Acetophenyl-thienyl-aniline-Linked Nucleotide for Construction of Solvatochromic Fluorescence Light-Up DNA Probes Sensing Protein-DNA Interactions
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
17-14791S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16?019/0000729
European Regional Development Fund
Czech Academy of Sciences
17-14791S
Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729
European Regional Development Fund
Praemium Academiae
Akademie Věd České Republiky
- Keywords
- DNA polymerases, fluorescent labelling, nucleotides, protein-DNA interactions, solvatochromism,
- MeSH
- Aniline Compounds MeSH
- DNA Probes MeSH
- DNA * MeSH
- Fluorescence MeSH
- Fluorescent Dyes MeSH
- Nucleotides * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Aniline Compounds MeSH
- DNA Probes MeSH
- DNA * MeSH
- Fluorescent Dyes MeSH
- Nucleotides * MeSH
The synthesis of 2'-deoxycytidine and its 5'-O-triphosphate bearing solvatochromic acetophenyl-thienyl-aniline fluorophore was developed using the Sonogashira cross-coupling reaction as the key step. The triphosphate was used for polymerase synthesis of labelled DNA. The labelled nucleotide or DNA exerted weak red fluorescence when excited at 405 nm, but a significant colour change (to yellow or green) and light-up (up to 20 times) was observed when the DNA probes interacted with proteins or lipids.
See more in PubMed
W. Xu, K. M. Chan, E. T. Kool, Nat. Chem. 2017, 9, 1043-1055;
R. W. Sinkeldam, N. J. Greco, Y. Tor, Chem. Rev. 2010, 110, 2579-2619;
A. A. Tanpure, M. G. Pawar, S. G. Srivatsan, Isr. J. Chem. 2013, 53, 366-378.
B. Y. Michel, D. Dziuba, R. Benhida, A. P. Demchenko, A. Burger, Front. Chem. 2020, 8, 112.
D. D. Burns, K. L. Teppang, R. W. Lee, M. E. Lokensgard, B. W. Purse, J. Am. Chem. Soc. 2017, 139, 1372-1375;
Y. Saito, A. Suzuki, Y. Okada, Y. Yamasaka, N. Nemoto, I. Saito, Chem. Commun. 2013, 49, 5684-5686;
M. Yanagi, A. Suzuki, R. H. E. Hudson, Y. Saito, Org. Biomol. Chem. 2018, 16, 1496-1507;
S. G. Srivatsan, H. Weizman, Y. Tor, Org. Biomol. Chem. 2008, 6, 1334-1338;
A. Karimi, R. Börner, G. Mata, N. W. Luedtke, J. Am. Chem. Soc. 2020, 142, 14422-14426;
R. Varghese, P. Gajula, T. Chakraborty, H.-A. Wagenknecht, Synlett 2009, 3252-3257;
F. Hövelmann, O. Seitz, Acc. Chem. Res. 2016, 49, 714-723;
P. Klimkowski, S. De Ornellas, D. Singleton, A. H. El-Sagheer, T. Brown, Org. Biomol. Chem. 2019, 17, 5943-5950.
T. Kanamori, A. Takamura, N. Tago, Y. Masaki, A. Ohkubo, M. Sekine, K. Seio, Org. Biomol. Chem. 2017, 15, 1190-1197;
T. Kanamori, Y. Masaki, Y. Oda, H. Ohzeki, A. Ohkubo, M. Sekine, K. Seio, Org. Biomol. Chem. 2019, 17, 2077-2080;
S. Manna, D. Sarkar, S. G. Srivatsan, J. Am. Chem. Soc. 2018, 140, 12622-12633;
A. Nuthanakanti, I. Ahmed, S. Y. Khatik, K. Saikrishnan, S. G. Srivatsan, Nucleic Acids Res. 2019, 47, 6059-6072;
M. Kuba, T. Kraus, R. Pohl, M. Hocek, Chem. Eur. J. 2020, 26, 11950-11954.
D. Dziuba, R. Pohl, M. Hocek, Chem. Commun. 2015, 51, 4880-4882.
D. Dziuba, P. Jurkiewicz, M. Cebecauer, M. Hof, M. Hocek, Angew. Chem. Int. Ed. 2016, 55, 174-178;
Angew. Chem. 2016, 128, 182-186;
P. Güixens-Gallardo, J. Humpolickova, S. P. Miclea, R. Pohl, T. Kraus, P. Jurkiewicz, M. Hof, M. Hocek, Org. Biomol. Chem. 2020, 18, 912-919.
M. Tokugawa, Y. Masaki, J. C. Canggadibrata, K. Kaneko, T. Shiozawa, T. Kanamori, M. Grøtli, L. M. Wilhelmsson, M. Sekine, K. Seio, Chem. Commun. 2016, 52, 3809-3812.
A. S. Klymchenko, Acc. Chem. Res. 2017, 50, 366-375;
K. Seio, T. Kanamori, Y. Masaki, Tetrahedron Lett. 2018, 59, 1977-1985.
T. Kimura, K. Kawai, T. Majima, Org. Lett. 2005, 7, 5829-5832;
K. Tainaka, K. Tanaka, S. Ikeda, K. Nishiza, T. Unzai, Y. Fujiwara, I. Saito, A. Okamoto, J. Am. Chem. Soc. 2007, 129, 4776-4784;
G. Mata, N. W. Luedtke, Org. Lett. 2013, 15, 2462-2465;
G. Mata, N. W. Luedtke, J. Am. Chem. Soc. 2015, 137, 699-707.
D. Dziuba, P. Pospíšil, J. Matyašovský, J. Brynda, D. Nachtigallová, L. Rulíšek, R. Pohl, M. Hof, M. Hocek, Chem. Sci. 2016, 7, 5775-5785.
Y. Ando, Y. Homma, Y. Hiruta, D. Citterio, K. Suzuki, Dyes Pigm. 2009, 83, 198-206.
M. Collot, S. Bou, T. K. Fam, L. Richert, Y. Mély, L. Danglot, A. S. Klymchenko, Anal. Chem. 2019, 91, 1928-1935.
M. Hocek, Acc. Chem. Res. 2019, 52, 1730-1737.
M. Fojta, H. Pivonkova, M. Brazdova, K. Nemcova, E. Palecek, B. Vojtesek, Eur. J. Biochem. 2004, 271, 3865-3876.
Z. Zawada, A. Tatar, P. Mocilac, M. Buděšínský, T. Kraus, Angew. Chem. Int. Ed. 2018, 57, 9891-9895;
Angew. Chem. 2018, 130, 10039-10043;
P. Güixens-Gallardo, Z. Zawada, J. Matyašovský, D. Dziuba, R. Pohl, T. Kraus, M. Hocek, Bioconjugate Chem. 2018, 29, 3906-3912.
M. Poot, Y. Z. Zhang, J. A. Krämer, K. S. Wells, L. J. Jones, D. K. Hanzel, A. G. Lugade, V. L. Singer, R. P. Haugland, J. Histochem. Cytochem. 1996, 44, 1363-1372.
Z. Cao, F. Peng, Z. Hu, B. Chu, Y. Zhong, Y. Su, S. He, Y. He, Nanoscale 2017, 9, 7602-7611.
G. van Meer, D. R. Voelker, G. W. Feigenson, Nat. Rev. Mol. Cell Biol. 2008, 9, 112-124;
E. Boura, V. Ivanov, L. A. Carlson, K. Mizuuchi, J. H. Hurley, J. Biol. Chem. 2012, 287, 28144-28151.
A. A. Bergh, Phys. Status Solidi A 2004, 201, 2740-2754.