the freshwater mussels (Mollusca: Pelecypoda) of the Australian Region. Australian Journal of Marine and Freshwater Research, 9, 372-507. https://doi.org/10.1071/MF9580372

Meira, A., Lopes-Lima, M., Varandas, S., Teixeira, A., Arenas, F., & Sousa, R. (2019). Invasive crayfishes as a threat to freshwater bivalves: Interspecific differences and conservation implications. Science of the Total Environment, 649, 938-948. https://doi.org/10.1016/j.scitotenv.2018.08.341

Miura, K., Izumi, H., Saito, Y., Asato, K., Negishi, J. N., Ito, K., & Oomori, A. (2018). Assessment of a unionid freshwater mussel (Pronodularia japanensis) population in an agricultural channel during the 4 years following reintroduction. Landscape and Ecological Engineering, 14, 157-164. https://doi.org/10.1007/s11355-017-0330-1

Modesto, V., Castro, P., Lopes-Lima, M., Antunes, C., Ilarri, M., & Sousa, R. (2019). Potential impacts of the invasive species Corbicula fluminea on the survival of glochidia. Science of the Total Environment, 673, 157-164. https://doi.org/10.1016/j.scitotenv.2019.04.043

Modesto, V., Ilarri, M., Souza, A. T., Lopes-Lima, M., Douda, K., Clavero, M., & Sousa, R. (2018). Fish and mussels: Importance of fish for freshwater mussel conservation. Fish and Fisheries, 19, 244-259. https://doi.org/10.1111/faf.12252

Naimo, T. J. (1995). A review of the effects of the heavy metals on freshwater mussels. Ecotoxicology, 4, 341-362. https://doi.org/10.1007/BF00118870

Nakajima, T., Hudson, M. J., Uchiyama, J., Makibayashi, K., & Zhang, J. (2019). Common carp aquaculture in Neolithic China dates back 8,000 years. Nature Ecology & Evolution, 3, 1415-1418. https://doi.org/10.1038/s41559-019-0974-3

Nakamura, K., Cañete, J., Vijuesca, D., Guillén, N., Sosa, C., Mesquita-Joanes, F., Sousa, R., Ginés, E., & Sorribas, V. (2020). Sensitivity of Pseudunio auricularius to metals and ammonia: First evaluation. Hydrobiologia. https://doi.org/10.1007/s10750-020-04277-z

Nakamura, K., Cucala, L., Mestre, A., Mesquita-Joanes, F., Elbaile, E., Salinas, C., & Muñoz-Yanguas, M. A. (2018). Modelling growth in the critically endangered freshwater mussel Margaritifera auricularia (Spengler, 1793) in the Ebro basin. Hydrobiologia, 810, 375-391. https://doi.org/10.1007/s10750-017-3103-9

Nakamura, K., Guerrero, J., Alcántara, M., Muñoz, M. A., & Elbaile, E. (2018). Tiempos de incertidumbre para la náyade Margaritifera auricularia. Quercus, 383, 16-24.

Natuhara, Y. (2013). Ecosystem services by paddy fields as substitutes of natural wetlands in Japan. Ecological Engineering, 56, 97-106. https://doi.org/10.1016/j.ecoleng.2012.04.026

O'Connor, J. E., Duda, J. J., & Grant, G. E. (2015). 1000 dams down and counting. Science, 348, 496-497. https://doi.org/10.1126/science.aaa9204

Ortloff, C. R. (2009). Water engineering in the ancient world: Archaeological and climate perspectives on societies of ancient South America, the Middle East, and South-East Asia. Oxford University Press.

Ożgo, M., Urbańska, M., Hoos, P., Imhof, H. K., Kirschenstein, M., Mayr, J., Michl, F., Tobiasz, R., von Wesendonk, M., Zimmermann, S., & Geist, J. (2020). Invasive zebra mussel (Dreissena polymorpha) threatens an exceptionally large population of the depressed river mussel (Pseudanodonta complanata) in a postglacial lake. Ecology and Evolution, 10, 4918-4927. https://doi.org/10.1002/ece3.6243

Palanques, A., Grimalt, J., Belzunces, M., Estrada, F., Puig, P., & Guillén, G. (2014). Massive accumulation of highly polluted sedimentary deposits by river damming. Science of the Total Environment, 497-498, 369-381. https://doi.org/10.1016/j.scitotenv.2014.07.091

Palmer, M. A., Liu, J., Matthews, J. H., Mumba, M., & D'Odorico, P. (2015). Manage water in a green way. Science, 349, 584-585. https://doi.org/10.1126/science.aac7778

Paschoal, L. R., Andrade, D. P., Pimpão, D. M., Torres, S., & Darrigran, G. (2020). Massive mortality of the giant freshwater mussel Anodontites trapesialis (Lamarck, 1819) (Bivalvia: Mycetopodidae) during a severe drought in a Neotropical reservoir. Anais da Academia Brasileira de Ciências, 92, e20180811. https://doi.org/10.1590/0001-3765202020180811

Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540, 418-422. https://doi.org/10.1038/nature20584

Prié, V., Soler, J., Araújo, R., Cucherat, X., Philippe, L., Patry, N., Adam, B., Legrand, N., Jugé, P., Richard, N., & Wantzen, K. M. (2018). Challenging exploration of troubled waters: A decade of surveys of the giant freshwater pearl mussel Margaritifera auricularia in Europe. Hydrobiologia, 810, 157-175. https://doi.org/10.1007/s10750-017-3456-0

Prié, V., Valentini, A., Lopes-Lima, M., Froufe, E., Rocle, M., Poulet, N., Taberlet, P., & Dejean, T. (2020). Environmental DNA metabarcoding for freshwater bivalves biodiversity assessment: Methods and results for the Western Palearctic (European sub-region). Hydrobiologia. https://doi.org/10.1007/s10750-020-04260-8

Pulliam, H. R. (1988). Sources, sinks, and population regulation. American Naturalist, 132, 652-661. https://doi.org/10.1086/284880

Revenga, C., Brunner, J., Henninger, N., Kassem, K., & Payne, R. (2000). Pilot analysis of global ecosystems: Freshwater systems. World Resources Institute.

Rosenzweig, M. L. (2003). Win-Win ecology: How the earth's species can survive in the midst of human enterprise. Oxford University Press.

Roy, K., Vrba, J., Kaushik, S. J., & Mraz, J. (2020). Nutrient footprint and ecosystem services of carp production in European fishponds in contrast to EU crop and livestock sectors. Journal of Cleaner Production, 270, 122268. https://doi.org/10.1016/j.jclepro.2020.122268

Schilthuizen, M. (2019). Darwin comes to town: How the urban jungle drives evolution. Picador.

Schlaepfer, M. A., Runge, M. C., & Sherman, P. W. (2002). Ecological and evolutionary traps. Trends in Ecology and Evolution, 17, 474-480. https://doi.org/10.1016/S0169-5347(02)02580-6

Schmutz, S., & Sendzimir, J. (2018). Riverine ecosystem management: Science for governing towards a sustainable future. Springer Nature.

Sethi, S. A., Selle, A. R., Doyle, M. W., Stanley, E. H., & Kitchel, H. E. (2004). Response of unionid mussels to dam removal in Koshkonong Creek, Wisconsin (USA). Hydrobiologia, 525, 157-165. https://doi.org/10.1023/B:HYDR.0000038862.63229.56

Shumilova, O., Tockner, K., Thieme, M., Koska, A., & Zarfl, C. (2018). Global water transfer megaprojects: A potential solution for the water-food-energy nexus? Frontiers in Environmental Science, 6, 150. https://doi.org/10.3389/fenvs.2018.00150

Smith, B. D. (2007). The ultimate ecosystem engineers. Science, 315, 1797-1798. https://doi.org/10.1126/science.1137740

Smith, N. A. F. (1971). A history of dams. Citadel Press.

Sousa, R., Ferreira, A., Carvalho, F., Lopes-Lima, M., Varandas, S., & Teixeira, A. (2018). Die-offs of the endangered pearl mussel Margaritifera margaritifera during an extreme drought. Aquatic Conservation: Marine and Freshwater Ecosystems, 28, 1244-1248. https://doi.org/10.1002/aqc.2945

Sousa, R., Ferreira, A., Carvalho, F., Lopes-Lima, M., Varandas, S., Teixeira, A., & Gallardo, B. (2020). Small hydropower plants as a threat to the endangered pearl mussel Margaritifera margaritifera. Science of the Total Environment, 719, 137361. https://doi.org/10.1016/j.scitotenv.2020.137361

Sousa, R., Nogueira, J., Ferreira, A., Carvalho, F., Lopes-Lima, M., Varandas, S., & Teixeira, A. (2019). A tale of shells and claws: the signal crayfish as a threat to the pearl mussel Margaritifera margaritifera in Europe. Science of the Total Environment, 665, 329-337. https://doi.org/10.1016/j.scitotenv.2019.02.094

Sousa, R., Nogueira, J. G., Lopes-Lima, M., Varandas, S., & Teixeira, A. (2019). Water mill canals as habitat for Margaritifera margaritifera: Stable refuge or an ecological trap? Ecological Indicators, 106, 105469. https://doi.org/10.1016/j.ecolind.2019.105469

Sousa, R., Nogueira, J. G., Miranda, F., & Teixeira, A. (2020). Time travelling through local ecological knowledge regarding an endangered species. Science of the Total Environment, 739, 140047. https://doi.org/10.1016/j.scitotenv.2020.140047

Sousa, R., Novais, A., Costa, R., & Strayer, D. (2014). Invasive bivalves in fresh waters: Impacts from individuals to ecosystems and possible control strategies. Hydrobiologia, 735, 233-251. https://doi.org/10.1007/s10750-012-1409-1

Sousa, R., Teixeira, A., Benaissa, H., Varandas, S., Ghamizi, M., & Lopes-Lima, M. (2019). Refuge in the sāqya: Irrigation canals as habitat for one of the world's 100 most threatened species. Biological Conservation, 238, 108209. https://doi.org/10.1016/j.biocon.2019.108209

Sousa, R., Teixeira, A., Santos, A., Benaissa, H., Varandas, S., Ghamizi, M., Prié, V., Froufe, E., & Lopes-Lima, M. (2018). Oued Bouhlou: A new hope for the Moroccan pearl mussel. Aquatic Conservation: Marine and Freshwater Ecosystems, 28, 247-251. https://doi.org/10.1002/aqc.2825

Sousa, R., Varandas, S., Teixeira, A., Ghamizi, M., Froufe, E., & Lopes-Lima, M. (2016). Pearl mussels (Margaritifera marocana) in Morocco: Conservation status of the rarest bivalve in African fresh waters. Science of the Total Environment, 547, 405-412. https://doi.org/10.1016/j.scitotenv.2016.01.003

Stoeckl, K., & Geist, J. (2016). Hydrological and substrate requirements of the thick-shelled river mussel Unio crassus (Philipsson 1788). Aquatic Conservation: Marine and Freshwater Ecosystems, 26, 456-469. https://doi.org/10.1002/aqc.2598

Strain, E. M. A., Olabarria, C., Mayer-Pinto, M., Cumbo, V., Morris, R. L., Bugnot, A. B., Dafforn, K. A., Heery, E., Firth, L. B., Brooks, P. R., & Bishop, M. J. (2018). Eco-engineering urban infrastructure for marine and coastal biodiversity: Which interventions have the greatest ecological benefit? Journal of Applied Ecology, 55, 426-441. https://doi.org/10.1111/1365-2664.12961

Strayer, D. L. (2008). Freshwater mussel ecology: A multifactor approach to distribution and abundance. University of California Press.

Strayer, D. L., Downing, J. A., Haag, W. R., King, T. L., Layzer, J. B., Newton, T. J., & Nichols, J. S. (2004). Changing perspectives on pearly mussels, North America's most imperiled animals. BioScience, 54, 429-439. https://doi.org/10.1641/0006-3568(2004)054[0429:CPOPMN]2.0.CO;2

Thieme, M. L., Khrystenko, D., Qin, S., Golden Kroner, R. E., Lehner, B., Pack, S., Tockner, K., Zarfl, C., Shahbol, N., & Mascia, M. B. (2020). Dams and protected areas: Quantifying the spatial and temporal extent of global dam construction within protected areas. Conservation Letters, 13, e12719. https://doi.org/10.1111/conl.12719

Togaki, D., Doi, H., & Katano, I. (2020). Detection of freshwater mussels (Sinanodonta spp.) in artificial ponds through environmental DNA: A comparison with traditional hand collection methods. Limnology, 21, 59-65. https://doi.org/10.1007/s10201-019-00584-0

Vincentini, H. (2005). Unusual spurting behaviour of the freshwater mussel Unio crassus. Journal of Molluscan Studies, 71, 409-410. https://doi.org/10.1093/mollus/eyi045

Walker, K. F. (1981). Ecology of freshwater mussels in the River Murray. Australian Government Publishing Service.

Walker, K. F. (2017). Reproductive phenology of river and lake populations of freshwater mussels (Unionida: Hyriidae) in the River Murray. Molluscan Research, 37, 31-44. https://doi.org/10.1080/13235818.2016.1206166

Walker, K. F., Thoms, M. C., & Sheldon, F. (1992). Effects of weirs on the littoral environment of the River Murray, South Australia. In P. J. Boon, P. A. Calow, & G. E. Petts (Eds.), River conservation and management (pp. 270-293). Wiley.

Walker, R. P., O'Toole, A. C., Whynot, Z., Hanson, K. C., & Cooke, S. J. (2010). Evaluation of the aquatic habitat and fish assemblage in an urban reach of the historic Rideau Canal, Ottawa, Canada: Implications for management in an engineered system. Urban Ecosystems, 13, 563-582. https://doi.org/10.1007/s11252-010-0135-6

Watters, G. T. (1997). A synthesis and review of the expanding range of the Asian freshwater mussel Anodonta woodiana (Lea, 1834) (Bivalvia, Unionidae). The Veliger, 40, 152-156.

Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., & Tockner, K. (2015). A global boom in hydropower dam construction. Aquatic Sciences, 77, 161-170. https://doi.org/10.1007/s00027-014-0377-0

Zhan, A., Zhang, L., Xia, Z., Ni, P., Xiong, W., Chen, Y., Haffner, G. D., & MacIsaac, H. J. (2015). Water diversions facilitate spread of non-native species. Biological Invasions, 17, 3073-3080. https://doi.org/10.1007/s10530-015-0940-1

Zhuang, W. (2016). Eco-environmental impact of inter-basin water transfer projects: A review. Environmental Science and Pollution Research, 23, 12867-12879. https://doi.org/10.1007/s11356-016-6854-3

Zieritz, A., Bogan, A. E., Froufe, E., Klishko, O., Kondo, T., Kovitvadhi, U., Kovitvadhi, S., Lee, J. H., Lopes-Lima, M., Pfeiffer, J. M., Sousa, R., Do, V. T., Vikhrev, I., & Zanatta, D. T. (2018). Diversity, biogeography and conservation of freshwater mussels (Bivalvia: Unionida) in East and Southeast Asia. Hydrobiologia, 810, 29-44. https://doi.org/10.1007/s10750-017-3104-8

Zieritz, A., Bogan, A. E., Rahim, K. A., Sousa, R., Jainih, L., Harun, S., Razak, N. F. A., Gallardo, B., McGowan, S., Hassan, R., & Lopes-Lima, M. (2018). Changes and drivers of freshwater mussel diversity and distribution in northern Borneo. Biological Conservation, 219, 126-137. https://doi.org/10.1016/j.biocon.2018.01.012

Zieritz, A., Lopes-Lima, M., Bogan, A., Sousa, R., Walton, S., Rahim, K., Wilson, J.-J., Ng, P.-Y., Froufe, E., & McGowan, S. (2016). Factors driving changes in freshwater mussel (Bivalvia, Unionida) diversity and distribution in Peninsular Malaysia. Science of the Total Environment, 571, 1069-1078. https://doi.org/10.1016/j.scitotenv.2016.07.098

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Freshwater mussel conservation: A global horizon scan of emerging threats and opportunities

. 2023 Feb ; 29 (3) : 575-589. [epub] 20221129

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...